src/HOL/Decision_Procs/MIR.thy
author nipkow
Sat, 26 Aug 2017 16:47:25 +0200
changeset 66515 85c505c98332
parent 66453 cc19f7ca2ed6
child 66809 f6a30d48aab0
permissions -rw-r--r--
reorganized and added log-related lemmas
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
30439
57c68b3af2ea Updated paths in Decision_Procs comments and NEWS
hoelzl
parents: 30242
diff changeset
     1
(*  Title:      HOL/Decision_Procs/MIR.thy
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
     2
    Author:     Amine Chaieb
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
     3
*)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
     4
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
     5
theory MIR
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
     6
imports Complex_Main Dense_Linear_Order DP_Library
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66124
diff changeset
     7
  "HOL-Library.Code_Target_Numeral" "HOL-Library.Old_Recdef"
27368
9f90ac19e32b established Plain theory and image
haftmann
parents: 26935
diff changeset
     8
begin
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
     9
61586
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
    10
section \<open>Quantifier elimination for \<open>\<real> (0, 1, +, floor, <)\<close>\<close>
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
    11
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    12
declare of_int_floor_cancel [simp del]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    13
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    14
lemma myle:
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    15
  fixes a b :: "'a::{ordered_ab_group_add}"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
    16
  shows "(a \<le> b) = (0 \<le> b - a)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    17
  by (metis add_0_left add_le_cancel_right diff_add_cancel)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    18
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    19
lemma myless:
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    20
  fixes a b :: "'a::{ordered_ab_group_add}"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
    21
  shows "(a < b) = (0 < b - a)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    22
  by (metis le_iff_diff_le_0 less_le_not_le myle)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    23
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    24
(* Periodicity of dvd *)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    25
lemmas dvd_period = zdvd_period
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    26
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
    27
(* The Divisibility relation between reals *)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    28
definition rdvd:: "real \<Rightarrow> real \<Rightarrow> bool" (infixl "rdvd" 50)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    29
  where "x rdvd y \<longleftrightarrow> (\<exists>k::int. y = x * real_of_int k)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    30
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
    31
lemma int_rdvd_real:
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    32
  "real_of_int (i::int) rdvd x = (i dvd \<lfloor>x\<rfloor> \<and> real_of_int \<lfloor>x\<rfloor> = x)" (is "?l = ?r")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    33
proof
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
    34
  assume "?l"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    35
  hence th: "\<exists> k. x=real_of_int (i*k)" by (simp add: rdvd_def)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    36
  hence th': "real_of_int \<lfloor>x\<rfloor> = x" by (auto simp del: of_int_mult)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    37
  with th have "\<exists> k. real_of_int \<lfloor>x\<rfloor> = real_of_int (i*k)" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    38
  hence "\<exists>k. \<lfloor>x\<rfloor> = i*k" by presburger
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    39
  thus ?r using th' by (simp add: dvd_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    40
next
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60533
diff changeset
    41
  assume "?r" hence "(i::int) dvd \<lfloor>x::real\<rfloor>" ..
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    42
  hence "\<exists>k. real_of_int \<lfloor>x\<rfloor> = real_of_int (i*k)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
    43
    by (metis (no_types) dvd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
    44
  thus ?l using \<open>?r\<close> by (simp add: rdvd_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    45
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    46
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    47
lemma int_rdvd_iff: "(real_of_int (i::int) rdvd real_of_int t) = (i dvd t)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    48
  by (auto simp add: rdvd_def dvd_def) (rule_tac x="k" in exI, simp only: of_int_mult[symmetric])
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    49
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    50
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    51
lemma rdvd_abs1: "(\<bar>real_of_int d\<bar> rdvd t) = (real_of_int (d ::int) rdvd t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    52
proof
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    53
  assume d: "real_of_int d rdvd t"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    54
  from d int_rdvd_real have d2: "d dvd \<lfloor>t\<rfloor>" and ti: "real_of_int \<lfloor>t\<rfloor> = t"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    55
    by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    56
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    57
  from iffD2[OF abs_dvd_iff] d2 have "\<bar>d\<bar> dvd \<lfloor>t\<rfloor>" by blast
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    58
  with ti int_rdvd_real[symmetric] have "real_of_int \<bar>d\<bar> rdvd t" by blast
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    59
  thus "\<bar>real_of_int d\<bar> rdvd t" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    60
next
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    61
  assume "\<bar>real_of_int d\<bar> rdvd t" hence "real_of_int \<bar>d\<bar> rdvd t" by simp
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    62
  with int_rdvd_real[where i="\<bar>d\<bar>" and x="t"]
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    63
  have d2: "\<bar>d\<bar> dvd \<lfloor>t\<rfloor>" and ti: "real_of_int \<lfloor>t\<rfloor> = t"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    64
    by auto
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
    65
  from iffD1[OF abs_dvd_iff] d2 have "d dvd \<lfloor>t\<rfloor>" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    66
  with ti int_rdvd_real[symmetric] show "real_of_int d rdvd t" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    67
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    68
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    69
lemma rdvd_minus: "(real_of_int (d::int) rdvd t) = (real_of_int d rdvd -t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    70
  apply (auto simp add: rdvd_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
    71
  apply (rule_tac x="-k" in exI, simp)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    72
  apply (rule_tac x="-k" in exI, simp)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    73
  done
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    74
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    75
lemma rdvd_left_0_eq: "(0 rdvd t) = (t=0)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    76
  by (auto simp add: rdvd_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    77
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
    78
lemma rdvd_mult:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    79
  assumes knz: "k\<noteq>0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
    80
  shows "(real_of_int (n::int) * real_of_int (k::int) rdvd x * real_of_int k) = (real_of_int n rdvd x)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
    81
  using knz by (simp add: rdvd_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    82
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    83
  (*********************************************************************************)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    84
  (****                            SHADOW SYNTAX AND SEMANTICS                  ****)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    85
  (*********************************************************************************)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    86
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
    87
datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    88
  | Mul int num | Floor num| CF int num num
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    89
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    90
  (* A size for num to make inductive proofs simpler*)
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
    91
primrec num_size :: "num \<Rightarrow> nat" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    92
 "num_size (C c) = 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    93
| "num_size (Bound n) = 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    94
| "num_size (Neg a) = 1 + num_size a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    95
| "num_size (Add a b) = 1 + num_size a + num_size b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    96
| "num_size (Sub a b) = 3 + num_size a + num_size b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    97
| "num_size (CN n c a) = 4 + num_size a "
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    98
| "num_size (CF c a b) = 4 + num_size a + num_size b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
    99
| "num_size (Mul c a) = 1 + num_size a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   100
| "num_size (Floor a) = 1 + num_size a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   101
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   102
  (* Semantics of numeral terms (num) *)
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   103
primrec Inum :: "real list \<Rightarrow> num \<Rightarrow> real" where
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   104
  "Inum bs (C c) = (real_of_int c)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   105
| "Inum bs (Bound n) = bs!n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   106
| "Inum bs (CN n c a) = (real_of_int c) * (bs!n) + (Inum bs a)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   107
| "Inum bs (Neg a) = -(Inum bs a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   108
| "Inum bs (Add a b) = Inum bs a + Inum bs b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   109
| "Inum bs (Sub a b) = Inum bs a - Inum bs b"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   110
| "Inum bs (Mul c a) = (real_of_int c) * Inum bs a"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   111
| "Inum bs (Floor a) = real_of_int \<lfloor>Inum bs a\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   112
| "Inum bs (CF c a b) = real_of_int c * real_of_int \<lfloor>Inum bs a\<rfloor> + Inum bs b"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   113
definition "isint t bs \<equiv> real_of_int \<lfloor>Inum bs t\<rfloor> = Inum bs t"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   114
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   115
lemma isint_iff: "isint n bs = (real_of_int \<lfloor>Inum bs n\<rfloor> = Inum bs n)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   116
  by (simp add: isint_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   117
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   118
lemma isint_Floor: "isint (Floor n) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   119
  by (simp add: isint_iff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   120
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   121
lemma isint_Mul: "isint e bs \<Longrightarrow> isint (Mul c e) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   122
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   123
  let ?e = "Inum bs e"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   124
  assume be: "isint e bs" hence efe:"real_of_int \<lfloor>?e\<rfloor> = ?e" by (simp add: isint_iff)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   125
  have "real_of_int \<lfloor>Inum bs (Mul c e)\<rfloor> = real_of_int \<lfloor>real_of_int (c * \<lfloor>?e\<rfloor>)\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   126
    using efe by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   127
  also have "\<dots> = real_of_int (c* \<lfloor>?e\<rfloor>)" by (metis floor_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   128
  also have "\<dots> = real_of_int c * ?e" using efe by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   129
  finally show ?thesis using isint_iff by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   130
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   131
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   132
lemma isint_neg: "isint e bs \<Longrightarrow> isint (Neg e) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   133
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   134
  let ?I = "\<lambda> t. Inum bs t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   135
  assume ie: "isint e bs"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   136
  hence th: "real_of_int \<lfloor>?I e\<rfloor> = ?I e" by (simp add: isint_def)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   137
  have "real_of_int \<lfloor>?I (Neg e)\<rfloor> = real_of_int \<lfloor>- (real_of_int \<lfloor>?I e\<rfloor>)\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   138
    by (simp add: th)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   139
  also have "\<dots> = - real_of_int \<lfloor>?I e\<rfloor>" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   140
  finally show "isint (Neg e) bs" by (simp add: isint_def th)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   141
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   142
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   143
lemma isint_sub:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   144
  assumes ie: "isint e bs" shows "isint (Sub (C c) e) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   145
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   146
  let ?I = "\<lambda> t. Inum bs t"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   147
  from ie have th: "real_of_int \<lfloor>?I e\<rfloor> = ?I e" by (simp add: isint_def)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   148
  have "real_of_int \<lfloor>?I (Sub (C c) e)\<rfloor> = real_of_int \<lfloor>real_of_int (c - \<lfloor>?I e\<rfloor>)\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   149
    by (simp add: th)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   150
  also have "\<dots> = real_of_int (c - \<lfloor>?I e\<rfloor>)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   151
  finally show "isint (Sub (C c) e) bs" by (simp add: isint_def th)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   152
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   153
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   154
lemma isint_add:
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   155
  assumes ai: "isint a bs" and bi: "isint b bs"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   156
  shows "isint (Add a b) bs"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   157
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   158
  let ?a = "Inum bs a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   159
  let ?b = "Inum bs b"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   160
  from ai bi isint_iff have "real_of_int \<lfloor>?a + ?b\<rfloor> = real_of_int \<lfloor>real_of_int \<lfloor>?a\<rfloor> + real_of_int \<lfloor>?b\<rfloor>\<rfloor>"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   161
    by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   162
  also have "\<dots> = real_of_int \<lfloor>?a\<rfloor> + real_of_int \<lfloor>?b\<rfloor>" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   163
  also have "\<dots> = ?a + ?b" using ai bi isint_iff by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   164
  finally show "isint (Add a b) bs" by (simp add: isint_iff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   165
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   166
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   167
lemma isint_c: "isint (C j) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   168
  by (simp add: isint_iff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   169
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   170
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   171
    (* FORMULAE *)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   172
datatype fm  =
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   173
  T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| Dvd int num| NDvd int num|
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   174
  NOT fm| And fm fm|  Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   175
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   176
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   177
  (* A size for fm *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   178
fun fmsize :: "fm \<Rightarrow> nat" where
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   179
 "fmsize (NOT p) = 1 + fmsize p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   180
| "fmsize (And p q) = 1 + fmsize p + fmsize q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   181
| "fmsize (Or p q) = 1 + fmsize p + fmsize q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   182
| "fmsize (Imp p q) = 3 + fmsize p + fmsize q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   183
| "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   184
| "fmsize (E p) = 1 + fmsize p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   185
| "fmsize (A p) = 4+ fmsize p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   186
| "fmsize (Dvd i t) = 2"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   187
| "fmsize (NDvd i t) = 2"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   188
| "fmsize p = 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   189
  (* several lemmas about fmsize *)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   190
lemma fmsize_pos: "fmsize p > 0"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   191
  by (induct p rule: fmsize.induct) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   192
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   193
  (* Semantics of formulae (fm) *)
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   194
primrec Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   195
  "Ifm bs T = True"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   196
| "Ifm bs F = False"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   197
| "Ifm bs (Lt a) = (Inum bs a < 0)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   198
| "Ifm bs (Gt a) = (Inum bs a > 0)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   199
| "Ifm bs (Le a) = (Inum bs a \<le> 0)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   200
| "Ifm bs (Ge a) = (Inum bs a \<ge> 0)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   201
| "Ifm bs (Eq a) = (Inum bs a = 0)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   202
| "Ifm bs (NEq a) = (Inum bs a \<noteq> 0)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   203
| "Ifm bs (Dvd i b) = (real_of_int i rdvd Inum bs b)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   204
| "Ifm bs (NDvd i b) = (\<not>(real_of_int i rdvd Inum bs b))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   205
| "Ifm bs (NOT p) = (\<not> (Ifm bs p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   206
| "Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   207
| "Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   208
| "Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   209
| "Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   210
| "Ifm bs (E p) = (\<exists> x. Ifm (x#bs) p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   211
| "Ifm bs (A p) = (\<forall> x. Ifm (x#bs) p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   212
66124
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   213
function (sequential) prep :: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   214
  "prep (E T) = T"
66124
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   215
| "prep (E F) = F"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   216
| "prep (E (Or p q)) = Or (prep (E p)) (prep (E q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   217
| "prep (E (Imp p q)) = Or (prep (E (NOT p))) (prep (E q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   218
| "prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   219
| "prep (E (NOT (And p q))) = Or (prep (E (NOT p))) (prep (E(NOT q)))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   220
| "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   221
| "prep (E (NOT (Iff p q))) = Or (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   222
| "prep (E p) = E (prep p)"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   223
| "prep (A (And p q)) = And (prep (A p)) (prep (A q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   224
| "prep (A p) = prep (NOT (E (NOT p)))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   225
| "prep (NOT (NOT p)) = prep p"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   226
| "prep (NOT (And p q)) = Or (prep (NOT p)) (prep (NOT q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   227
| "prep (NOT (A p)) = prep (E (NOT p))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   228
| "prep (NOT (Or p q)) = And (prep (NOT p)) (prep (NOT q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   229
| "prep (NOT (Imp p q)) = And (prep p) (prep (NOT q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   230
| "prep (NOT (Iff p q)) = Or (prep (And p (NOT q))) (prep (And (NOT p) q))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   231
| "prep (NOT p) = NOT (prep p)"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   232
| "prep (Or p q) = Or (prep p) (prep q)"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   233
| "prep (And p q) = And (prep p) (prep q)"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   234
| "prep (Imp p q) = prep (Or (NOT p) q)"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   235
| "prep (Iff p q) = Or (prep (And p q)) (prep (And (NOT p) (NOT q)))"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   236
| "prep p = p"
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   237
  by pat_completeness simp_all
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   238
termination by (relation "measure fmsize") (simp_all add: fmsize_pos)
7f0088571576 replaced recdef by fun
haftmann
parents: 66123
diff changeset
   239
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   240
lemma prep: "\<And> bs. Ifm bs (prep p) = Ifm bs p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   241
  by (induct p rule: prep.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   242
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   243
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   244
  (* Quantifier freeness *)
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   245
fun qfree:: "fm \<Rightarrow> bool" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   246
  "qfree (E p) = False"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   247
  | "qfree (A p) = False"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   248
  | "qfree (NOT p) = qfree p"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   249
  | "qfree (And p q) = (qfree p \<and> qfree q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   250
  | "qfree (Or  p q) = (qfree p \<and> qfree q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   251
  | "qfree (Imp p q) = (qfree p \<and> qfree q)"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   252
  | "qfree (Iff p q) = (qfree p \<and> qfree q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   253
  | "qfree p = True"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   254
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   255
  (* Boundedness and substitution *)
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   256
primrec numbound0 :: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   257
  "numbound0 (C c) = True"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   258
  | "numbound0 (Bound n) = (n>0)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   259
  | "numbound0 (CN n i a) = (n > 0 \<and> numbound0 a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   260
  | "numbound0 (Neg a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   261
  | "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   262
  | "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   263
  | "numbound0 (Mul i a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   264
  | "numbound0 (Floor a) = numbound0 a"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   265
  | "numbound0 (CF c a b) = (numbound0 a \<and> numbound0 b)"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   266
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   267
lemma numbound0_I:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   268
  assumes nb: "numbound0 a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   269
  shows "Inum (b#bs) a = Inum (b'#bs) a"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
   270
  using nb by (induct a) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   271
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   272
lemma numbound0_gen:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   273
  assumes nb: "numbound0 t" and ti: "isint t (x#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   274
  shows "\<forall> y. isint t (y#bs)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   275
  using nb ti
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   276
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   277
  fix y
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   278
  from numbound0_I[OF nb, where bs="bs" and b="y" and b'="x"] ti[simplified isint_def]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   279
  show "isint t (y#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   280
    by (simp add: isint_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   281
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   282
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   283
primrec bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   284
  "bound0 T = True"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   285
  | "bound0 F = True"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   286
  | "bound0 (Lt a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   287
  | "bound0 (Le a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   288
  | "bound0 (Gt a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   289
  | "bound0 (Ge a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   290
  | "bound0 (Eq a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   291
  | "bound0 (NEq a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   292
  | "bound0 (Dvd i a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   293
  | "bound0 (NDvd i a) = numbound0 a"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   294
  | "bound0 (NOT p) = bound0 p"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   295
