| author | wenzelm | 
| Wed, 26 Mar 2014 14:41:52 +0100 | |
| changeset 56294 | 85911b8a6868 | 
| parent 55662 | b45af39fcdae | 
| child 58249 | 180f1b3508ed | 
| permissions | -rw-r--r-- | 
| 33026 | 1 | (* Title: HOL/Isar_Examples/Hoare.thy | 
| 10148 | 2 | Author: Markus Wenzel, TU Muenchen | 
| 3 | ||
| 4 | A formulation of Hoare logic suitable for Isar. | |
| 5 | *) | |
| 6 | ||
| 7 | header {* Hoare Logic *}
 | |
| 8 | ||
| 31758 | 9 | theory Hoare | 
| 10 | imports Main | |
| 11 | begin | |
| 10148 | 12 | |
| 13 | subsection {* Abstract syntax and semantics *}
 | |
| 14 | ||
| 37671 | 15 | text {* The following abstract syntax and semantics of Hoare Logic
 | 
| 16 |   over \texttt{WHILE} programs closely follows the existing tradition
 | |
| 17 | in Isabelle/HOL of formalizing the presentation given in | |
| 40880 | 18 |   \cite[\S6]{Winskel:1993}.  See also @{file "~~/src/HOL/Hoare"} and
 | 
| 37671 | 19 |   \cite{Nipkow:1998:Winskel}. *}
 | 
| 10148 | 20 | |
| 41818 | 21 | type_synonym 'a bexp = "'a set" | 
| 22 | type_synonym 'a assn = "'a set" | |
| 10148 | 23 | |
| 24 | datatype 'a com = | |
| 55656 | 25 | Basic "'a \<Rightarrow> 'a" | 
| 10148 | 26 |   | Seq "'a com" "'a com"    ("(_;/ _)" [60, 61] 60)
 | 
| 27 | | Cond "'a bexp" "'a com" "'a com" | |
| 28 | | While "'a bexp" "'a assn" "'a com" | |
| 29 | ||
| 37671 | 30 | abbreviation Skip  ("SKIP")
 | 
| 55656 | 31 | where "SKIP \<equiv> Basic id" | 
| 10148 | 32 | |
| 55656 | 33 | type_synonym 'a sem = "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 10148 | 34 | |
| 55656 | 35 | primrec iter :: "nat \<Rightarrow> 'a bexp \<Rightarrow> 'a sem \<Rightarrow> 'a sem" | 
| 37671 | 36 | where | 
| 55656 | 37 | "iter 0 b S s s' \<longleftrightarrow> s \<notin> b \<and> s = s'" | 
| 38 | | "iter (Suc n) b S s s' \<longleftrightarrow> s \<in> b \<and> (\<exists>s''. S s s'' \<and> iter n b S s'' s')" | |
| 10148 | 39 | |
| 55656 | 40 | primrec Sem :: "'a com \<Rightarrow> 'a sem" | 
| 41 | where | |
| 42 | "Sem (Basic f) s s' \<longleftrightarrow> s' = f s" | |
| 43 | | "Sem (c1; c2) s s' \<longleftrightarrow> (\<exists>s''. Sem c1 s s'' \<and> Sem c2 s'' s')" | |
| 44 | | "Sem (Cond b c1 c2) s s' \<longleftrightarrow> | |
| 45 | (if s \<in> b then Sem c1 s s' else Sem c2 s s')" | |
| 46 | | "Sem (While b x c) s s' \<longleftrightarrow> (\<exists>n. iter n b (Sem c) s s')" | |
| 10148 | 47 | |
| 55656 | 48 | definition Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool" | 
| 49 |     ("(3\<turnstile> _/ (2_)/ _)" [100, 55, 100] 50)
 | |
| 50 | where "\<turnstile> P c Q \<longleftrightarrow> (\<forall>s s'. Sem c s s' \<longrightarrow> s \<in> P \<longrightarrow> s' \<in> Q)" | |
| 10148 | 51 | |
| 52 | lemma ValidI [intro?]: | |
| 55656 | 53 | "(\<And>s s'. Sem c s s' \<Longrightarrow> s \<in> P \<Longrightarrow> s' \<in> Q) \<Longrightarrow> \<turnstile> P c Q" | 
| 10148 | 54 | by (simp add: Valid_def) | 
| 55 | ||
| 56 | lemma ValidD [dest?]: | |
| 55656 | 57 | "\<turnstile> P c Q \<Longrightarrow> Sem c s s' \<Longrightarrow> s \<in> P \<Longrightarrow> s' \<in> Q" | 
| 10148 | 58 | by (simp add: Valid_def) | 
| 59 | ||
| 60 | ||
| 61 | subsection {* Primitive Hoare rules *}
 | |
| 62 | ||
| 37671 | 63 | text {* From the semantics defined above, we derive the standard set
 | 
| 64 |   of primitive Hoare rules; e.g.\ see \cite[\S6]{Winskel:1993}.
