| 1465 |      1 | (*  Title:      HOL/lfp.ML
 | 
| 923 |      2 |     ID:         $Id$
 | 
| 1465 |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 923 |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | For lfp.thy.  The Knaster-Tarski Theorem
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | open Lfp;
 | 
|  |     10 | 
 | 
|  |     11 | (*** Proof of Knaster-Tarski Theorem ***)
 | 
|  |     12 | 
 | 
|  |     13 | (* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
 | 
|  |     14 | 
 | 
|  |     15 | val prems = goalw Lfp.thy [lfp_def] "[| f(A) <= A |] ==> lfp(f) <= A";
 | 
|  |     16 | by (rtac (CollectI RS Inter_lower) 1);
 | 
|  |     17 | by (resolve_tac prems 1);
 | 
|  |     18 | qed "lfp_lowerbound";
 | 
|  |     19 | 
 | 
|  |     20 | val prems = goalw Lfp.thy [lfp_def]
 | 
|  |     21 |     "[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
 | 
|  |     22 | by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
 | 
|  |     23 | by (etac CollectD 1);
 | 
|  |     24 | qed "lfp_greatest";
 | 
|  |     25 | 
 | 
|  |     26 | val [mono] = goal Lfp.thy "mono(f) ==> f(lfp(f)) <= lfp(f)";
 | 
|  |     27 | by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
 | 
| 1465 |     28 |             rtac (mono RS monoD), rtac lfp_lowerbound, atac, atac]);
 | 
| 923 |     29 | qed "lfp_lemma2";
 | 
|  |     30 | 
 | 
|  |     31 | val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) <= f(lfp(f))";
 | 
|  |     32 | by (EVERY1 [rtac lfp_lowerbound, rtac (mono RS monoD), 
 | 
| 1465 |     33 |             rtac lfp_lemma2, rtac mono]);
 | 
| 923 |     34 | qed "lfp_lemma3";
 | 
|  |     35 | 
 | 
|  |     36 | val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) = f(lfp(f))";
 | 
|  |     37 | by (REPEAT (resolve_tac [equalityI,lfp_lemma2,lfp_lemma3,mono] 1));
 | 
|  |     38 | qed "lfp_Tarski";
 | 
|  |     39 | 
 | 
|  |     40 | (*** General induction rule for least fixed points ***)
 | 
|  |     41 | 
 | 
|  |     42 | val [lfp,mono,indhyp] = goal Lfp.thy
 | 
| 1465 |     43 |     "[| a: lfp(f);  mono(f);                            \
 | 
| 3842 |     44 | \       !!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)   \
 | 
| 923 |     45 | \    |] ==> P(a)";
 | 
|  |     46 | by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
 | 
|  |     47 | by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
 | 
|  |     48 | by (EVERY1 [rtac Int_greatest, rtac subset_trans, 
 | 
| 1465 |     49 |             rtac (Int_lower1 RS (mono RS monoD)),
 | 
|  |     50 |             rtac (mono RS lfp_lemma2),
 | 
|  |     51 |             rtac (CollectI RS subsetI), rtac indhyp, atac]);
 | 
| 923 |     52 | qed "induct";
 | 
|  |     53 | 
 | 
| 5098 |     54 | bind_thm ("induct2",
 | 
|  |     55 |   split_rule (read_instantiate [("a","(a,b)")] induct));
 | 
| 1114 |     56 | 
 | 
| 1125 |     57 | 
 | 
| 923 |     58 | (** Definition forms of lfp_Tarski and induct, to control unfolding **)
 | 
|  |     59 | 
 | 
|  |     60 | val [rew,mono] = goal Lfp.thy "[| h==lfp(f);  mono(f) |] ==> h = f(h)";
 | 
|  |     61 | by (rewtac rew);
 | 
|  |     62 | by (rtac (mono RS lfp_Tarski) 1);
 | 
|  |     63 | qed "def_lfp_Tarski";
 | 
|  |     64 | 
 | 
|  |     65 | val rew::prems = goal Lfp.thy
 | 
| 1465 |     66 |     "[| A == lfp(f);  mono(f);   a:A;                   \
 | 
| 3842 |     67 | \       !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)        \
 | 
| 923 |     68 | \    |] ==> P(a)";
 | 
| 1465 |     69 | by (EVERY1 [rtac induct,        (*backtracking to force correct induction*)
 | 
|  |     70 |             REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
 | 
| 923 |     71 | qed "def_induct";
 | 
|  |     72 | 
 | 
|  |     73 | (*Monotonicity of lfp!*)
 | 
|  |     74 | val [prem] = goal Lfp.thy "[| !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
 | 
| 1465 |     75 | by (rtac (lfp_lowerbound RS lfp_greatest) 1);
 | 
|  |     76 | by (etac (prem RS subset_trans) 1);
 | 
| 923 |     77 | qed "lfp_mono";
 |