  | "bound0 (And p q) = (bound0 p \<and> bound0 q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   296
  | "bound0 (Or p q) = (bound0 p \<and> bound0 q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   297
  | "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   298
  | "bound0 (Iff p q) = (bound0 p \<and> bound0 q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   299
  | "bound0 (E p) = False"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   300
  | "bound0 (A p) = False"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   301
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   302
lemma bound0_I:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   303
  assumes bp: "bound0 p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   304
  shows "Ifm (b#bs) p = Ifm (b'#bs) p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   305
  using bp numbound0_I [where b="b" and bs="bs" and b'="b'"]
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
   306
  by (induct p) auto
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   307
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   308
primrec numsubst0:: "num \<Rightarrow> num \<Rightarrow> num" (* substitute a num into a num for Bound 0 *) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   309
  "numsubst0 t (C c) = (C c)"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   310
  | "numsubst0 t (Bound n) = (if n=0 then t else Bound n)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   311
  | "numsubst0 t (CN n i a) = (if n=0 then Add (Mul i t) (numsubst0 t a) else CN n i (numsubst0 t a))"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   312
  | "numsubst0 t (CF i a b) = CF i (numsubst0 t a) (numsubst0 t b)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   313
  | "numsubst0 t (Neg a) = Neg (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   314
  | "numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   315
  | "numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   316
  | "numsubst0 t (Mul i a) = Mul i (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   317
  | "numsubst0 t (Floor a) = Floor (numsubst0 t a)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   318
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   319
lemma numsubst0_I:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   320
  shows "Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b#bs) a)#bs) t"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
   321
  by (induct t) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   322
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   323
primrec subst0:: "num \<Rightarrow> fm \<Rightarrow> fm" (* substitue a num into a formula for Bound 0 *) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   324
  "subst0 t T = T"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   325
  | "subst0 t F = F"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   326
  | "subst0 t (Lt a) = Lt (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   327
  | "subst0 t (Le a) = Le (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   328
  | "subst0 t (Gt a) = Gt (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   329
  | "subst0 t (Ge a) = Ge (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   330
  | "subst0 t (Eq a) = Eq (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   331
  | "subst0 t (NEq a) = NEq (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   332
  | "subst0 t (Dvd i a) = Dvd i (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   333
  | "subst0 t (NDvd i a) = NDvd i (numsubst0 t a)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   334
  | "subst0 t (NOT p) = NOT (subst0 t p)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   335
  | "subst0 t (And p q) = And (subst0 t p) (subst0 t q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   336
  | "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   337
  | "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)"
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   338
  | "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   339
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   340
lemma subst0_I: assumes qfp: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   341
  shows "Ifm (b#bs) (subst0 a p) = Ifm ((Inum (b#bs) a)#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   342
  using qfp numsubst0_I[where b="b" and bs="bs" and a="a"]
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
   343
  by (induct p) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   344
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   345
fun decrnum:: "num \<Rightarrow> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   346
  "decrnum (Bound n) = Bound (n - 1)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   347
| "decrnum (Neg a) = Neg (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   348
| "decrnum (Add a b) = Add (decrnum a) (decrnum b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   349
| "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   350
| "decrnum (Mul c a) = Mul c (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   351
| "decrnum (Floor a) = Floor (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   352
| "decrnum (CN n c a) = CN (n - 1) c (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   353
| "decrnum (CF c a b) = CF c (decrnum a) (decrnum b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   354
| "decrnum a = a"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   355
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   356
fun decr :: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   357
  "decr (Lt a) = Lt (decrnum a)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   358
| "decr (Le a) = Le (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   359
| "decr (Gt a) = Gt (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   360
| "decr (Ge a) = Ge (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   361
| "decr (Eq a) = Eq (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   362
| "decr (NEq a) = NEq (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   363
| "decr (Dvd i a) = Dvd i (decrnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   364
| "decr (NDvd i a) = NDvd i (decrnum a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   365
| "decr (NOT p) = NOT (decr p)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   366
| "decr (And p q) = And (decr p) (decr q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   367
| "decr (Or p q) = Or (decr p) (decr q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   368
| "decr (Imp p q) = Imp (decr p) (decr q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   369
| "decr (Iff p q) = Iff (decr p) (decr q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   370
| "decr p = p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   371
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   372
lemma decrnum: assumes nb: "numbound0 t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   373
  shows "Inum (x#bs) t = Inum bs (decrnum t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   374
  using nb by (induct t rule: decrnum.induct) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   375
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   376
lemma decr: assumes nb: "bound0 p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   377
  shows "Ifm (x#bs) p = Ifm bs (decr p)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   378
  using nb by (induct p rule: decr.induct) (simp_all add: decrnum)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   379
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   380
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   381
  by (induct p) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   382
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   383
fun isatom :: "fm \<Rightarrow> bool" (* test for atomicity *) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   384
  "isatom T = True"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   385
| "isatom F = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   386
| "isatom (Lt a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   387
| "isatom (Le a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   388
| "isatom (Gt a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   389
| "isatom (Ge a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   390
| "isatom (Eq a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   391
| "isatom (NEq a) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   392
| "isatom (Dvd i b) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   393
| "isatom (NDvd i b) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   394
| "isatom p = False"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   395
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   396
lemma numsubst0_numbound0:
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   397
  assumes nb: "numbound0 t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   398
  shows "numbound0 (numsubst0 t a)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   399
  using nb by (induct a) auto
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   400
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   401
lemma subst0_bound0:
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   402
  assumes qf: "qfree p" and nb: "numbound0 t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   403
  shows "bound0 (subst0 t p)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   404
  using qf numsubst0_numbound0[OF nb] by (induct p) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   405
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   406
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   407
  by (induct p) simp_all
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   408
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   409
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   410
definition djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   411
  "djf f p q = (if q=T then T else if q=F then f p else
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   412
  (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or fp q))"
25765
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   413
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   414
definition evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
49580bd58a21 some more primrec
haftmann
parents: 25162
diff changeset
   415
  "evaldjf f ps = foldr (djf f) ps F"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   416
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   417
lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   418
  by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   419
  (cases "f p", simp_all add: Let_def djf_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   420
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   421
lemma evaldjf_ex: "Ifm bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bs (f p))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   422
  by (induct ps) (simp_all add: evaldjf_def djf_Or)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   423
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   424
lemma evaldjf_bound0:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   425
  assumes nb: "\<forall> x\<in> set xs. bound0 (f x)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   426
  shows "bound0 (evaldjf f xs)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   427
  using nb
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   428
  apply (induct xs)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   429
  apply (auto simp add: evaldjf_def djf_def Let_def)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   430
  apply (case_tac "f a")
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   431
  apply auto
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   432
  done
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   433
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   434
lemma evaldjf_qf:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   435
  assumes nb: "\<forall> x\<in> set xs. qfree (f x)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   436
  shows "qfree (evaldjf f xs)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   437
  using nb
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   438
  apply (induct xs)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   439
  apply (auto simp add: evaldjf_def djf_def Let_def)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   440
  apply (case_tac "f a")
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   441
  apply auto
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   442
  done
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   443
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   444
fun disjuncts :: "fm \<Rightarrow> fm list" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   445
  "disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   446
| "disjuncts F = []"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   447
| "disjuncts p = [p]"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   448
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   449
fun conjuncts :: "fm \<Rightarrow> fm list" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   450
  "conjuncts (And p q) = (conjuncts p) @ (conjuncts q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   451
| "conjuncts T = []"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   452
| "conjuncts p = [p]"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   453
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   454
lemma conjuncts: "(\<forall> q\<in> set (conjuncts p). Ifm bs q) = Ifm bs p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   455
  by (induct p rule: conjuncts.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   456
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   457
lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   458
proof -
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   459
  assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   460
  hence "list_all qfree (disjuncts p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   461
    by (induct p rule: disjuncts.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   462
  thus ?thesis by (simp only: list_all_iff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   463
qed
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   464
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   465
lemma conjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (conjuncts p). qfree q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   466
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   467
  assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   468
  hence "list_all qfree (conjuncts p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   469
    by (induct p rule: conjuncts.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   470
  thus ?thesis by (simp only: list_all_iff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   471
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   472
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
   473
definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   474
  "DJ f p \<equiv> evaldjf f (disjuncts p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   475
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   476
lemma DJ: assumes fdj: "\<forall> p q. f (Or p q) = Or (f p) (f q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   477
  and fF: "f F = F"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   478
  shows "Ifm bs (DJ f p) = Ifm bs (f p)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   479
proof -
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   480
  have "Ifm bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bs (f q))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   481
    by (simp add: DJ_def evaldjf_ex)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   482
  also have "\<dots> = Ifm bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   483
  finally show ?thesis .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   484
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   485
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   486
lemma DJ_qf: assumes
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   487
  fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   488
  shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) "
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   489
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   490
  fix  p assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   491
  have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   492
  from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   493
  with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   494
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   495
  from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   496
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   497
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   498
lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   499
  shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   500
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   501
  fix p::fm and bs
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   502
  assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   503
  from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   504
  from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   505
  have "Ifm bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (qe q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   506
    by (simp add: DJ_def evaldjf_ex)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   507
  also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bs (E q))" using qe disjuncts_qf[OF qf] by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   508
  also have "\<dots> = Ifm bs (E p)" by (induct p rule: disjuncts.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   509
  finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)" using qfth by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   510
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   511
  (* Simplification *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   512
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   513
  (* Algebraic simplifications for nums *)
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   514
fun bnds:: "num \<Rightarrow> nat list" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   515
  "bnds (Bound n) = [n]"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   516
| "bnds (CN n c a) = n#(bnds a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   517
| "bnds (Neg a) = bnds a"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   518
| "bnds (Add a b) = (bnds a)@(bnds b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   519
| "bnds (Sub a b) = (bnds a)@(bnds b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   520
| "bnds (Mul i a) = bnds a"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   521
| "bnds (Floor a) = bnds a"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   522
| "bnds (CF c a b) = (bnds a)@(bnds b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   523
| "bnds a = []"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   524
fun lex_ns:: "nat list \<Rightarrow> nat list \<Rightarrow> bool" where
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   525
  "lex_ns [] ms = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   526
| "lex_ns ns [] = False"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   527
| "lex_ns (n#ns) (m#ms) = (n<m \<or> ((n = m) \<and> lex_ns ns ms)) "
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
   528
definition lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool" where
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   529
  "lex_bnd t s \<equiv> lex_ns (bnds t) (bnds s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   530
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   531
fun maxcoeff:: "num \<Rightarrow> int" where
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   532
  "maxcoeff (C i) = \<bar>i\<bar>"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   533
| "maxcoeff (CN n c t) = max \<bar>c\<bar> (maxcoeff t)"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   534
| "maxcoeff (CF c t s) = max \<bar>c\<bar> (maxcoeff s)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   535
| "maxcoeff t = 1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   536
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   537
lemma maxcoeff_pos: "maxcoeff t \<ge> 0"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   538
  by (induct t rule: maxcoeff.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   539
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   540
fun numgcdh:: "num \<Rightarrow> int \<Rightarrow> int" where
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   541
  "numgcdh (C i) = (\<lambda>g. gcd i g)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   542
| "numgcdh (CN n c t) = (\<lambda>g. gcd c (numgcdh t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   543
| "numgcdh (CF c s t) = (\<lambda>g. gcd c (numgcdh t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   544
| "numgcdh t = (\<lambda>g. 1)"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
   545
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   546
definition numgcd :: "num \<Rightarrow> int"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   547
  where "numgcd t = numgcdh t (maxcoeff t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   548
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   549
fun reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   550
  "reducecoeffh (C i) = (\<lambda> g. C (i div g))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   551
| "reducecoeffh (CN n c t) = (\<lambda> g. CN n (c div g) (reducecoeffh t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   552
| "reducecoeffh (CF c s t) = (\<lambda> g. CF (c div g)  s (reducecoeffh t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   553
| "reducecoeffh t = (\<lambda>g. t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   554
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   555
definition reducecoeff :: "num \<Rightarrow> num"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
   556
where
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   557
  "reducecoeff t =
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   558
    (let g = numgcd t in
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   559
     if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   560
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   561
fun dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   562
  "dvdnumcoeff (C i) = (\<lambda> g. g dvd i)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   563
| "dvdnumcoeff (CN n c t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   564
| "dvdnumcoeff (CF c s t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   565
| "dvdnumcoeff t = (\<lambda>g. False)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   566
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   567
lemma dvdnumcoeff_trans:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   568
  assumes gdg: "g dvd g'" and dgt':"dvdnumcoeff t g'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   569
  shows "dvdnumcoeff t g"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   570
  using dgt' gdg
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   571
  by (induct t rule: dvdnumcoeff.induct) (simp_all add: gdg dvd_trans[OF gdg])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
   572
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
   573
declare dvd_trans [trans add]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   574
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   575
lemma numgcd0:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   576
  assumes g0: "numgcd t = 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   577
  shows "Inum bs t = 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   578
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   579
  have "\<And>x. numgcdh t x= 0 \<Longrightarrow> Inum bs t = 0"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   580
    by (induct t rule: numgcdh.induct, auto)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   581
  thus ?thesis using g0[simplified numgcd_def] by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   582
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   583
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   584
lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   585
  using gp by (induct t rule: numgcdh.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   586
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   587
lemma numgcd_pos: "numgcd t \<ge>0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   588
  by (simp add: numgcd_def numgcdh_pos maxcoeff_pos)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   589
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   590
lemma reducecoeffh:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   591
  assumes gt: "dvdnumcoeff t g" and gp: "g > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   592
  shows "real_of_int g *(Inum bs (reducecoeffh t g)) = Inum bs t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   593
  using gt
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   594
proof(induct t rule: reducecoeffh.induct)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   595
  case (1 i) hence gd: "g dvd i" by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
   596
  from assms 1 show ?case by (simp add: real_of_int_div[OF gd])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   597
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   598
  case (2 n c t)  hence gd: "g dvd c" by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
   599
  from assms 2 show ?case by (simp add: real_of_int_div[OF gd] algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   600
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   601
  case (3 c s t)  hence gd: "g dvd c" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   602
  from assms 3 show ?case by (simp add: real_of_int_div[OF gd] algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   603
qed (auto simp add: numgcd_def gp)
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   604
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   605
fun ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   606
  "ismaxcoeff (C i) = (\<lambda> x. \<bar>i\<bar> \<le> x)"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   607
| "ismaxcoeff (CN n c t) = (\<lambda>x. \<bar>c\<bar> \<le> x \<and> (ismaxcoeff t x))"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   608
| "ismaxcoeff (CF c s t) = (\<lambda>x. \<bar>c\<bar> \<le> x \<and> (ismaxcoeff t x))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   609
| "ismaxcoeff t = (\<lambda>x. True)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   610
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   611
lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   612
  by (induct t rule: ismaxcoeff.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   613
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   614
lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   615
proof (induct t rule: maxcoeff.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   616
  case (2 n c t)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   617
  hence H:"ismaxcoeff t (maxcoeff t)" .