 | |
| 65 | Usually, variant forms of these rules are applied in actual proof, | |
| 66 |   see also \S\ref{sec:hoare-isar} and \S\ref{sec:hoare-vcg}.
 | |
| 10148 | 67 | |
| 37671 | 68 |   \medskip The \name{basic} rule represents any kind of atomic access
 | 
| 69 |   to the state space.  This subsumes the common rules of \name{skip}
 | |
| 70 |   and \name{assign}, as formulated in \S\ref{sec:hoare-isar}. *}
 | |
| 10148 | 71 | |
| 55656 | 72 | theorem basic: "\<turnstile> {s. f s \<in> P} (Basic f) P"
 | 
| 10148 | 73 | proof | 
| 55656 | 74 | fix s s' | 
| 75 |   assume s: "s \<in> {s. f s \<in> P}"
 | |
| 10148 | 76 | assume "Sem (Basic f) s s'" | 
| 37671 | 77 | then have "s' = f s" by simp | 
| 55656 | 78 | with s show "s' \<in> P" by simp | 
| 10148 | 79 | qed | 
| 80 | ||
| 81 | text {*
 | |
| 82 | The rules for sequential commands and semantic consequences are | |
| 83 | established in a straight forward manner as follows. | |
| 84 | *} | |
| 85 | ||
| 55656 | 86 | theorem seq: "\<turnstile> P c1 Q \<Longrightarrow> \<turnstile> Q c2 R \<Longrightarrow> \<turnstile> P (c1; c2) R" | 
| 10148 | 87 | proof | 
| 55656 | 88 | assume cmd1: "\<turnstile> P c1 Q" and cmd2: "\<turnstile> Q c2 R" | 
| 89 | fix s s' | |
| 90 | assume s: "s \<in> P" | |
| 10148 | 91 | assume "Sem (c1; c2) s s'" | 
| 92 | then obtain s'' where sem1: "Sem c1 s s''" and sem2: "Sem c2 s'' s'" | |
| 93 | by auto | |
| 55656 | 94 | from cmd1 sem1 s have "s'' \<in> Q" .. | 
| 95 | with cmd2 sem2 show "s' \<in> R" .. | |
| 10148 | 96 | qed | 
| 97 | ||
| 55656 | 98 | theorem conseq: "P' \<subseteq> P \<Longrightarrow> \<turnstile> P c Q \<Longrightarrow> Q \<subseteq> Q' \<Longrightarrow> \<turnstile> P' c Q'" | 
| 10148 | 99 | proof | 
| 55656 | 100 | assume P'P: "P' \<subseteq> P" and QQ': "Q \<subseteq> Q'" | 
| 101 | assume cmd: "\<turnstile> P c Q" | |
| 10148 | 102 | fix s s' :: 'a | 
| 103 | assume sem: "Sem c s s'" | |
| 55656 | 104 | assume "s : P'" with P'P have "s \<in> P" .. | 
| 105 | with cmd sem have "s' \<in> Q" .. | |
| 106 | with QQ' show "s' \<in> Q'" .. | |
| 10148 | 107 | qed | 
| 108 | ||
| 37671 | 109 | text {* The rule for conditional commands is directly reflected by the
 | 
| 110 | corresponding semantics; in the proof we just have to look closely | |
| 111 | which cases apply. *} | |
| 10148 | 112 | |
| 113 | theorem cond: | |
| 55656 | 114 | assumes case_b: "\<turnstile> (P \<inter> b) c1 Q" | 
| 115 | and case_nb: "\<turnstile> (P \<inter> -b) c2 Q" | |
| 116 | shows "\<turnstile> P (Cond b c1 c2) Q" | |
| 10148 | 117 | proof | 
| 55656 | 118 | fix s s' | 
| 119 | assume s: "s \<in> P" | |
| 10148 | 120 | assume sem: "Sem (Cond b c1 c2) s s'" | 
| 55656 | 121 | show "s' \<in> Q" | 
| 10148 | 122 | proof cases | 
| 55656 | 123 | assume b: "s \<in> b" | 
| 10148 | 124 | from case_b show ?thesis | 
| 125 | proof | |
| 126 | from sem b show "Sem c1 s s'" by simp | |
| 55656 | 127 | from s b show "s \<in> P \<inter> b" by simp | 
| 10148 | 128 | qed | 
| 129 | next | |
| 55656 | 130 | assume nb: "s \<notin> b" | 
| 10148 | 131 | from case_nb show ?thesis | 
| 132 | proof | |
| 133 | from sem nb show "Sem c2 s s'" by simp | |
| 55656 | 134 | from s nb show "s : P \<inter> -b" by simp | 
| 10148 | 135 | qed | 