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   618
  have thh: "maxcoeff t \<le> max \<bar>c\<bar> (maxcoeff t)" by simp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   619
  from ismaxcoeff_mono[OF H thh] show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   620
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   621
  case (3 c t s)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   622
  hence H1:"ismaxcoeff s (maxcoeff s)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   623
  have thh1: "maxcoeff s \<le> max \<bar>c\<bar> (maxcoeff s)" by (simp add: max_def)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   624
  from ismaxcoeff_mono[OF H1 thh1] show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   625
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   626
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   627
lemma zgcd_gt1: "gcd i j > (1::int) \<Longrightarrow> ((\<bar>i\<bar> > 1 \<and> \<bar>j\<bar> > 1) \<or> (\<bar>i\<bar> = 0 \<and> \<bar>j\<bar> > 1) \<or> (\<bar>i\<bar> > 1 \<and> \<bar>j\<bar> = 0))"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   628
  apply (unfold gcd_int_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   629
  apply (cases "i = 0", simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   630
  apply (cases "j = 0", simp_all)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   631
  apply (cases "\<bar>i\<bar> = 1", simp_all)
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   632
  apply (cases "\<bar>j\<bar> = 1", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   633
  apply auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   634
  done
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   635
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   636
lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow>  m =0"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   637
  by (induct t rule: numgcdh.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   638
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   639
lemma dvdnumcoeff_aux:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   640
  assumes "ismaxcoeff t m" and mp:"m \<ge> 0" and "numgcdh t m > 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   641
  shows "dvdnumcoeff t (numgcdh t m)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   642
using assms
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   643
proof(induct t rule: numgcdh.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   644
  case (2 n c t)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   645
  let ?g = "numgcdh t m"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   646
  from 2 have th:"gcd c ?g > 1" by simp
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27456
diff changeset
   647
  from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"]
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   648
  have "(\<bar>c\<bar> > 1 \<and> ?g > 1) \<or> (\<bar>c\<bar> = 0 \<and> ?g > 1) \<or> (\<bar>c\<bar> > 1 \<and> ?g = 0)" by simp
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   649
  moreover {assume "\<bar>c\<bar> > 1" and gp: "?g > 1" with 2
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   650
    have th: "dvdnumcoeff t ?g" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   651
    have th': "gcd c ?g dvd ?g" by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   652
    from dvdnumcoeff_trans[OF th' th] have ?case by simp }
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   653
  moreover {assume "\<bar>c\<bar> = 0 \<and> ?g > 1"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   654
    with 2 have th: "dvdnumcoeff t ?g" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   655
    have th': "gcd c ?g dvd ?g" by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   656
    from dvdnumcoeff_trans[OF th' th] have ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   657
    hence ?case by simp }
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   658
  moreover {assume "\<bar>c\<bar> > 1" and g0:"?g = 0"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   659
    from numgcdh0[OF g0] have "m=0". with 2 g0 have ?case by simp }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   660
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   661
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   662
  case (3 c s t)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   663
  let ?g = "numgcdh t m"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   664
  from 3 have th:"gcd c ?g > 1" by simp
27556
292098f2efdf unified curried gcd, lcm, zgcd, zlcm
haftmann
parents: 27456
diff changeset
   665
  from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"]
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   666
  have "(\<bar>c\<bar> > 1 \<and> ?g > 1) \<or> (\<bar>c\<bar> = 0 \<and> ?g > 1) \<or> (\<bar>c\<bar> > 1 \<and> ?g = 0)" by simp
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   667
  moreover {assume "\<bar>c\<bar> > 1" and gp: "?g > 1" with 3
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   668
    have th: "dvdnumcoeff t ?g" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   669
    have th': "gcd c ?g dvd ?g" by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   670
    from dvdnumcoeff_trans[OF th' th] have ?case by simp }
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   671
  moreover {assume "\<bar>c\<bar> = 0 \<and> ?g > 1"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   672
    with 3 have th: "dvdnumcoeff t ?g" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   673
    have th': "gcd c ?g dvd ?g" by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   674
    from dvdnumcoeff_trans[OF th' th] have ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   675
    hence ?case by simp }
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   676
  moreover {assume "\<bar>c\<bar> > 1" and g0:"?g = 0"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   677
    from numgcdh0[OF g0] have "m=0". with 3 g0 have ?case by simp }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   678
  ultimately show ?case by blast
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   679
qed auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   680
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   681
lemma dvdnumcoeff_aux2:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   682
  assumes "numgcd t > 1" shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   683
  using assms
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   684
proof (simp add: numgcd_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   685
  let ?mc = "maxcoeff t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   686
  let ?g = "numgcdh t ?mc"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   687
  have th1: "ismaxcoeff t ?mc" by (rule maxcoeff_ismaxcoeff)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   688
  have th2: "?mc \<ge> 0" by (rule maxcoeff_pos)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   689
  assume H: "numgcdh t ?mc > 1"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   690
  from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   691
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   692
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   693
lemma reducecoeff: "real_of_int (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   694
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   695
  let ?g = "numgcd t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   696
  have "?g \<ge> 0"  by (simp add: numgcd_pos)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   697
  hence "?g = 0 \<or> ?g = 1 \<or> ?g > 1" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   698
  moreover {assume "?g = 0" hence ?thesis by (simp add: numgcd0)}
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   699
  moreover {assume "?g = 1" hence ?thesis by (simp add: reducecoeff_def)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   700
  moreover { assume g1:"?g > 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   701
    from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" and g0: "?g > 0" by blast+
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   702
    from reducecoeffh[OF th1 g0, where bs="bs"] g1 have ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   703
      by (simp add: reducecoeff_def Let_def)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   704
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   705
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   706
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   707
lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   708
  by (induct t rule: reducecoeffh.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   709
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   710
lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   711
  using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   712
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   713
consts numadd:: "num \<times> num \<Rightarrow> num"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   714
recdef numadd "measure (\<lambda> (t,s). size t + size s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   715
  "numadd (CN n1 c1 r1,CN n2 c2 r2) =
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   716
  (if n1=n2 then
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   717
  (let c = c1 + c2
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   718
  in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2))))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   719
  else if n1 \<le> n2 then CN n1 c1 (numadd (r1,CN n2 c2 r2))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   720
  else (CN n2 c2 (numadd (CN n1 c1 r1,r2))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   721
  "numadd (CN n1 c1 r1,t) = CN n1 c1 (numadd (r1, t))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   722
  "numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   723
  "numadd (CF c1 t1 r1,CF c2 t2 r2) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   724
   (if t1 = t2 then
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   725
    (let c=c1+c2; s= numadd(r1,r2) in (if c=0 then s else CF c t1 s))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   726
   else if lex_bnd t1 t2 then CF c1 t1 (numadd(r1,CF c2 t2 r2))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   727
   else CF c2 t2 (numadd(CF c1 t1 r1,r2)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   728
  "numadd (CF c1 t1 r1,C c) = CF c1 t1 (numadd (r1, C c))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   729
  "numadd (C c,CF c1 t1 r1) = CF c1 t1 (numadd (r1, C c))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   730
  "numadd (C b1, C b2) = C (b1+b2)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   731
  "numadd (a,b) = Add a b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   732
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   733
lemma numadd[simp]: "Inum bs (numadd (t,s)) = Inum bs (Add t s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   734
apply (induct t s rule: numadd.induct, simp_all add: Let_def)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23464
diff changeset
   735
 apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
   736
  apply (case_tac "n1 = n2", simp_all add: algebra_simps)
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 49069
diff changeset
   737
  apply (simp only: distrib_right[symmetric])
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23464
diff changeset
   738
 apply simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   739
apply (case_tac "lex_bnd t1 t2", simp_all)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23464
diff changeset
   740
 apply (case_tac "c1+c2 = 0")
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   741
  apply (case_tac "t1 = t2")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   742
   apply (simp_all add: algebra_simps distrib_right[symmetric] of_int_mult[symmetric] of_int_add[symmetric]del: of_int_mult of_int_add distrib_right)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   743
  done
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   744
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   745
lemma numadd_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   746
  by (induct t s rule: numadd.induct) (auto simp add: Let_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   747
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   748
fun nummul:: "num \<Rightarrow> int \<Rightarrow> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   749
  "nummul (C j) = (\<lambda> i. C (i*j))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   750
| "nummul (CN n c t) = (\<lambda> i. CN n (c*i) (nummul t i))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   751
| "nummul (CF c t s) = (\<lambda> i. CF (c*i) t (nummul s i))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   752
| "nummul (Mul c t) = (\<lambda> i. nummul t (i*c))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   753
| "nummul t = (\<lambda> i. Mul i t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   754
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   755
lemma nummul[simp]: "\<And> i. Inum bs (nummul t i) = Inum bs (Mul i t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   756
  by (induct t rule: nummul.induct) (auto simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   757
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   758
lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   759
  by (induct t rule: nummul.induct) auto
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   760
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   761
definition numneg :: "num \<Rightarrow> num"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   762
  where "numneg t \<equiv> nummul t (- 1)"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   763
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   764
definition numsub :: "num \<Rightarrow> num \<Rightarrow> num"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   765
  where "numsub s t \<equiv> (if s = t then C 0 else numadd (s,numneg t))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   766
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   767
lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   768
  using numneg_def nummul by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   769
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   770
lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   771
  using numneg_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   772
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   773
lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   774
  using numsub_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   775
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   776
lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   777
  using numsub_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   778
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   779
lemma isint_CF: assumes si: "isint s bs" shows "isint (CF c t s) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   780
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   781
  have cti: "isint (Mul c (Floor t)) bs" by (simp add: isint_Mul isint_Floor)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   782
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   783
  have "?thesis = isint (Add (Mul c (Floor t)) s) bs" by (simp add: isint_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   784
  also have "\<dots>" by (simp add: isint_add cti si)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   785
  finally show ?thesis .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   786
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   787
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   788
fun split_int:: "num \<Rightarrow> num \<times> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   789
  "split_int (C c) = (C 0, C c)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   790
| "split_int (CN n c b) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   791
     (let (bv,bi) = split_int b
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   792
       in (CN n c bv, bi))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   793
| "split_int (CF c a b) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   794
     (let (bv,bi) = split_int b
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   795
       in (bv, CF c a bi))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   796
| "split_int a = (a,C 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   797
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   798
lemma split_int: "\<And>tv ti. split_int t = (tv,ti) \<Longrightarrow> (Inum bs (Add tv ti) = Inum bs t) \<and> isint ti bs"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   799
proof (induct t rule: split_int.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   800
  case (2 c n b tv ti)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   801
  let ?bv = "fst (split_int b)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   802
  let ?bi = "snd (split_int b)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   803
  have "split_int b = (?bv,?bi)" by simp
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   804
  with 2(1) have b:"Inum bs (Add ?bv ?bi) = Inum bs b" and bii: "isint ?bi bs" by blast+
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   805
  from 2(2) have tibi: "ti = ?bi" by (simp add: Let_def split_def)
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   806
  from 2(2) b[symmetric] bii show ?case by (auto simp add: Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   807
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   808
  case (3 c a b tv ti)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   809
  let ?bv = "fst (split_int b)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   810
  let ?bi = "snd (split_int b)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   811
  have "split_int b = (?bv,?bi)" by simp
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   812
  with 3(1) have b:"Inum bs (Add ?bv ?bi) = Inum bs b" and bii: "isint ?bi bs" by blast+
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   813
  from 3(2) have tibi: "ti = CF c a ?bi"
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   814
    by (simp add: Let_def split_def)
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   815
  from 3(2) b[symmetric] bii show ?case
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   816
    by (auto simp add: Let_def split_def isint_Floor isint_add isint_Mul isint_CF)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
   817
qed (auto simp add: Let_def isint_iff isint_Floor isint_add isint_Mul split_def algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   818
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   819
lemma split_int_nb: "numbound0 t \<Longrightarrow> numbound0 (fst (split_int t)) \<and> numbound0 (snd (split_int t)) "
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   820
  by (induct t rule: split_int.induct) (auto simp add: Let_def split_def)
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   821
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   822
definition numfloor:: "num \<Rightarrow> num"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
   823
where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   824
  "numfloor t = (let (tv,ti) = split_int t in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   825
  (case tv of C i \<Rightarrow> numadd (tv,ti)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   826
  | _ \<Rightarrow> numadd(CF 1 tv (C 0),ti)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   827
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   828
lemma numfloor[simp]: "Inum bs (numfloor t) = Inum bs (Floor t)" (is "?n t = ?N (Floor t)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   829
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   830
  let ?tv = "fst (split_int t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   831
  let ?ti = "snd (split_int t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   832
  have tvti:"split_int t = (?tv,?ti)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   833
  {assume H: "\<forall> v. ?tv \<noteq> C v"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   834
    hence th1: "?n t = ?N (Add (Floor ?tv) ?ti)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   835
      by (cases ?tv) (auto simp add: numfloor_def Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   836
    from split_int[OF tvti] have "?N (Floor t) = ?N (Floor(Add ?tv ?ti))" and tii:"isint ?ti bs" by simp+
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   837
    hence "?N (Floor t) = real_of_int \<lfloor>?N (Add ?tv ?ti)\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   838
    also have "\<dots> = real_of_int (\<lfloor>?N ?tv\<rfloor> + \<lfloor>?N ?ti\<rfloor>)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   839
      by (simp,subst tii[simplified isint_iff, symmetric]) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   840
    also have "\<dots> = ?N (Add (Floor ?tv) ?ti)" by (simp add: tii[simplified isint_iff])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   841
    finally have ?thesis using th1 by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   842
  moreover {fix v assume H:"?tv = C v"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   843
    from split_int[OF tvti] have "?N (Floor t) = ?N (Floor(Add ?tv ?ti))" and tii:"isint ?ti bs" by simp+
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   844
    hence "?N (Floor t) = real_of_int \<lfloor>?N (Add ?tv ?ti)\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
   845
    also have "\<dots> = real_of_int (\<lfloor>?N ?tv\<rfloor> + \<lfloor>?N ?ti\<rfloor>)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   846
      by (simp,subst tii[simplified isint_iff, symmetric]) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   847
    also have "\<dots> = ?N (Add (Floor ?tv) ?ti)" by (simp add: tii[simplified isint_iff])
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   848
    finally have ?thesis by (simp add: H numfloor_def Let_def split_def) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   849
  ultimately show ?thesis by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   850
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   851
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   852
lemma numfloor_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numfloor t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   853
  using split_int_nb[where t="t"]
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   854
  by (cases "fst (split_int t)") (auto simp add: numfloor_def Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   855
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   856
function simpnum:: "num \<Rightarrow> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   857
  "simpnum (C j) = C j"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   858
| "simpnum (Bound n) = CN n 1 (C 0)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   859
| "simpnum (Neg t) = numneg (simpnum t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   860
| "simpnum (Add t s) = numadd (simpnum t,simpnum s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   861
| "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   862
| "simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   863
| "simpnum (Floor t) = numfloor (simpnum t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   864
| "simpnum (CN n c t) = (if c=0 then simpnum t else CN n c (simpnum t))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   865
| "simpnum (CF c t s) = simpnum(Add (Mul c (Floor t)) s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   866
by pat_completeness auto
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   867
termination by (relation "measure num_size") auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   868
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   869
lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   870
  by (induct t rule: simpnum.induct) auto
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   871
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   872
lemma simpnum_numbound0[simp]: "numbound0 t \<Longrightarrow> numbound0 (simpnum t)"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   873
  by (induct t rule: simpnum.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   874
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   875
fun nozerocoeff:: "num \<Rightarrow> bool" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   876
  "nozerocoeff (C c) = True"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   877
| "nozerocoeff (CN n c t) = (c\<noteq>0 \<and> nozerocoeff t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   878
| "nozerocoeff (CF c s t) = (c \<noteq> 0 \<and> nozerocoeff t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   879
| "nozerocoeff (Mul c t) = (c\<noteq>0 \<and> nozerocoeff t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
   880
| "nozerocoeff t = True"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   881
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   882
lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd (a,b))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   883
  by (induct a b rule: numadd.induct) (auto simp add: Let_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   884
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   885
lemma nummul_nz : "\<And> i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   886
  by (induct a rule: nummul.induct) (auto simp add: Let_def numadd_nz)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   887
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   888
lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   889
  by (simp add: numneg_def nummul_nz)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   890
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   891
lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   892
  by (simp add: numsub_def numneg_nz numadd_nz)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   893
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   894
lemma split_int_nz: "nozerocoeff t \<Longrightarrow> nozerocoeff (fst (split_int t)) \<and> nozerocoeff (snd (split_int t))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   895
  by (induct t rule: split_int.induct) (auto simp add: Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   896
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   897
lemma numfloor_nz: "nozerocoeff t \<Longrightarrow> nozerocoeff (numfloor t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   898
  by (simp add: numfloor_def Let_def split_def)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   899
    (cases "fst (split_int t)", simp_all add: split_int_nz numadd_nz)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   900
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   901
lemma simpnum_nz: "nozerocoeff (simpnum t)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   902
  by (induct t rule: simpnum.induct)
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
   903
    (auto simp add: numadd_nz numneg_nz numsub_nz nummul_nz numfloor_nz)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   904
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   905
lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   906
proof (induct t rule: maxcoeff.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   907
  case (2 n c t)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   908
  hence cnz: "c \<noteq>0" and mx: "max \<bar>c\<bar> (maxcoeff t) = 0" by simp+
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   909
  have "max \<bar>c\<bar> (maxcoeff t) \<ge> \<bar>c\<bar>" by simp
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   910
  with cnz have "max \<bar>c\<bar> (maxcoeff t) > 0" by arith
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   911
  with 2 show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   912
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   913
  case (3 c s t)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   914
  hence cnz: "c \<noteq>0" and mx: "max \<bar>c\<bar> (maxcoeff t) = 0" by simp+
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   915
  have "max \<bar>c\<bar> (maxcoeff t) \<ge> \<bar>c\<bar>" by simp
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   916
  with cnz have "max \<bar>c\<bar> (maxcoeff t) > 0" by arith
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   917
  with 3 show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   918
qed auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   919
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   920
lemma numgcd_nz: assumes nz: "nozerocoeff t" and g0: "numgcd t = 0" shows "t = C 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   921
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   922
  from g0 have th:"numgcdh t (maxcoeff t) = 0" by (simp add: numgcd_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   923
  from numgcdh0[OF th]  have th:"maxcoeff t = 0" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   924
  from maxcoeff_nz[OF nz th] show ?thesis .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   925
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   926
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
   927
definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   928
  "simp_num_pair \<equiv> (\<lambda> (t,n). (if n = 0 then (C 0, 0) else
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   929
   (let t' = simpnum t ; g = numgcd t' in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   930
      if g > 1 then (let g' = gcd n g in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   931
        if g' = 1 then (t',n)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   932
        else (reducecoeffh t' g', n div g'))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   933
      else (t',n))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   934
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   935
lemma simp_num_pair_ci:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   936
  shows "((\<lambda> (t,n). Inum bs t / real_of_int n) (simp_num_pair (t,n))) = ((\<lambda> (t,n). Inum bs t / real_of_int n) (t,n))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   937
  (is "?lhs = ?rhs")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   938
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   939
  let ?t' = "simpnum t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   940
  let ?g = "numgcd ?t'"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   941
  let ?g' = "gcd n ?g"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   942
  {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   943
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   944
  { assume nnz: "n \<noteq> 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   945
    {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   946
    moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   947
    {assume g1:"?g>1" hence g0: "?g > 0" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   948
      from g1 nnz have gp0: "?g' \<noteq> 0" by simp
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
   949
      hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   950
      hence "?g'= 1 \<or> ?g' > 1" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   951
      moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   952
      moreover {assume g'1:"?g'>1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   953
        from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" ..
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   954
        let ?tt = "reducecoeffh ?t' ?g'"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   955
        let ?t = "Inum bs ?tt"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   956
        have gpdg: "?g' dvd ?g" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   957
        have gpdd: "?g' dvd n" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   958
        have gpdgp: "?g' dvd ?g'" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
   959
        from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   960
        have th2:"real_of_int ?g' * ?t = Inum bs ?t'" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   961
        from nnz g1 g'1 have "?lhs = ?t / real_of_int (n div ?g')" by (simp add: simp_num_pair_def Let_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   962
        also have "\<dots> = (real_of_int ?g' * ?t) / (real_of_int ?g' * (real_of_int (n div ?g')))" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   963
        also have "\<dots> = (Inum bs ?t' / real_of_int n)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
   964
          using real_of_int_div[OF gpdd] th2 gp0 by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
   965
        finally have "?lhs = Inum bs t / real_of_int n" by simp
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   966
        then have ?thesis using nnz g1 g'1 by (simp add: simp_num_pair_def) }
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   967
      ultimately have ?thesis by blast }
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   968
    ultimately have ?thesis by blast }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   969
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   970
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   971
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   972
lemma simp_num_pair_l:
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   973
  assumes tnb: "numbound0 t" and np: "n >0" and tn: "simp_num_pair (t,n) = (t',n')"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   974
  shows "numbound0 t' \<and> n' >0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   975
proof-
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   976
  let ?t' = "simpnum t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   977
  let ?g = "numgcd ?t'"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   978
  let ?g' = "gcd n ?g"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   979
  { assume nz: "n = 0" hence ?thesis using assms by (simp add: Let_def simp_num_pair_def) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   980
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   981
  { assume nnz: "n \<noteq> 0"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   982
    {assume "\<not> ?g > 1" hence ?thesis using assms by (auto simp add: Let_def simp_num_pair_def) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   983
    moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   984
    {assume g1:"?g>1" hence g0: "?g > 0" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
   985
      from g1 nnz have gp0: "?g' \<noteq> 0" by simp
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
   986
      hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   987
      hence "?g'= 1 \<or> ?g' > 1" by arith
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   988
      moreover {assume "?g'=1" hence ?thesis using assms g1 g0
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   989
          by (auto simp add: Let_def simp_num_pair_def) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
   990
      moreover {assume g'1:"?g'>1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   991
        have gpdg: "?g' dvd ?g" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   992
        have gpdd: "?g' dvd n" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   993
        have gpdgp: "?g' dvd ?g'" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   994
        from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" .