| 136 | qed | |
| 137 | qed | |
| 138 | ||
| 37671 | 139 | text {* The @{text while} rule is slightly less trivial --- it is the
 | 
| 140 | only one based on recursion, which is expressed in the semantics by | |
| 141 | a Kleene-style least fixed-point construction. The auxiliary | |
| 142 | statement below, which is by induction on the number of iterations | |
| 143 | is the main point to be proven; the rest is by routine application | |
| 144 |   of the semantics of \texttt{WHILE}. *}
 | |
| 10148 | 145 | |
| 18241 | 146 | theorem while: | 
| 55656 | 147 | assumes body: "\<turnstile> (P \<inter> b) c P" | 
| 148 | shows "\<turnstile> P (While b X c) (P \<inter> -b)" | |
| 10148 | 149 | proof | 
| 55656 | 150 | fix s s' assume s: "s \<in> P" | 
| 10148 | 151 | assume "Sem (While b X c) s s'" | 
| 18241 | 152 | then obtain n where "iter n b (Sem c) s s'" by auto | 
| 55656 | 153 | from this and s show "s' \<in> P \<inter> -b" | 
| 20503 | 154 | proof (induct n arbitrary: s) | 
| 19122 | 155 | case 0 | 
| 37671 | 156 | then show ?case by auto | 
| 11987 | 157 | next | 
| 19122 | 158 | case (Suc n) | 
| 55656 | 159 | then obtain s'' where b: "s \<in> b" and sem: "Sem c s s''" | 
| 37671 | 160 | and iter: "iter n b (Sem c) s'' s'" by auto | 
| 55656 | 161 | from Suc and b have "s \<in> P \<inter> b" by simp | 
| 162 | with body sem have "s'' \<in> P" .. | |
| 11987 | 163 | with iter show ?case by (rule Suc) | 
| 10148 | 164 | qed | 
| 165 | qed | |
| 166 | ||
| 167 | ||
| 168 | subsection {* Concrete syntax for assertions *}
 | |
| 169 | ||
| 37671 | 170 | text {* We now introduce concrete syntax for describing commands (with
 | 
| 171 | embedded expressions) and assertions. The basic technique is that of | |
| 172 |   semantic ``quote-antiquote''.  A \emph{quotation} is a syntactic
 | |
| 173 | entity delimited by an implicit abstraction, say over the state | |
| 174 |   space.  An \emph{antiquotation} is a marked expression within a
 | |
| 175 | quotation that refers the implicit argument; a typical antiquotation | |
| 176 | would select (or even update) components from the state. | |
| 10148 | 177 | |
| 37671 | 178 | We will see some examples later in the concrete rules and | 
| 179 | applications. *} | |
| 10148 | 180 | |
| 37671 | 181 | text {* The following specification of syntax and translations is for
 | 
| 182 | Isabelle experts only; feel free to ignore it. | |
| 10148 | 183 | |
| 37671 | 184 | While the first part is still a somewhat intelligible specification | 
| 185 | of the concrete syntactic representation of our Hoare language, the | |
| 186 | actual ``ML drivers'' is quite involved. Just note that the we | |
| 187 | re-use the basic quote/antiquote translations as already defined in | |
| 42284 | 188 |   Isabelle/Pure (see @{ML Syntax_Trans.quote_tr}, and
 | 
| 189 |   @{ML Syntax_Trans.quote_tr'},). *}
 | |
| 10148 | 190 | |
| 191 | syntax | |
| 55662 | 192 |   "_quote" :: "'b \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 193 |   "_antiquote" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"  ("\<acute>_" [1000] 1000)
 | |
| 194 |   "_Subst" :: "'a bexp \<Rightarrow> 'b \<Rightarrow> idt \<Rightarrow> 'a bexp"  ("_[_'/\<acute>_]" [1000] 999)
 | |