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
   995
        from zdiv_mono1[OF g'n g'p, simplified div_self[OF gp0]]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   996
        have "n div ?g' >0" by simp
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   997
        hence ?thesis using assms g1 g'1
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
   998
          by(auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0)}
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
   999
      ultimately have ?thesis by blast }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1000
    ultimately have ?thesis by blast }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1001
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1002
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1003
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1004
fun not:: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1005
  "not (NOT p) = p"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1006
| "not T = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1007
| "not F = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1008
| "not (Lt t) = Ge t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1009
| "not (Le t) = Gt t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1010
| "not (Gt t) = Le t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1011
| "not (Ge t) = Lt t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1012
| "not (Eq t) = NEq t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1013
| "not (NEq t) = Eq t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1014
| "not (Dvd i t) = NDvd i t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1015
| "not (NDvd i t) = Dvd i t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1016
| "not (And p q) = Or (not p) (not q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1017
| "not (Or p q) = And (not p) (not q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1018
| "not p = NOT p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1019
lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1020
  by (induct p) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1021
lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1022
  by (induct p) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1023
lemma not_nb[simp]: "bound0 p \<Longrightarrow> bound0 (not p)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1024
  by (induct p) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1025
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1026
definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1027
  "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1028
   if p = q then p else And p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1029
lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1030
  by (cases "p=F \<or> q=F", simp_all add: conj_def) (cases p, simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1031
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1032
lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1033
  using conj_def by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1034
lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1035
  using conj_def by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1036
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1037
definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1038
  "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1039
       else if p=q then p else Or p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1040
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1041
lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1042
  by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1043
lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1044
  using disj_def by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1045
lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1046
  using disj_def by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1047
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1048
definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1049
  "imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1050
    else Imp p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1051
lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1052
  by (cases "p=F \<or> q=T",simp_all add: imp_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1053
lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)"
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1054
  using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1055
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1056
definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1057
  "iff p q \<equiv> (if (p = q) then T else if (p = not q \<or> not p = q) then F else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1058
       if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1059
  Iff p q)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  1060
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1061
lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  1062
  by (unfold iff_def,cases "p=q", simp,cases "p=not q", simp)  (cases "not p= q", auto simp add:not)
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  1063
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1064
lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1065
  by (unfold iff_def,cases "p=q", auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1066
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1067
fun check_int:: "num \<Rightarrow> bool" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1068
  "check_int (C i) = True"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1069
| "check_int (Floor t) = True"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1070
| "check_int (Mul i t) = check_int t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1071
| "check_int (Add t s) = (check_int t \<and> check_int s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1072
| "check_int (Neg t) = check_int t"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1073
| "check_int (CF c t s) = check_int s"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1074
| "check_int t = False"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1075
lemma check_int: "check_int t \<Longrightarrow> isint t bs"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1076
  by (induct t) (auto simp add: isint_add isint_Floor isint_Mul isint_neg isint_c isint_CF)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1077
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1078
lemma rdvd_left1_int: "real_of_int \<lfloor>t\<rfloor> = t \<Longrightarrow> 1 rdvd t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1079
  by (simp add: rdvd_def,rule_tac x="\<lfloor>t\<rfloor>" in exI) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1080
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1081
lemma rdvd_reduce:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1082
  assumes gd:"g dvd d" and gc:"g dvd c" and gp: "g > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1083
  shows "real_of_int (d::int) rdvd real_of_int (c::int)*t = (real_of_int (d div g) rdvd real_of_int (c div g)*t)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1084
proof
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1085
  assume d: "real_of_int d rdvd real_of_int c * t"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1086
  from d rdvd_def obtain k where k_def: "real_of_int c * t = real_of_int d* real_of_int (k::int)" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1087
  from gd dvd_def obtain kd where kd_def: "d = g * kd" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1088
  from gc dvd_def obtain kc where kc_def: "c = g * kc" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1089
  from k_def kd_def kc_def have "real_of_int g * real_of_int kc * t = real_of_int g * real_of_int kd * real_of_int k" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1090
  hence "real_of_int kc * t = real_of_int kd * real_of_int k" using gp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1091
  hence th:"real_of_int kd rdvd real_of_int kc * t" using rdvd_def by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1092
  from kd_def gp have th':"kd = d div g" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1093
  from kc_def gp have "kc = c div g" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1094
  with th th' show "real_of_int (d div g) rdvd real_of_int (c div g) * t" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1095
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1096
  assume d: "real_of_int (d div g) rdvd real_of_int (c div g) * t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1097
  from gp have gnz: "g \<noteq> 0" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1098
  thus "real_of_int d rdvd real_of_int c * t" using d rdvd_mult[OF gnz, where n="d div g" and x="real_of_int (c div g) * t"] real_of_int_div[OF gd] real_of_int_div[OF gc] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1099
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1100
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1101
definition simpdvd :: "int \<Rightarrow> num \<Rightarrow> (int \<times> num)" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1102
  "simpdvd d t \<equiv>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1103
   (let g = numgcd t in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1104
      if g > 1 then (let g' = gcd d g in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1105
        if g' = 1 then (d, t)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1106
        else (d div g',reducecoeffh t g'))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1107
      else (d, t))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1108
lemma simpdvd:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1109
  assumes tnz: "nozerocoeff t" and dnz: "d \<noteq> 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1110
  shows "Ifm bs (Dvd (fst (simpdvd d t)) (snd (simpdvd d t))) = Ifm bs (Dvd d t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1111
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1112
  let ?g = "numgcd t"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  1113
  let ?g' = "gcd d ?g"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1114
  {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simpdvd_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1115
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1116
  {assume g1:"?g>1" hence g0: "?g > 0" by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  1117
    from g1 dnz have gp0: "?g' \<noteq> 0" by simp
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
  1118
    hence g'p: "?g' > 0" using gcd_ge_0_int[where x="d" and y="numgcd t"] by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1119
    hence "?g'= 1 \<or> ?g' > 1" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1120
    moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simpdvd_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1121
    moreover {assume g'1:"?g'>1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1122
      from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" ..
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1123
      let ?tt = "reducecoeffh t ?g'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1124
      let ?t = "Inum bs ?tt"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  1125
      have gpdg: "?g' dvd ?g" by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  1126
      have gpdd: "?g' dvd d" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1127
      have gpdgp: "?g' dvd ?g'" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1128
      from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1129
      have th2:"real_of_int ?g' * ?t = Inum bs t" by simp
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1130
      from assms g1 g0 g'1
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1131
      have "Ifm bs (Dvd (fst (simpdvd d t)) (snd(simpdvd d t))) = Ifm bs (Dvd (d div ?g') ?tt)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  1132
        by (simp add: simpdvd_def Let_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1133
      also have "\<dots> = (real_of_int d rdvd (Inum bs t))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1134
        using rdvd_reduce[OF gpdd gpdgp g'p, where t="?t", simplified div_self[OF gp0]]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  1135
          th2[symmetric] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1136
      finally have ?thesis by simp  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1137
    ultimately have ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1138
  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1139
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1140
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1141
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1142
function (sequential) simpfm :: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1143
  "simpfm (And p q) = conj (simpfm p) (simpfm q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1144
| "simpfm (Or p q) = disj (simpfm p) (simpfm q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1145
| "simpfm (Imp p q) = imp (simpfm p) (simpfm q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1146
| "simpfm (Iff p q) = iff (simpfm p) (simpfm q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1147
| "simpfm (NOT p) = not (simpfm p)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1148
| "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1149
  | _ \<Rightarrow> Lt (reducecoeff a'))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1150
| "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0)  then T else F | _ \<Rightarrow> Le (reducecoeff a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1151
| "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0)  then T else F | _ \<Rightarrow> Gt (reducecoeff a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1152
| "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0)  then T else F | _ \<Rightarrow> Ge (reducecoeff a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1153
| "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0)  then T else F | _ \<Rightarrow> Eq (reducecoeff a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1154
| "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0)  then T else F | _ \<Rightarrow> NEq (reducecoeff a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1155
| "simpfm (Dvd i a) = (if i=0 then simpfm (Eq a)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1156
             else if (\<bar>i\<bar> = 1) \<and> check_int a then T
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1157
             else let a' = simpnum a in case a' of C v \<Rightarrow> if (i dvd v)  then T else F | _ \<Rightarrow> (let (d,t) = simpdvd i a' in Dvd d t))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1158
| "simpfm (NDvd i a) = (if i=0 then simpfm (NEq a)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1159
             else if (\<bar>i\<bar> = 1) \<and> check_int a then F
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1160
             else let a' = simpnum a in case a' of C v \<Rightarrow> if (\<not>(i dvd v)) then T else F | _ \<Rightarrow> (let (d,t) = simpdvd i a' in NDvd d t))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1161
| "simpfm p = p"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1162
by pat_completeness auto
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1163
termination by (relation "measure fmsize") auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1164
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1165
lemma simpfm[simp]: "Ifm bs (simpfm p) = Ifm bs p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1166
proof(induct p rule: simpfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1167
  case (6 a) let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1168
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1169
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1170
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1171
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1172
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1173
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1174
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1175
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1176
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1177
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1178
    with sa have "Inum bs a < 0 = (real_of_int ?g * ?r < real_of_int ?g * 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1179
    also have "\<dots> = (?r < 0)" using gp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1180
      by (simp only: mult_less_cancel_left) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1181
    finally have ?case using H by (cases "?sa" , simp_all add: Let_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1182
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1183
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1184
  case (7 a)  let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1185
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1186
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1187
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1188
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1189
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1190
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1191
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1192
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1193
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1194
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1195
    with sa have "Inum bs a \<le> 0 = (real_of_int ?g * ?r \<le> real_of_int ?g * 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1196
    also have "\<dots> = (?r \<le> 0)" using gp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1197
      by (simp only: mult_le_cancel_left) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1198
    finally have ?case using H by (cases "?sa" , simp_all add: Let_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1199
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1200
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1201
  case (8 a)  let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1202
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1203
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1204
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1205
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1206
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1207
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1208
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1209
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1210
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1211
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1212
    with sa have "Inum bs a > 0 = (real_of_int ?g * ?r > real_of_int ?g * 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1213
    also have "\<dots> = (?r > 0)" using gp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1214
      by (simp only: mult_less_cancel_left) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1215
    finally have ?case using H by (cases "?sa" , simp_all add: Let_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1216
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1217
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1218
  case (9 a)  let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1219
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1220
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1221
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1222
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1223
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1224
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1225
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1226
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1227
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1228
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1229
    with sa have "Inum bs a \<ge> 0 = (real_of_int ?g * ?r \<ge> real_of_int ?g * 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1230
    also have "\<dots> = (?r \<ge> 0)" using gp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1231
      by (simp only: mult_le_cancel_left) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1232
    finally have ?case using H by (cases "?sa" , simp_all add: Let_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1233
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1234
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1235
  case (10 a)  let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1236
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1237
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1238
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1239
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1240
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1241
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1242
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1243
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1244
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1245
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1246
    with sa have "Inum bs a = 0 = (real_of_int ?g * ?r = 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1247
    also have "\<dots> = (?r = 0)" using gp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1248
      by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1249
    finally have ?case using H by (cases "?sa" , simp_all add: Let_def)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1250
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1251
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1252
  case (11 a)  let ?sa = "simpnum a" have sa: "Inum bs ?sa = Inum bs a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1253
  {fix v assume "?sa = C v" hence ?case using sa by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1254
  moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1255
    let ?g = "numgcd ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1256
    let ?rsa = "reducecoeff ?sa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1257
    let ?r = "Inum bs ?rsa"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1258
    have sa_nz: "nozerocoeff ?sa" by (rule simpnum_nz)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1259
    {assume gz: "?g=0" from numgcd_nz[OF sa_nz gz] H have "False" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1260
    with numgcd_pos[where t="?sa"] have "?g > 0" by (cases "?g=0", auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1261
    hence gp: "real_of_int ?g > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1262
    have "Inum bs ?sa = real_of_int ?g* ?r" by (simp add: reducecoeff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1263
    with sa have "Inum bs a \<noteq> 0 = (real_of_int ?g * ?r \<noteq> 0)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1264
    also have "\<dots> = (?r \<noteq> 0)" using gp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1265
      by simp
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1266
    finally have ?case using H by (cases "?sa") (simp_all add: Let_def) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1267
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1268
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1269
  case (12 i a)  let ?sa = "simpnum a"   have sa: "Inum bs ?sa = Inum bs a" by simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1270
  have "i=0 \<or> (\<bar>i\<bar> = 1 \<and> check_int a) \<or> (i\<noteq>0 \<and> ((\<bar>i\<bar> \<noteq> 1) \<or> (\<not> check_int a)))" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1271
  {assume "i=0" hence ?case using "12.hyps" by (simp add: rdvd_left_0_eq Let_def)}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1272
  moreover
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1273
  {assume ai1: "\<bar>i\<bar> = 1" and ai: "check_int a"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1274
    hence "i=1 \<or> i= - 1" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1275
    moreover {assume i1: "i = 1"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1276
      from rdvd_left1_int[OF check_int[OF ai, simplified isint_iff]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1277
      have ?case using i1 ai by simp }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1278
    moreover {assume i1: "i = - 1"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1279
      from rdvd_left1_int[OF check_int[OF ai, simplified isint_iff]]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  1280
        rdvd_abs1[where d="- 1" and t="Inum bs a"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1281
      have ?case using i1 ai by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1282
    ultimately have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1283
  moreover
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1284
  {assume inz: "i\<noteq>0" and cond: "(\<bar>i\<bar> \<noteq> 1) \<or> (\<not> check_int a)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1285
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1286
        by (cases "\<bar>i\<bar> = 1", auto simp add: int_rdvd_iff) }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1287
    moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1288
      hence th: "simpfm (Dvd i a) = Dvd (fst (simpdvd i ?sa)) (snd (simpdvd i ?sa))" using inz cond by (cases ?sa, auto simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1289
      from simpnum_nz have nz:"nozerocoeff ?sa" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1290
      from simpdvd [OF nz inz] th have ?case using sa by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1291
    ultimately have ?case by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1292
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1293
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1294
  case (13 i a)  let ?sa = "simpnum a"   have sa: "Inum bs ?sa = Inum bs a" by simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1295
  have "i=0 \<or> (\<bar>i\<bar> = 1 \<and> check_int a) \<or> (i\<noteq>0 \<and> ((\<bar>i\<bar> \<noteq> 1) \<or> (\<not> check_int a)))" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1296
  {assume "i=0" hence ?case using "13.hyps" by (simp add: rdvd_left_0_eq Let_def)}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1297
  moreover
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1298
  {assume ai1: "\<bar>i\<bar> = 1" and ai: "check_int a"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1299
    hence "i=1 \<or> i= - 1" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1300
    moreover {assume i1: "i = 1"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1301
      from rdvd_left1_int[OF check_int[OF ai, simplified isint_iff]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1302
      have ?case using i1 ai by simp }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1303
    moreover {assume i1: "i = - 1"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1304
      from rdvd_left1_int[OF check_int[OF ai, simplified isint_iff]]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  1305
        rdvd_abs1[where d="- 1" and t="Inum bs a"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1306
      have ?case using i1 ai by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1307
    ultimately have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1308
  moreover
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1309
  {assume inz: "i\<noteq>0" and cond: "(\<bar>i\<bar> \<noteq> 1) \<or> (\<not> check_int a)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1310
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1311
        by (cases "\<bar>i\<bar> = 1", auto simp add: int_rdvd_iff) }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1312
    moreover {assume H:"\<not> (\<exists> v. ?sa = C v)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1313
      hence th: "simpfm (NDvd i a) = NDvd (fst (simpdvd i ?sa)) (snd (simpdvd i ?sa))" using inz cond
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  1314
        by (cases ?sa, auto simp add: Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1315
      from simpnum_nz have nz:"nozerocoeff ?sa" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1316
      from simpdvd [OF nz inz] th have ?case using sa by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1317
    ultimately have ?case by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1318
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1319
qed (induct p rule: simpfm.induct, simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1320
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1321
lemma simpdvd_numbound0: "numbound0 t \<Longrightarrow> numbound0 (snd (simpdvd d t))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1322
  by (simp add: simpdvd_def Let_def split_def reducecoeffh_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1323
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1324
lemma simpfm_bound0[simp]: "bound0 p \<Longrightarrow> bound0 (simpfm p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1325
proof(induct p rule: simpfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1326
  case (6 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1327
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1328
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1329
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1330
  case (7 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1331
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1332
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1333
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1334
  case (8 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1335
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1336
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1337
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1338
  case (9 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1339
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1340
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1341
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1342
  case (10 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1343
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1344
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1345
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1346
  case (11 a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1347
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1348
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1349
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1350
  case (12 i a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1351