| 195 |   "_Assert" :: "'a \<Rightarrow> 'a set"  ("(\<lbrace>_\<rbrace>)" [0] 1000)
 | |
| 196 |   "_Assign" :: "idt \<Rightarrow> 'b \<Rightarrow> 'a com"  ("(\<acute>_ :=/ _)" [70, 65] 61)
 | |
| 197 | "_Cond" :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a com \<Rightarrow> 'a com" | |
| 198 |     ("(0IF _/ THEN _/ ELSE _/ FI)" [0, 0, 0] 61)
 | |
| 199 | "_While_inv" :: "'a bexp \<Rightarrow> 'a assn \<Rightarrow> 'a com \<Rightarrow> 'a com" | |
| 200 |     ("(0WHILE _/ INV _ //DO _ /OD)"  [0, 0, 0] 61)
 | |
| 201 |   "_While" :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a com"  ("(0WHILE _ //DO _ /OD)"  [0, 0] 61)
 | |
| 10148 | 202 | |
| 203 | translations | |
| 55662 | 204 | "\<lbrace>b\<rbrace>" \<rightharpoonup> "CONST Collect (_quote b)" | 
| 205 | "B [a/\<acute>x]" \<rightharpoonup> "\<lbrace>\<acute>(_update_name x (\<lambda>_. a)) \<in> B\<rbrace>" | |
| 206 | "\<acute>x := a" \<rightharpoonup> "CONST Basic (_quote (\<acute>(_update_name x (\<lambda>_. a))))" | |
| 55656 | 207 | "IF b THEN c1 ELSE c2 FI" \<rightharpoonup> "CONST Cond \<lbrace>b\<rbrace> c1 c2" | 
| 55662 | 208 | "WHILE b INV i DO c OD" \<rightharpoonup> "CONST While \<lbrace>b\<rbrace> i c" | 
| 209 | "WHILE b DO c OD" \<rightleftharpoons> "WHILE b INV CONST undefined DO c OD" | |
| 10148 | 210 | |
| 211 | parse_translation {*
 | |
| 212 | let | |
| 42284 | 213 |     fun quote_tr [t] = Syntax_Trans.quote_tr @{syntax_const "_antiquote"} t
 | 
| 10148 | 214 |       | quote_tr ts = raise TERM ("quote_tr", ts);
 | 
| 52143 | 215 |   in [(@{syntax_const "_quote"}, K quote_tr)] end
 | 
| 10148 | 216 | *} | 
| 217 | ||
| 37671 | 218 | text {* As usual in Isabelle syntax translations, the part for
 | 
| 219 | printing is more complicated --- we cannot express parts as macro | |
| 220 | rules as above. Don't look here, unless you have to do similar | |
| 221 | things for yourself. *} | |
| 10148 | 222 | |
| 223 | print_translation {*
 | |
| 224 | let | |
| 225 | fun quote_tr' f (t :: ts) = | |
| 42284 | 226 |           Term.list_comb (f $ Syntax_Trans.quote_tr' @{syntax_const "_antiquote"} t, ts)
 | 
| 10148 | 227 | | quote_tr' _ _ = raise Match; | 
| 228 | ||
| 35113 | 229 |     val assert_tr' = quote_tr' (Syntax.const @{syntax_const "_Assert"});
 | 
| 10148 | 230 | |
| 35113 | 231 |     fun bexp_tr' name ((Const (@{const_syntax Collect}, _) $ t) :: ts) =
 | 
| 10148 | 232 | quote_tr' (Syntax.const name) (t :: ts) | 
| 233 | | bexp_tr' _ _ = raise Match; | |
| 234 | ||
| 25706 | 235 | fun assign_tr' (Abs (x, _, f $ k $ Bound 0) :: ts) = | 
| 42284 | 236 |           quote_tr' (Syntax.const @{syntax_const "_Assign"} $ Syntax_Trans.update_name_tr' f)
 | 
| 237 | (Abs (x, dummyT, Syntax_Trans.const_abs_tr' k) :: ts) | |
| 10148 | 238 | | assign_tr' _ = raise Match; | 
| 239 | in | |
| 52143 | 240 |    [(@{const_syntax Collect}, K assert_tr'),
 | 
| 241 |     (@{const_syntax Basic}, K assign_tr'),
 | |
| 242 |     (@{const_syntax Cond}, K (bexp_tr' @{syntax_const "_Cond"})),
 | |
| 243 |     (@{const_syntax While}, K (bexp_tr' @{syntax_const "_While_inv"}))]
 | |
| 10148 | 244 | end | 
| 245 | *} | |
| 246 | ||
| 247 | ||
| 248 | subsection {* Rules for single-step proof \label{sec:hoare-isar} *}
 | |
| 249 | ||
| 37671 | 250 | text {* We are now ready to introduce a set of Hoare rules to be used
 | 
| 251 | in single-step structured proofs in Isabelle/Isar. We refer to the | |
| 252 | concrete syntax introduce above. | |
| 10148 | 253 | |
| 37671 | 254 | \medskip Assertions of Hoare Logic may be manipulated in | 
| 255 | calculational proofs, with the inclusion expressed in terms of sets | |
| 256 | or predicates. Reversed order is supported as well. *} | |
| 10148 | 257 | |
| 55656 | 258 | lemma [trans]: "\<turnstile> P c Q \<Longrightarrow> P' \<subseteq> P \<Longrightarrow> \<turnstile> P' c Q" | 
| 10148 | 259 | by (unfold Valid_def) blast | 
| 55656 | 260 | lemma [trans] : "P' \<subseteq> P \<Longrightarrow> \<turnstile> P c Q \<Longrightarrow> \<turnstile> P' c Q" | 
| 10148 | 261 | by (unfold Valid_def) blast | 
| 262 | ||
| 55656 | 263 | lemma [trans]: "Q \<subseteq> Q' \<Longrightarrow> \<turnstile> P c Q \<Longrightarrow> \<turnstile> P c Q'" | 
| 10148 | 264 | by (unfold Valid_def) blast | 
| 55656 | 265 | lemma [trans]: "\<turnstile> P c Q \<Longrightarrow> Q \<subseteq> Q' \<Longrightarrow> \<turnstile> P c Q'" | 
| 10148 | 266 | by (unfold Valid_def) blast | 
| 267 | ||
| 268 | lemma [trans]: | |
| 55656 | 269 | "\<turnstile> \<lbrace>\<acute>P\<rbrace> c Q \<Longrightarrow> (\<And>s. P' s \<longrightarrow> P s) \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P'\<rbrace> c Q" | 
| 10148 | 270 | by (simp add: Valid_def) | 
| 271 | lemma [trans]: | |
| 55656 | 272 | "(\<And>s. P' s \<longrightarrow> P s) \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P\<rbrace> c Q \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P'\<rbrace> c Q" | 
| 10148 | 273 | by (simp add: Valid_def) | 
| 274 | ||
| 275 | lemma [trans]: | |
| 55656 | 276 | "\<turnstile> P c \<lbrace>\<acute>Q\<rbrace> \<Longrightarrow> (\<And>s. Q s \<longrightarrow> Q' s) \<Longrightarrow> \<turnstile> P c \<lbrace>\<acute>Q'\<rbrace>" | 
| 10148 | 277 | by (simp add: Valid_def) | 
| 278 | lemma [trans]: | |
| 55656 | 279 | "(\<And>s. Q s \<longrightarrow> Q' s) \<Longrightarrow> \<turnstile> P c \<lbrace>\<acute>Q\<rbrace> \<Longrightarrow> \<turnstile> P c \<lbrace>\<acute>Q'\<rbrace>" | 
| 10148 | 280 | by (simp add: Valid_def) | 
| 281 | ||
| 282 | ||
| 37671 | 283 | text {* Identity and basic assignments.\footnote{The $\idt{hoare}$
 | 
| 284 |   method introduced in \S\ref{sec:hoare-vcg} is able to provide proper
 | |
| 285 | instances for any number of basic assignments, without producing | |
| 286 | additional verification conditions.} *} | |
| 10148 | 287 | |
| 55656 | 288 | lemma skip [intro?]: "\<turnstile> P SKIP P" | 
| 10148 | 289 | proof - | 
| 55656 | 290 |   have "\<turnstile> {s. id s \<in> P} SKIP P" by (rule basic)
 | 
| 37671 | 291 | then show ?thesis by simp | 
| 10148 | 292 | qed | 
| 293 | ||
| 55656 | 294 | lemma assign: "\<turnstile> P [\<acute>a/\<acute>x::'a] \<acute>x := \<acute>a P" | 
| 10148 | 295 | by (rule basic) | 
| 296 | ||
| 37671 | 297 | text {* Note that above formulation of assignment corresponds to our
 | 
| 298 | preferred way to model state spaces, using (extensible) record types | |
| 299 |   in HOL \cite{Naraschewski-Wenzel:1998:HOOL}.  For any record field
 | |