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1352
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0 simpdvd_numbound0 split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1353
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1354
  case (13 i a) hence nb: "numbound0 a" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1355
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1356
  thus ?case by (cases "simpnum a", auto simp add: Let_def reducecoeff_numbound0 simpdvd_numbound0 split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1357
qed(auto simp add: disj_def imp_def iff_def conj_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1358
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1359
lemma simpfm_qf[simp]: "qfree p \<Longrightarrow> qfree (simpfm p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1360
by (induct p rule: simpfm.induct, auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1361
(case_tac "simpnum a",auto simp add: split_def Let_def)+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1362
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1363
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1364
  (* Generic quantifier elimination *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1365
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1366
definition list_conj :: "fm list \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1367
  "list_conj ps \<equiv> foldr conj ps T"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1368
lemma list_conj: "Ifm bs (list_conj ps) = (\<forall>p\<in> set ps. Ifm bs p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1369
  by (induct ps, auto simp add: list_conj_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1370
lemma list_conj_qf: " \<forall>p\<in> set ps. qfree p \<Longrightarrow> qfree (list_conj ps)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1371
  by (induct ps, auto simp add: list_conj_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1372
lemma list_conj_nb: " \<forall>p\<in> set ps. bound0 p \<Longrightarrow> bound0 (list_conj ps)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1373
  by (induct ps, auto simp add: list_conj_def)
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  1374
definition CJNB :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
29788
1b80ebe713a4 established session HOL-Reflection
haftmann
parents: 29667
diff changeset
  1375
  "CJNB f p \<equiv> (let cjs = conjuncts p ; (yes,no) = List.partition bound0 cjs
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1376
                   in conj (decr (list_conj yes)) (f (list_conj no)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1377
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1378
lemma CJNB_qe:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1379
  assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1380
  shows "\<forall> bs p. qfree p \<longrightarrow> qfree (CJNB qe p) \<and> (Ifm bs ((CJNB qe p)) = Ifm bs (E p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1381
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1382
  fix bs p
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1383
  assume qfp: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1384
  let ?cjs = "conjuncts p"
29788
1b80ebe713a4 established session HOL-Reflection
haftmann
parents: 29667
diff changeset
  1385
  let ?yes = "fst (List.partition bound0 ?cjs)"
1b80ebe713a4 established session HOL-Reflection
haftmann
parents: 29667
diff changeset
  1386
  let ?no = "snd (List.partition bound0 ?cjs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1387
  let ?cno = "list_conj ?no"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1388
  let ?cyes = "list_conj ?yes"
29788
1b80ebe713a4 established session HOL-Reflection
haftmann
parents: 29667
diff changeset
  1389
  have part: "List.partition bound0 ?cjs = (?yes,?no)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1390
  from partition_P[OF part] have "\<forall> q\<in> set ?yes. bound0 q" by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1391
  hence yes_nb: "bound0 ?cyes" by (simp add: list_conj_nb)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1392
  hence yes_qf: "qfree (decr ?cyes )" by (simp add: decr_qf)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1393
  from conjuncts_qf[OF qfp] partition_set[OF part]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1394
  have " \<forall>q\<in> set ?no. qfree q" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1395
  hence no_qf: "qfree ?cno"by (simp add: list_conj_qf)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1396
  with qe have cno_qf:"qfree (qe ?cno )"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1397
    and noE: "Ifm bs (qe ?cno) = Ifm bs (E ?cno)" by blast+
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1398
  from cno_qf yes_qf have qf: "qfree (CJNB qe p)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1399
    by (simp add: CJNB_def Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1400
  {fix bs
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1401
    from conjuncts have "Ifm bs p = (\<forall>q\<in> set ?cjs. Ifm bs q)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1402
    also have "\<dots> = ((\<forall>q\<in> set ?yes. Ifm bs q) \<and> (\<forall>q\<in> set ?no. Ifm bs q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1403
      using partition_set[OF part] by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1404
    finally have "Ifm bs p = ((Ifm bs ?cyes) \<and> (Ifm bs ?cno))" using list_conj by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1405
  hence "Ifm bs (E p) = (\<exists>x. (Ifm (x#bs) ?cyes) \<and> (Ifm (x#bs) ?cno))" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  1406
  also fix y have "\<dots> = (\<exists>x. (Ifm (y#bs) ?cyes) \<and> (Ifm (x#bs) ?cno))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1407
    using bound0_I[OF yes_nb, where bs="bs" and b'="y"] by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1408
  also have "\<dots> = (Ifm bs (decr ?cyes) \<and> Ifm bs (E ?cno))"
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33063
diff changeset
  1409
    by (auto simp add: decr[OF yes_nb] simp del: partition_filter_conv)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1410
  also have "\<dots> = (Ifm bs (conj (decr ?cyes) (qe ?cno)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1411
    using qe[rule_format, OF no_qf] by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1412
  finally have "Ifm bs (E p) = Ifm bs (CJNB qe p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1413
    by (simp add: Let_def CJNB_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1414
  with qf show "qfree (CJNB qe p) \<and> Ifm bs (CJNB qe p) = Ifm bs (E p)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1415
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1416
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1417
function (sequential) qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1418
  "qelim (E p) = (\<lambda> qe. DJ (CJNB qe) (qelim p qe))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1419
| "qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1420
| "qelim (NOT p) = (\<lambda> qe. not (qelim p qe))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1421
| "qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1422
| "qelim (Or  p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1423
| "qelim (Imp p q) = (\<lambda> qe. disj (qelim (NOT p) qe) (qelim q qe))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1424
| "qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1425
| "qelim p = (\<lambda> y. simpfm p)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1426
by pat_completeness auto
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1427
termination by (relation "measure fmsize") auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1428
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1429
lemma qelim_ci:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1430
  assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1431
  shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1432
  using qe_inv DJ_qe[OF CJNB_qe[OF qe_inv]]
41807
ab5d2d81f9fb tuned proofs -- eliminated prems;
wenzelm
parents: 41464
diff changeset
  1433
  by (induct p rule: qelim.induct) (auto simp del: simpfm.simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1434
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1435
61586
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1436
text \<open>The \<open>\<int>\<close> Part\<close>
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1437
text\<open>Linearity for fm where Bound 0 ranges over \<open>\<int>\<close>\<close>
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1438
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1439
function zsplit0 :: "num \<Rightarrow> int \<times> num" (* splits the bounded from the unbounded part*) where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1440
  "zsplit0 (C c) = (0,C c)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1441
| "zsplit0 (Bound n) = (if n=0 then (1, C 0) else (0,Bound n))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1442
| "zsplit0 (CN n c a) = zsplit0 (Add (Mul c (Bound n)) a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1443
| "zsplit0 (CF c a b) = zsplit0 (Add (Mul c (Floor a)) b)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1444
| "zsplit0 (Neg a) = (let (i',a') =  zsplit0 a in (-i', Neg a'))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1445
| "zsplit0 (Add a b) = (let (ia,a') =  zsplit0 a ;
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1446
                            (ib,b') =  zsplit0 b
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1447
                            in (ia+ib, Add a' b'))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1448
| "zsplit0 (Sub a b) = (let (ia,a') =  zsplit0 a ;
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1449
                            (ib,b') =  zsplit0 b
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1450
                            in (ia-ib, Sub a' b'))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1451
| "zsplit0 (Mul i a) = (let (i',a') =  zsplit0 a in (i*i', Mul i a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1452
| "zsplit0 (Floor a) = (let (i',a') =  zsplit0 a in (i',Floor a'))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1453
by pat_completeness auto
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1454
termination by (relation "measure num_size") auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1455
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1456
lemma zsplit0_I:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1457
  shows "\<And> n a. zsplit0 t = (n,a) \<Longrightarrow> (Inum ((real_of_int (x::int)) #bs) (CN 0 n a) = Inum (real_of_int x #bs) t) \<and> numbound0 a"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1458
  (is "\<And> n a. ?S t = (n,a) \<Longrightarrow> (?I x (CN 0 n a) = ?I x t) \<and> ?N a")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1459
proof(induct t rule: zsplit0.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1460
  case (1 c n a) thus ?case by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1461
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1462
  case (2 m n a) thus ?case by (cases "m=0") auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1463
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1464
  case (3 n i a n a') thus ?case by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1465
next
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1466
  case (4 c a b n a') thus ?case by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1467
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1468
  case (5 t n a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1469
  let ?nt = "fst (zsplit0 t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1470
  let ?at = "snd (zsplit0 t)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1471
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Neg ?at \<and> n=-?nt" using 5
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1472
    by (simp add: Let_def split_def)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1473
  from abj 5 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1474
  from th2[simplified] th[simplified] show ?case by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1475
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1476
  case (6 s t n a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1477
  let ?ns = "fst (zsplit0 s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1478
  let ?as = "snd (zsplit0 s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1479
  let ?nt = "fst (zsplit0 t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1480
  let ?at = "snd (zsplit0 t)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1481
  have abjs: "zsplit0 s = (?ns,?as)" by simp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1482
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1483
  ultimately have th: "a=Add ?as ?at \<and> n=?ns + ?nt" using 6
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1484
    by (simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1485
  from abjs[symmetric] have bluddy: "\<exists> x y. (x,y) = zsplit0 s" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1486
  from 6 have "(\<exists> x y. (x,y) = zsplit0 s) \<longrightarrow> (\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (real_of_int x # bs) (CN 0 xa xb) = Inum (real_of_int x # bs) t \<and> numbound0 xb)" by blast (*FIXME*)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1487
  with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1488
  from abjs 6  have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1489
  from th3[simplified] th2[simplified] th[simplified] show ?case
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 49069
diff changeset
  1490
    by (simp add: distrib_right)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1491
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1492
  case (7 s t n a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1493
  let ?ns = "fst (zsplit0 s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1494
  let ?as = "snd (zsplit0 s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1495
  let ?nt = "fst (zsplit0 t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1496
  let ?at = "snd (zsplit0 t)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1497
  have abjs: "zsplit0 s = (?ns,?as)" by simp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1498
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1499
  ultimately have th: "a=Sub ?as ?at \<and> n=?ns - ?nt" using 7
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1500
    by (simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1501
  from abjs[symmetric] have bluddy: "\<exists> x y. (x,y) = zsplit0 s" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1502
  from 7 have "(\<exists> x y. (x,y) = zsplit0 s) \<longrightarrow> (\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (real_of_int x # bs) (CN 0 xa xb) = Inum (real_of_int x # bs) t \<and> numbound0 xb)" by blast (*FIXME*)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1503
  with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1504
  from abjs 7 have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1505
  from th3[simplified] th2[simplified] th[simplified] show ?case
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1506
    by (simp add: left_diff_distrib)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1507
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1508
  case (8 i t n a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1509
  let ?nt = "fst (zsplit0 t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1510
  let ?at = "snd (zsplit0 t)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1511
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Mul i ?at \<and> n=i*?nt" using 8
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1512
    by (simp add: Let_def split_def)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1513
  from abj 8 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1514
  hence "?I x (Mul i t) = (real_of_int i) * ?I x (CN 0 ?nt ?at)" by simp
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 49069
diff changeset
  1515
  also have "\<dots> = ?I x (CN 0 (i*?nt) (Mul i ?at))" by (simp add: distrib_left)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1516
  finally show ?case using th th2 by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1517
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1518
  case (9 t n a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1519
  let ?nt = "fst (zsplit0 t)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1520
  let ?at = "snd (zsplit0 t)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1521
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a= Floor ?at \<and> n=?nt" using 9
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1522
    by (simp add: Let_def split_def)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1523
  from abj 9 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1524
  hence na: "?N a" using th by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1525
  have th': "(real_of_int ?nt)*(real_of_int x) = real_of_int (?nt * x)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1526
  have "?I x (Floor t) = ?I x (Floor (CN 0 ?nt ?at))" using th2 by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1527
  also have "\<dots> = real_of_int \<lfloor>real_of_int ?nt * real_of_int x + ?I x ?at\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1528
  also have "\<dots> = real_of_int \<lfloor>?I x ?at + real_of_int (?nt * x)\<rfloor>" by (simp add: ac_simps)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1529
  also have "\<dots> = real_of_int (\<lfloor>?I x ?at\<rfloor> + (?nt * x))"
63600
d0fa16751d14 fixed floor proof
nipkow
parents: 62342
diff changeset
  1530
    by (simp add: of_int_mult[symmetric] del: of_int_mult)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1531
  also have "\<dots> = real_of_int (?nt)*(real_of_int x) + real_of_int \<lfloor>?I x ?at\<rfloor>" by (simp add: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1532
  finally have "?I x (Floor t) = ?I x (CN 0 n a)" using th by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1533
  with na show ?case by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1534
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1535
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1536
consts
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1537
  iszlfm :: "fm \<Rightarrow> real list \<Rightarrow> bool"   (* Linearity test for fm *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1538
  zlfm :: "fm \<Rightarrow> fm"       (* Linearity transformation for fm *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1539
recdef iszlfm "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1540
  "iszlfm (And p q) = (\<lambda> bs. iszlfm p bs \<and> iszlfm q bs)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1541
  "iszlfm (Or p q) = (\<lambda> bs. iszlfm p bs \<and> iszlfm q bs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1542
  "iszlfm (Eq  (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1543
  "iszlfm (NEq (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1544
  "iszlfm (Lt  (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1545
  "iszlfm (Le  (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1546
  "iszlfm (Gt  (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1547
  "iszlfm (Ge  (CN 0 c e)) = (\<lambda> bs. c>0 \<and> numbound0 e \<and> isint e bs)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1548
  "iszlfm (Dvd i (CN 0 c e)) =
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1549
                 (\<lambda> bs. c>0 \<and> i>0 \<and> numbound0 e \<and> isint e bs)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1550
  "iszlfm (NDvd i (CN 0 c e))=
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1551
                 (\<lambda> bs. c>0 \<and> i>0 \<and> numbound0 e \<and> isint e bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1552
  "iszlfm p = (\<lambda> bs. isatom p \<and> (bound0 p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1553
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1554
lemma zlin_qfree: "iszlfm p bs \<Longrightarrow> qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1555
  by (induct p rule: iszlfm.induct) auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1556
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1557
lemma iszlfm_gen:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1558
  assumes lp: "iszlfm p (x#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1559
  shows "\<forall> y. iszlfm p (y#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1560
proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1561
  fix y
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1562
  show "iszlfm p (y#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1563
    using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1564
  by(induct p rule: iszlfm.induct, simp_all add: numbound0_gen[rule_format, where x="x" and y="y"])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1565
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1566
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1567
lemma conj_zl[simp]: "iszlfm p bs \<Longrightarrow> iszlfm q bs \<Longrightarrow> iszlfm (conj p q) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1568
  using conj_def by (cases p,auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1569
lemma disj_zl[simp]: "iszlfm p bs \<Longrightarrow> iszlfm q bs \<Longrightarrow> iszlfm (disj p q) bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1570
  using disj_def by (cases p,auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1571
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1572
recdef zlfm "measure fmsize"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1573
  "zlfm (And p q) = conj (zlfm p) (zlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1574
  "zlfm (Or p q) = disj (zlfm p) (zlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1575
  "zlfm (Imp p q) = disj (zlfm (NOT p)) (zlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1576
  "zlfm (Iff p q) = disj (conj (zlfm p) (zlfm q)) (conj (zlfm (NOT p)) (zlfm (NOT q)))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1577
  "zlfm (Lt a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1578
     if c=0 then Lt r else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1579
     if c>0 then Or (Lt (CN 0 c (Neg (Floor (Neg r))))) (And (Eq (CN 0 c (Neg (Floor (Neg r))))) (Lt (Add (Floor (Neg r)) r)))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1580
     else Or (Gt (CN 0 (-c) (Floor(Neg r)))) (And (Eq(CN 0 (-c) (Floor(Neg r)))) (Lt (Add (Floor (Neg r)) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1581
  "zlfm (Le a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1582
     if c=0 then Le r else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1583
     if c>0 then Or (Le (CN 0 c (Neg (Floor (Neg r))))) (And (Eq (CN 0 c (Neg (Floor (Neg r))))) (Lt (Add (Floor (Neg r)) r)))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1584
     else Or (Ge (CN 0 (-c) (Floor(Neg r)))) (And (Eq(CN 0 (-c) (Floor(Neg r)))) (Lt (Add (Floor (Neg r)) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1585
  "zlfm (Gt a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1586
     if c=0 then Gt r else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1587
     if c>0 then Or (Gt (CN 0 c (Floor r))) (And (Eq (CN 0 c (Floor r))) (Lt (Sub (Floor r) r)))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1588
     else Or (Lt (CN 0 (-c) (Neg (Floor r)))) (And (Eq(CN 0 (-c) (Neg (Floor r)))) (Lt (Sub (Floor r) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1589
  "zlfm (Ge a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1590
     if c=0 then Ge r else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1591
     if c>0 then Or (Ge (CN 0 c (Floor r))) (And (Eq (CN 0 c (Floor r))) (Lt (Sub (Floor r) r)))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1592
     else Or (Le (CN 0 (-c) (Neg (Floor r)))) (And (Eq(CN 0 (-c) (Neg (Floor r)))) (Lt (Sub (Floor r) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1593
  "zlfm (Eq a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1594
              if c=0 then Eq r else
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1595
      if c>0 then (And (Eq (CN 0 c (Neg (Floor (Neg r))))) (Eq (Add (Floor (Neg r)) r)))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1596
      else (And (Eq (CN 0 (-c) (Floor (Neg r)))) (Eq (Add (Floor (Neg r)) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1597
  "zlfm (NEq a) = (let (c,r) = zsplit0 a in
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1598
              if c=0 then NEq r else
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1599
      if c>0 then (Or (NEq (CN 0 c (Neg (Floor (Neg r))))) (NEq (Add (Floor (Neg r)) r)))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1600
      else (Or (NEq (CN 0 (-c) (Floor (Neg r)))) (NEq (Add (Floor (Neg r)) r))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1601
  "zlfm (Dvd i a) = (if i=0 then zlfm (Eq a)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1602
  else (let (c,r) = zsplit0 a in
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1603
              if c=0 then Dvd \<bar>i\<bar> r else
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1604
      if c>0 then And (Eq (Sub (Floor r) r)) (Dvd \<bar>i\<bar> (CN 0 c (Floor r)))
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1605
      else And (Eq (Sub (Floor r) r)) (Dvd \<bar>i\<bar> (CN 0 (-c) (Neg (Floor r))))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1606
  "zlfm (NDvd i a) = (if i=0 then zlfm (NEq a)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1607
  else (let (c,r) = zsplit0 a in
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1608
              if c=0 then NDvd \<bar>i\<bar> r else
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1609
      if c>0 then Or (NEq (Sub (Floor r) r)) (NDvd \<bar>i\<bar> (CN 0 c (Floor r)))
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1610
      else Or (NEq (Sub (Floor r) r)) (NDvd \<bar>i\<bar> (CN 0 (-c) (Neg (Floor r))))))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1611
  "zlfm (NOT (And p q)) = disj (zlfm (NOT p)) (zlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1612
  "zlfm (NOT (Or p q)) = conj (zlfm (NOT p)) (zlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1613
  "zlfm (NOT (Imp p q)) = conj (zlfm p) (zlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1614
  "zlfm (NOT (Iff p q)) = disj (conj(zlfm p) (zlfm(NOT q))) (conj (zlfm(NOT p)) (zlfm q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1615
  "zlfm (NOT (NOT p)) = zlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1616
  "zlfm (NOT T) = F"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1617
  "zlfm (NOT F) = T"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1618
  "zlfm (NOT (Lt a)) = zlfm (Ge a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1619
  "zlfm (NOT (Le a)) = zlfm (Gt a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1620
  "zlfm (NOT (Gt a)) = zlfm (Le a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1621
  "zlfm (NOT (Ge a)) = zlfm (Lt a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1622
  "zlfm (NOT (Eq a)) = zlfm (NEq a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1623
  "zlfm (NOT (NEq a)) = zlfm (Eq a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1624
  "zlfm (NOT (Dvd i a)) = zlfm (NDvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1625
  "zlfm (NOT (NDvd i a)) = zlfm (Dvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1626
  "zlfm p = p" (hints simp add: fmsize_pos)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1627
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1628
lemma split_int_less_real:
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1629
  "(real_of_int (a::int) < b) = (a < \<lfloor>b\<rfloor> \<or> (a = \<lfloor>b\<rfloor> \<and> real_of_int \<lfloor>b\<rfloor> < b))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1630
proof( auto)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1631
  assume alb: "real_of_int a < b" and agb: "\<not> a < \<lfloor>b\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1632
  from agb have "\<lfloor>b\<rfloor> \<le> a" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1633
  hence th: "b < real_of_int a + 1" by (simp only: floor_le_iff)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1634
  from floor_eq[OF alb th] show "a = \<lfloor>b\<rfloor>" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1635
next
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1636
  assume alb: "a < \<lfloor>b\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1637
  hence "real_of_int a < real_of_int \<lfloor>b\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1638
  moreover have "real_of_int \<lfloor>b\<rfloor> \<le> b" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1639
  ultimately show  "real_of_int a < b" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1640
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1641
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1642
lemma split_int_less_real':
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1643
  "(real_of_int (a::int) + b < 0) = (real_of_int a - real_of_int \<lfloor>- b\<rfloor> < 0 \<or> (real_of_int a - real_of_int \<lfloor>- b\<rfloor> = 0 \<and> real_of_int \<lfloor>- b\<rfloor> + b < 0))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1644
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1645
  have "(real_of_int a + b <0) = (real_of_int a < -b)" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1646
  with split_int_less_real[where a="a" and b="-b"] show ?thesis by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1647
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1648
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1649
lemma split_int_gt_real':
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1650
  "(real_of_int (a::int) + b > 0) = (real_of_int a + real_of_int \<lfloor>b\<rfloor> > 0 \<or> (real_of_int a + real_of_int \<lfloor>b\<rfloor> = 0 \<and> real_of_int \<lfloor>b\<rfloor> - b < 0))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1651
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1652
  have th: "(real_of_int a + b >0) = (real_of_int (-a) + (-b)< 0)" by arith
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1653
  show ?thesis 
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1654
    by (simp only:th split_int_less_real'[where a="-a" and b="-b"]) (auto simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1655
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1656
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1657
lemma split_int_le_real:
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1658
  "(real_of_int (a::int) \<le> b) = (a \<le> \<lfloor>b\<rfloor> \<or> (a = \<lfloor>b\<rfloor> \<and> real_of_int \<lfloor>b\<rfloor> < b))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1659
proof( auto)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1660
  assume alb: "real_of_int a \<le> b" and agb: "\<not> a \<le> \<lfloor>b\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1661
  from alb have "\<lfloor>real_of_int a\<rfloor> \<le> \<lfloor>b\<rfloor>" by (simp only: floor_mono)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1662
  hence "a \<le> \<lfloor>b\<rfloor>" by simp with agb show "False" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1663
next
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1664
  assume alb: "a \<le> \<lfloor>b\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1665
  hence "real_of_int a \<le> real_of_int \<lfloor>b\<rfloor>" by (simp only: floor_mono)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1666
  also have "\<dots>\<le> b" by simp  finally show  "real_of_int a \<le> b" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1667
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1668
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1669
lemma split_int_le_real':
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1670
  "(real_of_int (a::int) + b \<le> 0) = (real_of_int a - real_of_int \<lfloor>- b\<rfloor> \<le> 0 \<or> (real_of_int a - real_of_int \<lfloor>- b\<rfloor> = 0 \<and> real_of_int \<lfloor>- b\<rfloor> + b < 0))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1671
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1672
  have "(real_of_int a + b \<le>0) = (real_of_int a \<le> -b)" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1673
  with split_int_le_real[where a="a" and b="-b"] show ?thesis by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1674
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1675
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1676
lemma split_int_ge_real':
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1677
  "(real_of_int (a::int) + b \<ge> 0) = (real_of_int a + real_of_int \<lfloor>b\<rfloor> \<ge> 0 \<or> (real_of_int a + real_of_int \<lfloor>b\<rfloor> = 0 \<and> real_of_int \<lfloor>b\<rfloor> - b < 0))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1678
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1679
  have th: "(real_of_int a + b \<ge>0) = (real_of_int (-a) + (-b) \<le> 0)" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1680
  show ?thesis by (simp only: th split_int_le_real'[where a="-a" and b="-b"])
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  1681
    (simp add: algebra_simps ,arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1682
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1683
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1684
lemma split_int_eq_real: "(real_of_int (a::int) = b) = ( a = \<lfloor>b\<rfloor> \<and> b = real_of_int \<lfloor>b\<rfloor>)" (is "?l = ?r")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1685
by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1686
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1687
lemma split_int_eq_real': "(real_of_int (a::int) + b = 0) = ( a - \<lfloor>- b\<rfloor> = 0 \<and> real_of_int \<lfloor>- b\<rfloor> + b = 0)" (is "?l = ?r")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1688
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1689
  have "?l = (real_of_int a = -b)" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1690
  with split_int_eq_real[where a="a" and b="-b"] show ?thesis by simp arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1691
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1692
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1693
lemma zlfm_I:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1694
  assumes qfp: "qfree p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1695
  shows "(Ifm (real_of_int i #bs) (zlfm p) = Ifm (real_of_int i# bs) p) \<and> iszlfm (zlfm p) (real_of_int (i::int) #bs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1696
  (is "(?I (?l p) = ?I p) \<and> ?L (?l p)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1697
using qfp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1698
proof(induct p rule: zlfm.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1699
  case (5 a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1700
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1701
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1702
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1703
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1704
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1705
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1706
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1707
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1708
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1709
      by (cases "?r", simp_all add: Let_def split_def,rename_tac nat a b,case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1710
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1711
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Lt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1712
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1713
    have "?I (Lt a) = (real_of_int (?c * i) + (?N ?r) < 0)" using Ia by (simp add: Let_def split_def)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  1714
    also have "\<dots> = (?I (?l (Lt a)))" apply (simp only: split_int_less_real'[where a="?c*i" and b="?N ?r"]) by (simp add: Ia cp cnz Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1715
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1716
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1717
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Lt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1718
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1719
    have "?I (Lt a) = (real_of_int (?c * i) + (?N ?r) < 0)" using Ia by (simp add: Let_def split_def)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1720
    also from cn cnz have "\<dots> = (?I (?l (Lt a)))" by (simp only: split_int_less_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def ac_simps, arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1721
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1722
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1723
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1724
  case (6 a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1725
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1726
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1727
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1728
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1729
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1730
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1731
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1732
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1733
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1734
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat",simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1735
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1736
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Le a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1737
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1738
    have "?I (Le a) = (real_of_int (?c * i) + (?N ?r) \<le> 0)" using Ia by (simp add: Let_def split_def)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  1739
    also have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1740
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1741
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1742
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Le a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1743
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1744
    have "?I (Le a) = (real_of_int (?c * i) + (?N ?r) \<le> 0)" using Ia by (simp add: Let_def split_def)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1745
    also from cn cnz have "\<dots> = (?I (?l (Le a)))" by (simp only: split_int_le_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def ac_simps, arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1746
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1747
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1748
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1749
  case (7 a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1750
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1751
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1752
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1753
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1754
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1755
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1756
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1757
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1758
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1759
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1760
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1761
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Gt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1762
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1763
    have "?I (Gt a) = (real_of_int (?c * i) + (?N ?r) > 0)" using Ia by (simp add: Let_def split_def)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  1764
    also have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1765
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1766
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1767
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Gt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1768
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1769
    have "?I (Gt a) = (real_of_int (?c * i) + (?N ?r) > 0)" using Ia by (simp add: Let_def split_def)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1770
    also from cn cnz have "\<dots> = (?I (?l (Gt a)))" by (simp only: split_int_gt_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def ac_simps, arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1771
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1772
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1773
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1774
  case (8 a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1775
   let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1776
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1777
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1778
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1779
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1780
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1781
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1782
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1783
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1784
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1785
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1786
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Ge a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1787
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1788
    have "?I (Ge a) = (real_of_int (?c * i) + (?N ?r) \<ge> 0)" using Ia by (simp add: Let_def split_def)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  1789
    also have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia cp cnz Let_def split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1790
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1791
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1792
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Ge a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1793
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1794
    have "?I (Ge a) = (real_of_int (?c * i) + (?N ?r) \<ge> 0)" using Ia by (simp add: Let_def split_def)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1795
    also from cn cnz have "\<dots> = (?I (?l (Ge a)))" by (simp only: split_int_ge_real'[where a="?c*i" and b="?N ?r"]) (simp add: Ia Let_def split_def ac_simps, arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1796
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1797
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1798
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1799
  case (9 a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1800
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1801
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1802
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1803
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1804
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1805
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1806
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1807
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1808
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1809
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1810
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1811
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Eq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1812
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1813
    have "?I (Eq a) = (real_of_int (?c * i) + (?N ?r) = 0)" using Ia by (simp add: Let_def split_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1814
    also have "\<dots> = (?I (?l (Eq a)))" using cp cnz  by (simp only: split_int_eq_real'[where a="?c*i" and b="?N ?r"]) (simp add: Let_def split_def Ia of_int_mult[symmetric] del: of_int_mult)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1815
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1816
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1817
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (Eq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1818
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1819
    have "?I (Eq a) = (real_of_int (?c * i) + (?N ?r) = 0)" using Ia by (simp add: Let_def split_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1820
    also from cn cnz have "\<dots> = (?I (?l (Eq a)))" by (simp only: split_int_eq_real'[where a="?c*i" and b="?N ?r"]) (simp add: Let_def split_def Ia of_int_mult[symmetric] del: of_int_mult,arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1821
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1822
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1823
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1824
  case (10 a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1825
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1826
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1827
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1828
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1829
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1830
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1831
  have "?c = 0 \<or> (?c >0 \<and> ?c\<noteq>0) \<or> (?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1832
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1833
  {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1834
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1835
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1836
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (NEq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1837
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1838
    have "?I (NEq a) = (real_of_int (?c * i) + (?N ?r) \<noteq> 0)" using Ia by (simp add: Let_def split_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1839
    also have "\<dots> = (?I (?l (NEq a)))" using cp cnz  by (simp only: split_int_eq_real'[where a="?c*i" and b="?N ?r"]) (simp add: Let_def split_def Ia of_int_mult[symmetric] del: of_int_mult)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1840
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1841
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1842
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" hence l: "?L (?l (NEq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1843
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1844
    have "?I (NEq a) = (real_of_int (?c * i) + (?N ?r) \<noteq> 0)" using Ia by (simp add: Let_def split_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1845
    also from cn cnz have "\<dots> = (?I (?l (NEq a)))" by (simp only: split_int_eq_real'[where a="?c*i" and b="?N ?r"]) (simp add: Let_def split_def Ia of_int_mult[symmetric] del: of_int_mult,arith)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1846
    finally have ?case using l by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1847
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1848
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1849
  case (11 j a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1850
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1851
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1852
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1853
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1854
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1855
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1856
  have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0 \<and> ?c\<noteq>0) \<or> (j\<noteq> 0 \<and> ?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1857
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1858
  { assume j: "j=0" hence z: "zlfm (Dvd j a) = (zlfm (Eq a))" by (simp add: Let_def)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1859
    hence ?case using 11 j by (simp del: zlfm.simps add: rdvd_left_0_eq)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1860
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1861
  {assume "?c=0" and "j\<noteq>0" hence ?case
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1862
      using zsplit0_I[OF spl, where x="i" and bs="bs"] rdvd_abs1[where d="j"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1863
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1864
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1865
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1866
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1867
    have "?I (Dvd j a) = (real_of_int j rdvd (real_of_int (?c * i) + (?N ?r)))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1868
      using Ia by (simp add: Let_def split_def)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1869
    also have "\<dots> = (real_of_int \<bar>j\<bar> rdvd real_of_int (?c*i) + (?N ?r))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1870
      by (simp only: rdvd_abs1[where d="j" and t="real_of_int (?c*i) + ?N ?r", symmetric]) simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1871
    also have "\<dots> = (\<bar>j\<bar> dvd \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> \<and>
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1872
       (real_of_int \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> = (real_of_int (?c*i) + (?N ?r))))"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1873
      by(simp only: int_rdvd_real[where i="\<bar>j\<bar>" and x="real_of_int (?c*i) + (?N ?r)"]) (simp only: ac_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1874
    also have "\<dots> = (?I (?l (Dvd j a)))" using cp cnz jnz
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1875
      by (simp add: Let_def split_def int_rdvd_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1876
        del: of_int_mult) (auto simp add: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1877
    finally have ?case using l jnz  by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1878
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1879
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1880
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1881
    have "?I (Dvd j a) = (real_of_int j rdvd (real_of_int (?c * i) + (?N ?r)))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1882
      using Ia by (simp add: Let_def split_def)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1883
    also have "\<dots> = (real_of_int \<bar>j\<bar> rdvd real_of_int (?c*i) + (?N ?r))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1884
      by (simp only: rdvd_abs1[where d="j" and t="real_of_int (?c*i) + ?N ?r", symmetric]) simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1885
    also have "\<dots> = (\<bar>j\<bar> dvd \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> \<and>
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1886
       (real_of_int \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> = (real_of_int (?c*i) + (?N ?r))))"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1887
      by(simp only: int_rdvd_real[where i="\<bar>j\<bar>" and x="real_of_int (?c*i) + (?N ?r)"]) (simp only: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1888
    also have "\<dots> = (?I (?l (Dvd j a)))" using cn cnz jnz
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1889
      using rdvd_minus [where d="\<bar>j\<bar>" and t="real_of_int (?c*i + \<lfloor>?N ?r\<rfloor>)", simplified, symmetric]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1890
      by (simp add: Let_def split_def int_rdvd_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1891
        del: of_int_mult) (auto simp add: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1892
    finally have ?case using l jnz by blast }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1893
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1894
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1895
  case (12 j a)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1896
  let ?c = "fst (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1897
  let ?r = "snd (zsplit0 a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1898
  have spl: "zsplit0 a = (?c,?r)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1899
  from zsplit0_I[OF spl, where x="i" and bs="bs"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1900
  have Ia:"Inum (real_of_int i # bs) a = Inum (real_of_int i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1901
  let ?N = "\<lambda> t. Inum (real_of_int i#bs) t"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1902
  have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0 \<and> ?c\<noteq>0) \<or> (j\<noteq> 0 \<and> ?c<0 \<and> ?c\<noteq>0)" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1903
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1904
  {assume j: "j=0" hence z: "zlfm (NDvd j a) = (zlfm (NEq a))" by (simp add: Let_def)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  1905
    hence ?case using 12 j by (simp del: zlfm.simps add: rdvd_left_0_eq)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1906
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1907
  {assume "?c=0" and "j\<noteq>0" hence ?case
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1908
      using zsplit0_I[OF spl, where x="i" and bs="bs"] rdvd_abs1[where d="j"]
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  1909
      by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1910
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1911
  {assume cp: "?c > 0" and cnz: "?c\<noteq>0" and jnz: "j\<noteq>0" hence l: "?L (?l (NDvd j a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1912
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1913
    have "?I (NDvd j a) = (\<not> (real_of_int j rdvd (real_of_int (?c * i) + (?N ?r))))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1914
      using Ia by (simp add: Let_def split_def)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1915
    also have "\<dots> = (\<not> (real_of_int \<bar>j\<bar> rdvd real_of_int (?c*i) + (?N ?r)))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1916
      by (simp only: rdvd_abs1[where d="j" and t="real_of_int (?c*i) + ?N ?r", symmetric]) simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1917
    also have "\<dots> = (\<not> (\<bar>j\<bar> dvd \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> \<and>
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1918
       (real_of_int \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> = (real_of_int (?c*i) + (?N ?r)))))"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1919
      by(simp only: int_rdvd_real[where i="\<bar>j\<bar>" and x="real_of_int (?c*i) + (?N ?r)"]) (simp only: ac_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1920
    also have "\<dots> = (?I (?l (NDvd j a)))" using cp cnz jnz
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1921
      by (simp add: Let_def split_def int_rdvd_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1922
        del: of_int_mult) (auto simp add: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1923
    finally have ?case using l jnz  by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1924
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1925
  {assume cn: "?c < 0" and cnz: "?c\<noteq>0" and jnz: "j\<noteq>0" hence l: "?L (?l (NDvd j a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1926
      by (simp add: nb Let_def split_def isint_Floor isint_neg)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1927
    have "?I (NDvd j a) = (\<not> (real_of_int j rdvd (real_of_int (?c * i) + (?N ?r))))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1928
      using Ia by (simp add: Let_def split_def)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1929
    also have "\<dots> = (\<not> (real_of_int \<bar>j\<bar> rdvd real_of_int (?c*i) + (?N ?r)))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1930
      by (simp only: rdvd_abs1[where d="j" and t="real_of_int (?c*i) + ?N ?r", symmetric]) simp
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1931
    also have "\<dots> = (\<not> (\<bar>j\<bar> dvd \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> \<and>
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  1932
       (real_of_int \<lfloor>(?N ?r) + real_of_int (?c*i)\<rfloor> = (real_of_int (?c*i) + (?N ?r)))))"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1933
      by(simp only: int_rdvd_real[where i="\<bar>j\<bar>" and x="real_of_int (?c*i) + (?N ?r)"]) (simp only: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1934
    also have "\<dots> = (?I (?l (NDvd j a)))" using cn cnz jnz
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1935
      using rdvd_minus [where d="\<bar>j\<bar>" and t="real_of_int (?c*i + \<lfloor>?N ?r\<rfloor>)", simplified, symmetric]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1936
      by (simp add: Let_def split_def int_rdvd_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1937
        del: of_int_mult) (auto simp add: ac_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1938
    finally have ?case using l jnz by blast }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1939
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1940
qed auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1941
61586
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1942
text\<open>plusinf : Virtual substitution of \<open>+\<infinity>\<close>
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1943
       minusinf: Virtual substitution of \<open>-\<infinity>\<close>
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1944
       \<open>\<delta>\<close> Compute lcm \<open>d| Dvd d  c*x+t \<in> p\<close>
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  1945
       \<open>d_\<delta>\<close> checks if a given l divides all the ds above\<close>
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  1946
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1947
fun minusinf:: "fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1948
  "minusinf (And p q) = conj (minusinf p) (minusinf q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1949
| "minusinf (Or p q) = disj (minusinf p) (minusinf q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1950
| "minusinf (Eq  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1951
| "minusinf (NEq (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1952
| "minusinf (Lt  (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1953
| "minusinf (Le  (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1954
| "minusinf (Gt  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1955
| "minusinf (Ge  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1956
| "minusinf p = p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1957
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1958
lemma minusinf_qfree: "qfree p \<Longrightarrow> qfree (minusinf p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1959
  by (induct p rule: minusinf.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1960
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1961
fun plusinf:: "fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1962
  "plusinf (And p q) = conj (plusinf p) (plusinf q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1963
| "plusinf (Or p q) = disj (plusinf p) (plusinf q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1964
| "plusinf (Eq  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1965
| "plusinf (NEq (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1966
| "plusinf (Lt  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1967
| "plusinf (Le  (CN 0 c e)) = F"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1968
| "plusinf (Gt  (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1969
| "plusinf (Ge  (CN 0 c e)) = T"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1970
| "plusinf p = p"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1971
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1972
fun \<delta> :: "fm \<Rightarrow> int" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1973
  "\<delta> (And p q) = lcm (\<delta> p) (\<delta> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1974
| "\<delta> (Or p q) = lcm (\<delta> p) (\<delta> q)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1975
| "\<delta> (Dvd i (CN 0 c e)) = i"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1976
| "\<delta> (NDvd i (CN 0 c e)) = i"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1977
| "\<delta> p = 1"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  1978
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1979
fun d_\<delta> :: "fm \<Rightarrow> int \<Rightarrow> bool" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1980
  "d_\<delta> (And p q) = (\<lambda> d. d_\<delta> p d \<and> d_\<delta> q d)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1981
| "d_\<delta> (Or p q) = (\<lambda> d. d_\<delta> p d \<and> d_\<delta> q d)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1982
| "d_\<delta> (Dvd i (CN 0 c e)) = (\<lambda> d. i dvd d)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1983
| "d_\<delta> (NDvd i (CN 0 c e)) = (\<lambda> d. i dvd d)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1984
| "d_\<delta> p = (\<lambda> d. True)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1985
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  1986
lemma delta_mono:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1987
  assumes lin: "iszlfm p bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1988
  and d: "d dvd d'"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1989
  and ad: "d_\<delta> p d"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  1990
  shows "d_\<delta> p d'"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1991
  using lin ad d
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1992
proof(induct p rule: iszlfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1993
  case (9 i c e)  thus ?case using d
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  1994
    by (simp add: dvd_trans[of "i" "d" "d'"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1995
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1996
  case (10 i c e) thus ?case using d
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  1997
    by (simp add: dvd_trans[of "i" "d" "d'"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1998
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  1999
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2000
lemma \<delta> : assumes lin:"iszlfm p bs"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2001
  shows "d_\<delta> p (\<delta> p) \<and> \<delta> p >0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2002
using lin
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2003
proof (induct p rule: iszlfm.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2004
  case (1 p q)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2005
  let ?d = "\<delta> (And p q)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2006
  from 1 lcm_pos_int have dp: "?d >0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2007
  have d1: "\<delta> p dvd \<delta> (And p q)" using 1 by simp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2008
  hence th: "d_\<delta> p ?d"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2009
    using delta_mono 1 by (simp only: iszlfm.simps) blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2010
  have "\<delta> q dvd \<delta> (And p q)" using 1 by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2011
  hence th': "d_\<delta> q ?d" using delta_mono 1 by (simp only: iszlfm.simps) blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2012
  from th th' dp show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2013
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2014
  case (2 p q)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2015
  let ?d = "\<delta> (And p q)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2016
  from 2 lcm_pos_int have dp: "?d >0" by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2017
  have "\<delta> p dvd \<delta> (And p q)" using 2 by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2018
  hence th: "d_\<delta> p ?d" using delta_mono 2 by (simp only: iszlfm.simps) blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2019
  have "\<delta> q dvd \<delta> (And p q)" using 2 by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2020
  hence th': "d_\<delta> q ?d" using delta_mono 2 by (simp only: iszlfm.simps) blast
31730
d74830dc3e4a added lemmas; tuned
nipkow
parents: 31706
diff changeset
  2021
  from th th' dp show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2022
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2023
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2024
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2025
lemma minusinf_inf:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2026
  assumes linp: "iszlfm p (a # bs)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2027
  shows "\<exists> (z::int). \<forall> x < z. Ifm ((real_of_int x)#bs) (minusinf p) = Ifm ((real_of_int x)#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2028
  (is "?P p" is "\<exists> (z::int). \<forall> x < z. ?I x (?M p) = ?I x p")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2029
using linp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2030
proof (induct p rule: minusinf.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2031
  case (1 f g)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2032
  then have "?P f" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2033
  then obtain z1 where z1_def: "\<forall> x < z1. ?I x (?M f) = ?I x f" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2034
  with 1 have "?P g" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2035
  then obtain z2 where z2_def: "\<forall> x < z2. ?I x (?M g) = ?I x g" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2036
  let ?z = "min z1 z2"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2037
  from z1_def z2_def have "\<forall> x < ?z. ?I x (?M (And f g)) = ?I x (And f g)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2038
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2039
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2040
  case (2 f g)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2041
  then have "?P f" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2042
  then obtain z1 where z1_def: "\<forall> x < z1. ?I x (?M f) = ?I x f" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2043
  with 2 have "?P g" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2044
  then obtain z2 where z2_def: "\<forall> x < z2. ?I x (?M g) = ?I x g" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2045
  let ?z = "min z1 z2"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2046
  from z1_def z2_def have "\<forall> x < ?z. ?I x (?M (Or f g)) = ?I x (Or f g)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2047
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2048
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2049
  case (3 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2050
  then have "c > 0" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2051
  hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2052
  from 3 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2053
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2054
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (Eq (CN 0 c e))) = ?I x (Eq (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2055
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2056
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2057
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2058
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2059
    with rcpos  have "(real_of_int c)*(real_of_int  x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2060
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2061
    hence "real_of_int c * real_of_int x + Inum (y # bs) e \<noteq> 0"using rcpos  by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2062
    thus "real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<noteq> 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2063
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"]  by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2064
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2065
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2066
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2067
  case (4 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2068
  then have "c > 0" by simp hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2069
  from 4 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2070
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2071
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (NEq (CN 0 c e))) = ?I x (NEq (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2072
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2073
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2074
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2075
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2076
    with rcpos  have "(real_of_int c)*(real_of_int x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2077
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2078
    hence "real_of_int c * real_of_int x + Inum (y # bs) e \<noteq> 0"using rcpos  by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2079
    thus "real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<noteq> 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2080
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"]  by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2081
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2082
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2083
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2084
  case (5 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2085
  then have "c > 0" by simp hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2086
  from 5 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2087
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2088
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (Lt (CN 0 c e))) = ?I x (Lt (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2089
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2090
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2091
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2092
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2093
    with rcpos  have "(real_of_int c)*(real_of_int x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2094
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2095
    thus "real_of_int c * real_of_int x + Inum (real_of_int x # bs) e < 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2096
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"] rcpos by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2097
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2098
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2099
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2100
  case (6 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2101
  then have "c > 0" by simp hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2102
  from 6 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2103
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2104
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (Le (CN 0 c e))) = ?I x (Le (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2105
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2106
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2107
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2108
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2109
    with rcpos  have "(real_of_int c)*(real_of_int x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2110
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2111
    thus "real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<le> 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2112
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"] rcpos by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2113
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2114
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2115
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2116
  case (7 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2117
  then have "c > 0" by simp hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2118
  from 7 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2119
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2120
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (Gt (CN 0 c e))) = ?I x (Gt (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2121
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2122
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2123
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2124
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2125
    with rcpos  have "(real_of_int c)*(real_of_int x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2126
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2127
    thus "\<not> (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e>0)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2128
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"] rcpos by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2129
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2130
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2131
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2132
  case (8 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2133
  then have "c > 0" by simp hence rcpos: "real_of_int c > 0" by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2134
  from 8 have nbe: "numbound0 e" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  2135
  fix y
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2136
  have "\<forall> x < \<lfloor>- (Inum (y#bs) e) / (real_of_int c)\<rfloor>. ?I x (?M (Ge (CN 0 c e))) = ?I x (Ge (CN 0 c e))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2137
  proof (simp add: less_floor_iff , rule allI, rule impI)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2138
    fix x :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2139
    assume A: "real_of_int x + 1 \<le> - (Inum (y # bs) e / real_of_int c)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2140
    hence th1:"real_of_int x < - (Inum (y # bs) e / real_of_int c)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2141
    with rcpos  have "(real_of_int c)*(real_of_int x) < (real_of_int c)*(- (Inum (y # bs) e / real_of_int c))"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36531
diff changeset
  2142
      by (simp only: mult_strict_left_mono [OF th1 rcpos])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2143
    thus "\<not> real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<ge> 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2144
      using numbound0_I[OF nbe, where b="y" and bs="bs" and b'="real_of_int x"] rcpos by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2145
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2146
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2147
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2148
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2149
lemma minusinf_repeats:
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2150
  assumes d: "d_\<delta> p d" and linp: "iszlfm p (a # bs)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2151
  shows "Ifm ((real_of_int(x - k*d))#bs) (minusinf p) = Ifm (real_of_int x #bs) (minusinf p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2152
using linp d
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2153
proof(induct p rule: iszlfm.induct)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2154
  case (9 i c e) hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2155
    hence "\<exists> k. d=i*k" by (simp add: dvd_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2156
    then obtain "di" where di_def: "d=i*di" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2157
    show ?case
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2158
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="real_of_int x - real_of_int k * real_of_int d" and b'="real_of_int x"] right_diff_distrib, rule iffI)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2159
      assume
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2160
        "real_of_int i rdvd real_of_int c * real_of_int x - real_of_int c * (real_of_int k * real_of_int d) + Inum (real_of_int x # bs) e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2161
      (is "?ri rdvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri rdvd ?rt")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2162
      hence "\<exists> (l::int). ?rt = ?ri * (real_of_int l)" by (simp add: rdvd_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2163
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri*(real_of_int l)+?rc*(?rk * (real_of_int i) * (real_of_int di))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2164
        by (simp add: algebra_simps di_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2165
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri*(real_of_int (l + c*k*di))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2166
        by (simp add: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2167
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri* (real_of_int l)" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2168
      thus "real_of_int i rdvd real_of_int c * real_of_int x + Inum (real_of_int x # bs) e" using rdvd_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2169
    next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2170
      assume
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2171
        "real_of_int i rdvd real_of_int c * real_of_int x + Inum (real_of_int x # bs) e" (is "?ri rdvd ?rc*?rx+?e")
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2172
      hence "\<exists> (l::int). ?rc*?rx+?e = ?ri * (real_of_int l)" by (simp add: rdvd_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2173
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l) - real_of_int c * (real_of_int k * real_of_int d)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2174
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l) - real_of_int c * (real_of_int k * real_of_int i * real_of_int di)" by (simp add: di_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2175
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int (l - c*k*di))" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2176
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2177
        by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2178
      thus "real_of_int i rdvd real_of_int c * real_of_int x - real_of_int c * (real_of_int k * real_of_int d) + Inum (real_of_int x # bs) e" using rdvd_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2179
    qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2180
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2181
  case (10 i c e) hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2182
    hence "\<exists> k. d=i*k" by (simp add: dvd_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2183
    then obtain "di" where di_def: "d=i*di" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2184
    show ?case
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2185
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="real_of_int x - real_of_int k * real_of_int d" and b'="real_of_int x"] right_diff_distrib, rule iffI)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2186
      assume
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2187
        "real_of_int i rdvd real_of_int c * real_of_int x - real_of_int c * (real_of_int k * real_of_int d) + Inum (real_of_int x # bs) e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2188
      (is "?ri rdvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri rdvd ?rt")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2189
      hence "\<exists> (l::int). ?rt = ?ri * (real_of_int l)" by (simp add: rdvd_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2190
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri*(real_of_int l)+?rc*(?rk * (real_of_int i) * (real_of_int di))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2191
        by (simp add: algebra_simps di_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2192
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri*(real_of_int (l + c*k*di))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2193
        by (simp add: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2194
      hence "\<exists> (l::int). ?rc*?rx+ ?I x e = ?ri* (real_of_int l)" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2195
      thus "real_of_int i rdvd real_of_int c * real_of_int x + Inum (real_of_int x # bs) e" using rdvd_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2196
    next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2197
      assume
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2198
        "real_of_int i rdvd real_of_int c * real_of_int x + Inum (real_of_int x # bs) e" (is "?ri rdvd ?rc*?rx+?e")
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2199
      hence "\<exists> (l::int). ?rc*?rx+?e = ?ri * (real_of_int l)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2200
        by (simp add: rdvd_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2201
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l) - real_of_int c * (real_of_int k * real_of_int d)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2202
        by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2203
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l) - real_of_int c * (real_of_int k * real_of_int i * real_of_int di)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2204
        by (simp add: di_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2205
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int (l - c*k*di))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2206
        by (simp add: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2207
      hence "\<exists> (l::int). ?rc*?rx - real_of_int c * (real_of_int k * real_of_int d) +?e = ?ri * (real_of_int l)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2208
        by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2209
      thus "real_of_int i rdvd real_of_int c * real_of_int x - real_of_int c * (real_of_int k * real_of_int d) + Inum (real_of_int x # bs) e"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2210
        using rdvd_def by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2211
    qed
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2212
qed (auto simp add: numbound0_I[where bs="bs" and b="real_of_int(x - k*d)" and b'="real_of_int x"] simp del: of_int_mult of_int_diff)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2213
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2214
lemma minusinf_ex:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2215
  assumes lin: "iszlfm p (real_of_int (a::int) #bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2216
  and exmi: "\<exists> (x::int). Ifm (real_of_int x#bs) (minusinf p)" (is "\<exists> x. ?P1 x")
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2217
  shows "\<exists> (x::int). Ifm (real_of_int x#bs) p" (is "\<exists> x. ?P x")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2218
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2219
  let ?d = "\<delta> p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2220
  from \<delta> [OF lin] have dpos: "?d >0" by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2221
  from \<delta> [OF lin] have alld: "d_\<delta> p ?d" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2222
  from minusinf_repeats[OF alld lin] have th1:"\<forall> x k. ?P1 x = ?P1 (x - (k * ?d))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2223
  from minusinf_inf[OF lin] have th2:"\<exists> z. \<forall> x. x<z \<longrightarrow> (?P x = ?P1 x)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2224
  from minusinfinity [OF dpos th1 th2] exmi show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2225
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2226
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2227
lemma minusinf_bex:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2228
  assumes lin: "iszlfm p (real_of_int (a::int) #bs)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2229
  shows "(\<exists> (x::int). Ifm (real_of_int x#bs) (minusinf p)) =
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2230
         (\<exists> (x::int)\<in> {1..\<delta> p}. Ifm (real_of_int x#bs) (minusinf p))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2231
  (is "(\<exists> x. ?P x) = _")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2232
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2233
  let ?d = "\<delta> p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2234
  from \<delta> [OF lin] have dpos: "?d >0" by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2235
  from \<delta> [OF lin] have alld: "d_\<delta> p ?d" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2236
  from minusinf_repeats[OF alld lin] have th1:"\<forall> x k. ?P x = ?P (x - (k * ?d))" by simp
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2237
  from periodic_finite_ex[OF dpos th1] show ?thesis by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2238
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2239
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2240
lemma dvd1_eq1: "x >0 \<Longrightarrow> (x::int) dvd 1 = (x = 1)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2241
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2242
consts
66123
6e4904863d2a spelling
haftmann
parents: 64246
diff changeset
  2243
  a_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> fm" (* adjusts the coefficients of a formula *)
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2244
  d_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> bool" (* tests if all coeffs c of c divide a given l*)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2245
  \<zeta>  :: "fm \<Rightarrow> int" (* computes the lcm of all coefficients of x*)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2246
  \<beta> :: "fm \<Rightarrow> num list"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2247
  \<alpha> :: "fm \<Rightarrow> num list"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2248
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2249
recdef a_\<beta> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2250
  "a_\<beta> (And p q) = (\<lambda> k. And (a_\<beta> p k) (a_\<beta> q k))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2251
  "a_\<beta> (Or p q) = (\<lambda> k. Or (a_\<beta> p k) (a_\<beta> q k))"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2252
  "a_\<beta> (Eq  (CN 0 c e)) = (\<lambda> k. Eq (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2253
  "a_\<beta> (NEq (CN 0 c e)) = (\<lambda> k. NEq (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2254
  "a_\<beta> (Lt  (CN 0 c e)) = (\<lambda> k. Lt (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2255
  "a_\<beta> (Le  (CN 0 c e)) = (\<lambda> k. Le (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2256
  "a_\<beta> (Gt  (CN 0 c e)) = (\<lambda> k. Gt (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2257
  "a_\<beta> (Ge  (CN 0 c e)) = (\<lambda> k. Ge (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2258
  "a_\<beta> (Dvd i (CN 0 c e)) =(\<lambda> k. Dvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2259
  "a_\<beta> (NDvd i (CN 0 c e))=(\<lambda> k. NDvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2260
  "a_\<beta> p = (\<lambda> k. p)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2261
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2262
recdef d_\<beta> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2263
  "d_\<beta> (And p q) = (\<lambda> k. (d_\<beta> p k) \<and> (d_\<beta> q k))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2264
  "d_\<beta> (Or p q) = (\<lambda> k. (d_\<beta> p k) \<and> (d_\<beta> q k))"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2265
  "d_\<beta> (Eq  (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2266
  "d_\<beta> (NEq (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2267
  "d_\<beta> (Lt  (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2268
  "d_\<beta> (Le  (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2269
  "d_\<beta> (Gt  (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2270
  "d_\<beta> (Ge  (CN 0 c e)) = (\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2271
  "d_\<beta> (Dvd i (CN 0 c e)) =(\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2272
  "d_\<beta> (NDvd i (CN 0 c e))=(\<lambda> k. c dvd k)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2273
  "d_\<beta> p = (\<lambda> k. True)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2274
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2275
recdef \<zeta> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2276
  "\<zeta> (And p q) = lcm (\<zeta> p) (\<zeta> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2277
  "\<zeta> (Or p q) = lcm (\<zeta> p) (\<zeta> q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2278
  "\<zeta> (Eq  (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2279
  "\<zeta> (NEq (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2280
  "\<zeta> (Lt  (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2281
  "\<zeta> (Le  (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2282
  "\<zeta> (Gt  (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2283
  "\<zeta> (Ge  (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2284
  "\<zeta> (Dvd i (CN 0 c e)) = c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2285
  "\<zeta> (NDvd i (CN 0 c e))= c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2286
  "\<zeta> p = 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2287
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2288
recdef \<beta> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2289
  "\<beta> (And p q) = (\<beta> p @ \<beta> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2290
  "\<beta> (Or p q) = (\<beta> p @ \<beta> q)"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2291
  "\<beta> (Eq  (CN 0 c e)) = [Sub (C (- 1)) e]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2292
  "\<beta> (NEq (CN 0 c e)) = [Neg e]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2293
  "\<beta> (Lt  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2294
  "\<beta> (Le  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2295
  "\<beta> (Gt  (CN 0 c e)) = [Neg e]"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2296
  "\<beta> (Ge  (CN 0 c e)) = [Sub (C (- 1)) e]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2297
  "\<beta> p = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2298
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2299
recdef \<alpha> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2300
  "\<alpha> (And p q) = (\<alpha> p @ \<alpha> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2301
  "\<alpha> (Or p q) = (\<alpha> p @ \<alpha> q)"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2302
  "\<alpha> (Eq  (CN 0 c e)) = [Add (C (- 1)) e]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2303
  "\<alpha> (NEq (CN 0 c e)) = [e]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2304
  "\<alpha> (Lt  (CN 0 c e)) = [e]"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2305
  "\<alpha> (Le  (CN 0 c e)) = [Add (C (- 1)) e]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2306
  "\<alpha> (Gt  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2307
  "\<alpha> (Ge  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2308
  "\<alpha> p = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2309
consts mirror :: "fm \<Rightarrow> fm"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2310
recdef mirror "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2311
  "mirror (And p q) = And (mirror p) (mirror q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2312
  "mirror (Or p q) = Or (mirror p) (mirror q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2313
  "mirror (Eq  (CN 0 c e)) = Eq (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2314