| 300 | $x$, Isabelle/HOL provides a functions $x$ (selector) and | |
| 301 |   $\idt{x{\dsh}update}$ (update).  Above, there is only a place-holder
 | |
| 302 | appearing for the latter kind of function: due to concrete syntax | |
| 303 |   \isa{\'x := \'a} also contains \isa{x\_update}.\footnote{Note that
 | |
| 304 | due to the external nature of HOL record fields, we could not even | |
| 305 | state a general theorem relating selector and update functions (if | |
| 306 | this were required here); this would only work for any particular | |
| 307 | instance of record fields introduced so far.} *} | |
| 10148 | 308 | |
| 37671 | 309 | text {* Sequential composition --- normalizing with associativity
 | 
| 310 | achieves proper of chunks of code verified separately. *} | |
| 10148 | 311 | |
| 312 | lemmas [trans, intro?] = seq | |
| 313 | ||
| 55656 | 314 | lemma seq_assoc [simp]: "\<turnstile> P c1;(c2;c3) Q \<longleftrightarrow> \<turnstile> P (c1;c2);c3 Q" | 
| 10148 | 315 | by (auto simp add: Valid_def) | 
| 316 | ||
| 37671 | 317 | text {* Conditional statements. *}
 | 
| 10148 | 318 | |
| 319 | lemmas [trans, intro?] = cond | |
| 320 | ||
| 321 | lemma [trans, intro?]: | |
| 55656 | 322 | "\<turnstile> \<lbrace>\<acute>P \<and> \<acute>b\<rbrace> c1 Q | 
| 323 | \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P \<and> \<not> \<acute>b\<rbrace> c2 Q | |
| 324 | \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P\<rbrace> IF \<acute>b THEN c1 ELSE c2 FI Q" | |
| 10148 | 325 | by (rule cond) (simp_all add: Valid_def) | 
| 326 | ||
| 37671 | 327 | text {* While statements --- with optional invariant. *}
 | 
| 10148 | 328 | |
| 55662 | 329 | lemma [intro?]: "\<turnstile> (P \<inter> b) c P \<Longrightarrow> \<turnstile> P (While b P c) (P \<inter> -b)" | 
| 10148 | 330 | by (rule while) | 
| 331 | ||
| 55662 | 332 | lemma [intro?]: "\<turnstile> (P \<inter> b) c P \<Longrightarrow> \<turnstile> P (While b undefined c) (P \<inter> -b)" | 
| 10148 | 333 | by (rule while) | 
| 334 | ||
| 335 | ||
| 336 | lemma [intro?]: | |
| 55656 | 337 | "\<turnstile> \<lbrace>\<acute>P \<and> \<acute>b\<rbrace> c \<lbrace>\<acute>P\<rbrace> | 
| 338 | \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P\<rbrace> WHILE \<acute>b INV \<lbrace>\<acute>P\<rbrace> DO c OD \<lbrace>\<acute>P \<and> \<not> \<acute>b\<rbrace>" | |
| 10148 | 339 | by (simp add: while Collect_conj_eq Collect_neg_eq) | 
| 340 | ||
| 341 | lemma [intro?]: | |
| 55656 | 342 | "\<turnstile> \<lbrace>\<acute>P \<and> \<acute>b\<rbrace> c \<lbrace>\<acute>P\<rbrace> | 
| 343 | \<Longrightarrow> \<turnstile> \<lbrace>\<acute>P\<rbrace> WHILE \<acute>b DO c OD \<lbrace>\<acute>P \<and> \<not> \<acute>b\<rbrace>" | |
| 10148 | 344 | by (simp add: while Collect_conj_eq Collect_neg_eq) | 
| 345 | ||
| 346 | ||
| 347 | subsection {* Verification conditions \label{sec:hoare-vcg} *}
 | |
| 348 | ||
| 37671 | 349 | text {* We now load the \emph{original} ML file for proof scripts and
 | 
| 350 | tactic definition for the Hoare Verification Condition Generator | |
| 40880 | 351 |   (see @{file "~~/src/HOL/Hoare/"}).  As far as we
 | 
| 37671 | 352 |   are concerned here, the result is a proof method \name{hoare}, which
 | 
| 353 | may be applied to a Hoare Logic assertion to extract purely logical | |
| 354 | verification conditions. It is important to note that the method | |
| 355 |   requires \texttt{WHILE} loops to be fully annotated with invariants
 | |
| 356 |   beforehand.  Furthermore, only \emph{concrete} pieces of code are
 | |
| 357 | handled --- the underlying tactic fails ungracefully if supplied | |
| 358 | with meta-variables or parameters, for example. *} | |
| 10148 | 359 | |
| 13862 | 360 | lemma SkipRule: "p \<subseteq> q \<Longrightarrow> Valid p (Basic id) q" | 
| 18193 | 361 | by (auto simp add: Valid_def) | 
| 13862 | 362 | |
| 363 | lemma BasicRule: "p \<subseteq> {s. f s \<in> q} \<Longrightarrow> Valid p (Basic f) q"
 | |
| 18193 | 364 | by (auto simp: Valid_def) | 
| 13862 | 365 | |
| 366 | lemma SeqRule: "Valid P c1 Q \<Longrightarrow> Valid Q c2 R \<Longrightarrow> Valid P (c1;c2) R" | |
| 18193 | 367 | by (auto simp: Valid_def) | 
| 13862 | 368 | |
| 369 | lemma CondRule: | |
| 18193 | 370 |   "p \<subseteq> {s. (s \<in> b \<longrightarrow> s \<in> w) \<and> (s \<notin> b \<longrightarrow> s \<in> w')}
 | 
| 371 | \<Longrightarrow> Valid w c1 q \<Longrightarrow> Valid w' c2 q \<Longrightarrow> Valid p (Cond b c1 c2) q" | |
| 372 | by (auto simp: Valid_def) | |
| 13862 | 373 | |
| 18241 | 374 | lemma iter_aux: | 
| 55656 | 375 | "\<forall>s s'. Sem c s s' \<longrightarrow> s \<in> I \<and> s \<in> b \<longrightarrow> s' \<in> I \<Longrightarrow> | 
| 376 | (\<And>s s'. s \<in> I \<Longrightarrow> iter n b (Sem c) s s' \<Longrightarrow> s' \<in> I \<and> s' \<notin> b)" | |
| 377 | by (induct n) auto | |
| 13862 | 378 | |
| 379 | lemma WhileRule: | |
| 18193 | 380 | "p \<subseteq> i \<Longrightarrow> Valid (i \<inter> b) c i \<Longrightarrow> i \<inter> (-b) \<subseteq> q \<Longrightarrow> Valid p (While b i c) q" | 
| 381 | apply (clarsimp simp: Valid_def) | |
| 382 | apply (drule iter_aux) | |
| 383 | prefer 2 | |
| 384 | apply assumption | |
| 385 | apply blast | |
| 386 | apply blast | |
| 387 | done | |
| 13862 | 388 | |
| 26303 | 389 | lemma Compl_Collect: "- Collect b = {x. \<not> b x}"
 | 
| 390 | by blast | |
| 391 | ||
| 28457 
25669513fd4c
major cleanup of hoare_tac.ML: just one copy for Hoare.thy and HoareAbort.thy (only 1 line different), refrain from inspecting the main goal, proper context;
 wenzelm parents: 
26303diff
changeset | 392 | lemmas AbortRule = SkipRule -- "dummy version" | 
| 
25669513fd4c
major cleanup of hoare_tac.ML: just one copy for Hoare.thy and HoareAbort.thy (only 1 line different), refrain from inspecting the main goal, proper context;
 wenzelm parents: 
26303diff
changeset | 393 | |
| 48891 | 394 | ML_file "~~/src/HOL/Hoare/hoare_tac.ML" | 
| 10148 | 395 | |
| 396 | method_setup hoare = {*
 | |
| 30549 | 397 | Scan.succeed (fn ctxt => | 
| 30510 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 wenzelm parents: 
28524diff
changeset | 398 | (SIMPLE_METHOD' | 
| 55660 | 399 | (Hoare.hoare_tac ctxt | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
48891diff
changeset | 400 |         (simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm "Record.K_record_comp"}] ))))) *}
 | 
| 10148 | 401 | "verification condition generator for Hoare logic" | 
| 402 | ||
| 13703 | 403 | end |