  "mirror (NEq (CN 0 c e)) = NEq (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2315
  "mirror (Lt  (CN 0 c e)) = Gt (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2316
  "mirror (Le  (CN 0 c e)) = Ge (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2317
  "mirror (Gt  (CN 0 c e)) = Lt (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2318
  "mirror (Ge  (CN 0 c e)) = Le (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2319
  "mirror (Dvd i (CN 0 c e)) = Dvd i (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2320
  "mirror (NDvd i (CN 0 c e)) = NDvd i (CN 0 c (Neg e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2321
  "mirror p = p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2322
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2323
lemma mirror_\<alpha>_\<beta>:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2324
  assumes lp: "iszlfm p (a#bs)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2325
  shows "(Inum (real_of_int (i::int)#bs)) ` set (\<alpha> p) = (Inum (real_of_int i#bs)) ` set (\<beta> (mirror p))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2326
  using lp by (induct p rule: mirror.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2327
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2328
lemma mirror:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2329
  assumes lp: "iszlfm p (a#bs)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2330
  shows "Ifm (real_of_int (x::int)#bs) (mirror p) = Ifm (real_of_int (- x)#bs) p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2331
  using lp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2332
proof(induct p rule: iszlfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2333
  case (9 j c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2334
  have th: "(real_of_int j rdvd real_of_int c * real_of_int x - Inum (real_of_int x # bs) e) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2335
       (real_of_int j rdvd - (real_of_int c * real_of_int x - Inum (real_of_int x # bs) e))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2336
    by (simp only: rdvd_minus[symmetric])
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2337
  from 9 th show ?case
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  2338
    by (simp add: algebra_simps
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2339
      numbound0_I[where bs="bs" and b'="real_of_int x" and b="- real_of_int x"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2340
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2341
  case (10 j c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2342
  have th: "(real_of_int j rdvd real_of_int c * real_of_int x - Inum (real_of_int x # bs) e) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2343
       (real_of_int j rdvd - (real_of_int c * real_of_int x - Inum (real_of_int x # bs) e))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2344
    by (simp only: rdvd_minus[symmetric])
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2345
  from 10 th show  ?case
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  2346
    by (simp add: algebra_simps
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2347
      numbound0_I[where bs="bs" and b'="real_of_int x" and b="- real_of_int x"])
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2348
qed (auto simp add: numbound0_I[where bs="bs" and b="real_of_int x" and b'="- real_of_int x"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2349
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2350
lemma mirror_l: "iszlfm p (a#bs) \<Longrightarrow> iszlfm (mirror p) (a#bs)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2351
  by (induct p rule: mirror.induct) (auto simp add: isint_neg)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2352
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2353
lemma mirror_d_\<beta>: "iszlfm p (a#bs) \<and> d_\<beta> p 1
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2354
  \<Longrightarrow> iszlfm (mirror p) (a#bs) \<and> d_\<beta> (mirror p) 1"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2355
  by (induct p rule: mirror.induct) (auto simp add: isint_neg)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2356
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2357
lemma mirror_\<delta>: "iszlfm p (a#bs) \<Longrightarrow> \<delta> (mirror p) = \<delta> p"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  2358
  by (induct p rule: mirror.induct) auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2359
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2360
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2361
lemma mirror_ex:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2362
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2363
  shows "(\<exists> (x::int). Ifm (real_of_int x#bs) (mirror p)) = (\<exists> (x::int). Ifm (real_of_int x#bs) p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2364
  (is "(\<exists> x. ?I x ?mp) = (\<exists> x. ?I x p)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2365
proof(auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2366
  fix x assume "?I x ?mp" hence "?I (- x) p" using mirror[OF lp] by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2367
  thus "\<exists> x. ?I x p" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2368
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2369
  fix x assume "?I x p" hence "?I (- x) ?mp"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2370
    using mirror[OF lp, where x="- x", symmetric] by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2371
  thus "\<exists> x. ?I x ?mp" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2372
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2373
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2374
lemma \<beta>_numbound0: assumes lp: "iszlfm p bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2375
  shows "\<forall> b\<in> set (\<beta> p). numbound0 b"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2376
  using lp by (induct p rule: \<beta>.induct,auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2377
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2378
lemma d_\<beta>_mono:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2379
  assumes linp: "iszlfm p (a #bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2380
  and dr: "d_\<beta> p l"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2381
  and d: "l dvd l'"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2382
  shows "d_\<beta> p l'"
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2383
using dr linp dvd_trans[of _ "l" "l'", simplified d]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2384
by (induct p rule: iszlfm.induct) simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2385
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2386
lemma \<alpha>_l: assumes lp: "iszlfm p (a#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2387
  shows "\<forall> b\<in> set (\<alpha> p). numbound0 b \<and> isint b (a#bs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2388
using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2389
by(induct p rule: \<alpha>.induct, auto simp add: isint_add isint_c)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2390
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2391
lemma \<zeta>:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2392
  assumes linp: "iszlfm p (a #bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2393
  shows "\<zeta> p > 0 \<and> d_\<beta> p (\<zeta> p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2394
using linp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2395
proof(induct p rule: iszlfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2396
  case (1 p q)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2397
  then  have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2398
  from 1 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2399
  from 1 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2400
    d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
  2401
    dl1 dl2 show ?case by (auto simp add: lcm_pos_int)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2402
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2403
  case (2 p q)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2404
  then have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2405
  from 2 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2406
  from 2 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2407
    d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
  2408
    dl1 dl2 show ?case by (auto simp add: lcm_pos_int)
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31730
diff changeset
  2409
qed (auto simp add: lcm_pos_int)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2410
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2411
lemma a_\<beta>: assumes linp: "iszlfm p (a #bs)" and d: "d_\<beta> p l" and lp: "l > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2412
  shows "iszlfm (a_\<beta> p l) (a #bs) \<and> d_\<beta> (a_\<beta> p l) 1 \<and> (Ifm (real_of_int (l * x) #bs) (a_\<beta> p l) = Ifm ((real_of_int x)#bs) p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2413
using linp d
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2414
proof (induct p rule: iszlfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2415
  case (5 c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2416
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2417
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2418
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2419
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2420
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2421
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2422
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2423
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2424
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2425
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e < (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2426
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e < 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2427
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2428
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) < (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2429
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e < 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2430
    using mult_less_0_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2431
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"] be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2432
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2433
  case (6 c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2434
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2435
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2436
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2437
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2438
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2439
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2440
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2441
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2442
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2443
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<le> (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2444
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<le> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2445
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2446
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) \<le> (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2447
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<le> 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2448
    using mult_le_0_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2449
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"]  be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2450
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2451
  case (7 c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2452
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2453
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2454
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2455
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2456
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2457
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2458
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2459
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2460
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2461
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e > (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2462
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e > 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2463
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2464
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) > (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2465
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e > 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2466
    using zero_less_mult_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2467
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"]  be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2468
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2469
  case (8 c e) hence cp: "c>0" and be: "numbound0 e"  and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2470
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2471
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2472
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2473
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2474
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2475
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2476
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2477
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2478
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2479
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<ge> (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2480
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<ge> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2481
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2482
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) \<ge> (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2483
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<ge> 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2484
    using zero_le_mult_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2485
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"]  be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2486
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2487
  case (3 c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2488
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2489
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2490
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2491
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2492
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2493
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2494
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2495
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2496
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2497
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2498
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2499
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2500
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) = (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2501
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e = 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2502
    using mult_eq_0_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2503
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"]  be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2504
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2505
  case (4 c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2506
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2507
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2508
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2509
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2510
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2511
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2512
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2513
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2514
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2515
    hence "(real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<noteq> (0::real)) =
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2516
          (real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e \<noteq> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2517
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2518
    also have "\<dots> = (real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e) \<noteq> (real_of_int (l div c)) * 0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2519
    also have "\<dots> = (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e \<noteq> 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2520
    using zero_le_mult_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2521
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"]  be  isint_Mul[OF ei] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2522
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2523
  case (9 j c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and jp: "j > 0" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2524
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2525
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2526
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2527
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2528
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2529
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2530
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2531
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2532
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2533
    hence "(\<exists> (k::int). real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = (real_of_int (l div c) * real_of_int j) * real_of_int k) = (\<exists> (k::int). real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = (real_of_int (l div c) * real_of_int j) * real_of_int k)"  by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2534
    also have "\<dots> = (\<exists> (k::int). real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k) = real_of_int (l div c)*0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2535
    also fix k have "\<dots> = (\<exists> (k::int). real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k = 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2536
    using zero_le_mult_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2537
  also have "\<dots> = (\<exists> (k::int). real_of_int c * real_of_int x + Inum (real_of_int x # bs) e = real_of_int j * real_of_int k)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2538
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"] rdvd_def  be  isint_Mul[OF ei] mult_strict_mono[OF ldcp jp ldcp ] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2539
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2540
  case (10 j c e) hence cp: "c>0" and be: "numbound0 e" and ei:"isint e (a#bs)" and jp: "j > 0" and d': "c dvd l" by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2541
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2542
    from cp have cnz: "c \<noteq> 0" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2543
    have "c div c\<le> l div c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2544
      by (simp add: zdiv_mono1[OF clel cp])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2545
    then have ldcp:"0 < l div c"
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  2546
      by (simp add: div_self[OF cnz])
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29823
diff changeset
  2547
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64240
diff changeset
  2548
    hence cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2549
      by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2550
    hence "(\<exists> (k::int). real_of_int l * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = (real_of_int (l div c) * real_of_int j) * real_of_int k) = (\<exists> (k::int). real_of_int (c * (l div c)) * real_of_int x + real_of_int (l div c) * Inum (real_of_int x # bs) e = (real_of_int (l div c) * real_of_int j) * real_of_int k)"  by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2551
    also have "\<dots> = (\<exists> (k::int). real_of_int (l div c) * (real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k) = real_of_int (l div c)*0)" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2552
    also fix k have "\<dots> = (\<exists> (k::int). real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k = 0)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2553
    using zero_le_mult_iff [where a="real_of_int (l div c)" and b="real_of_int c * real_of_int x + Inum (real_of_int x # bs) e - real_of_int j * real_of_int k"] ldcp by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2554
  also have "\<dots> = (\<exists> (k::int). real_of_int c * real_of_int x + Inum (real_of_int x # bs) e = real_of_int j * real_of_int k)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2555
  finally show ?case using numbound0_I[OF be,where b="real_of_int (l * x)" and b'="real_of_int x" and bs="bs"] rdvd_def  be  isint_Mul[OF ei]  mult_strict_mono[OF ldcp jp ldcp ] by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2556
qed (simp_all add: numbound0_I[where bs="bs" and b="real_of_int (l * x)" and b'="real_of_int x"] isint_Mul del: of_int_mult)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2557
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2558
lemma a_\<beta>_ex: assumes linp: "iszlfm p (a#bs)" and d: "d_\<beta> p l" and lp: "l>0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2559
  shows "(\<exists> x. l dvd x \<and> Ifm (real_of_int x #bs) (a_\<beta> p l)) = (\<exists> (x::int). Ifm (real_of_int x#bs) p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2560
  (is "(\<exists> x. l dvd x \<and> ?P x) = (\<exists> x. ?P' x)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2561
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2562
  have "(\<exists> x. l dvd x \<and> ?P x) = (\<exists> (x::int). ?P (l*x))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2563
    using unity_coeff_ex[where l="l" and P="?P", simplified] by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2564
  also have "\<dots> = (\<exists> (x::int). ?P' x)" using a_\<beta>[OF linp d lp] by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2565
  finally show ?thesis  .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2566
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2567
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2568
lemma \<beta>:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2569
  assumes lp: "iszlfm p (a#bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2570
  and u: "d_\<beta> p 1"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2571
  and d: "d_\<delta> p d"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2572
  and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2573
  and nob: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> (Inum (a#bs)) ` set(\<beta> p). real_of_int x = b + real_of_int j)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2574
  and p: "Ifm (real_of_int x#bs) p" (is "?P x")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2575
  shows "?P (x - d)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2576
using lp u d dp nob p
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2577
proof(induct p rule: iszlfm.induct)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2578
  case (5 c e) hence c1: "c=1" and  bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2579
  with dp p c1 numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"] 5
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2580
  show ?case by (simp del: of_int_minus)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2581
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2582
  case (6 c e)  hence c1: "c=1" and  bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2583
  with dp p c1 numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"] 6
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2584
  show ?case by (simp del: of_int_minus)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2585
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2586
  case (7 c e) hence p: "Ifm (real_of_int x #bs) (Gt (CN 0 c e))" and c1: "c=1"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2587
    and bn:"numbound0 e" and ie1:"isint e (a#bs)" using dvd1_eq1[where x="c"] by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2588
  let ?e = "Inum (real_of_int x # bs) e"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2589
  from ie1 have ie: "real_of_int \<lfloor>?e\<rfloor> = ?e" using isint_iff[where n="e" and bs="a#bs"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2590
      numbound0_I[OF bn,where b="a" and b'="real_of_int x" and bs="bs"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2591
    by (simp add: isint_iff)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2592
    {assume "real_of_int (x-d) +?e > 0" hence ?case using c1
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2593
      numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2594
        by (simp del: of_int_minus)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2595
    moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2596
    {assume H: "\<not> real_of_int (x-d) + ?e > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2597
      let ?v="Neg e"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2598
      have vb: "?v \<in> set (\<beta> (Gt (CN 0 c e)))" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2599
      from 7(5)[simplified simp_thms Inum.simps \<beta>.simps list.set bex_simps numbound0_I[OF bn,where b="a" and b'="real_of_int x" and bs="bs"]]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2600
      have nob: "\<not> (\<exists> j\<in> {1 ..d}. real_of_int x =  - ?e + real_of_int j)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2601
      from H p have "real_of_int x + ?e > 0 \<and> real_of_int x + ?e \<le> real_of_int d" by (simp add: c1)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2602
      hence "real_of_int (x + \<lfloor>?e\<rfloor>) > real_of_int (0::int) \<and> real_of_int (x + \<lfloor>?e\<rfloor>) \<le> real_of_int d"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2603
        using ie by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2604
      hence "x + \<lfloor>?e\<rfloor> \<ge> 1 \<and> x + \<lfloor>?e\<rfloor> \<le> d"  by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2605
      hence "\<exists> (j::int) \<in> {1 .. d}. j = x + \<lfloor>?e\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2606
      hence "\<exists> (j::int) \<in> {1 .. d}. real_of_int x = real_of_int (- \<lfloor>?e\<rfloor> + j)" by force
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2607
      hence "\<exists> (j::int) \<in> {1 .. d}. real_of_int x = - ?e + real_of_int j"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2608
        by (simp add: ie[simplified isint_iff])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2609
      with nob have ?case by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2610
    ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2611
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2612
  case (8 c e) hence p: "Ifm (real_of_int x #bs) (Ge (CN 0 c e))" and c1: "c=1" and bn:"numbound0 e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2613
    and ie1:"isint e (a #bs)" using dvd1_eq1[where x="c"] by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2614
    let ?e = "Inum (real_of_int x # bs) e"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2615
    from ie1 have ie: "real_of_int \<lfloor>?e\<rfloor> = ?e" using numbound0_I[OF bn,where b="real_of_int x" and b'="a" and bs="bs"] isint_iff[where n="e" and bs="(real_of_int x)#bs"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2616
      by (simp add: isint_iff)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2617
    {assume "real_of_int (x-d) +?e \<ge> 0" hence ?case using  c1
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2618
      numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2619
        by (simp del: of_int_minus)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2620
    moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2621
    {assume H: "\<not> real_of_int (x-d) + ?e \<ge> 0"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2622
      let ?v="Sub (C (- 1)) e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2623
      have vb: "?v \<in> set (\<beta> (Ge (CN 0 c e)))" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2624
      from 8(5)[simplified simp_thms Inum.simps \<beta>.simps list.set bex_simps numbound0_I[OF bn,where b="a" and b'="real_of_int x" and bs="bs"]]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2625
      have nob: "\<not> (\<exists> j\<in> {1 ..d}. real_of_int x =  - ?e - 1 + real_of_int j)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2626
      from H p have "real_of_int x + ?e \<ge> 0 \<and> real_of_int x + ?e < real_of_int d" by (simp add: c1)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2627
      hence "real_of_int (x + \<lfloor>?e\<rfloor>) \<ge> real_of_int (0::int) \<and> real_of_int (x + \<lfloor>?e\<rfloor>) < real_of_int d"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2628
        using ie by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2629
      hence "x + \<lfloor>?e\<rfloor> + 1 \<ge> 1 \<and> x + \<lfloor>?e\<rfloor> + 1 \<le> d" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2630
      hence "\<exists> (j::int) \<in> {1 .. d}. j = x + \<lfloor>?e\<rfloor> + 1" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2631
      hence "\<exists> (j::int) \<in> {1 .. d}. x= - \<lfloor>?e\<rfloor> - 1 + j" by (simp add: algebra_simps)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2632
      hence "\<exists> (j::int) \<in> {1 .. d}. real_of_int x= real_of_int (- \<lfloor>?e\<rfloor> - 1 + j)" by presburger
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2633
      hence "\<exists> (j::int) \<in> {1 .. d}. real_of_int x= - ?e - 1 + real_of_int j"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2634
        by (simp add: ie[simplified isint_iff])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2635
      with nob have ?case by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2636
    ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2637
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2638
  case (3 c e) hence p: "Ifm (real_of_int x #bs) (Eq (CN 0 c e))" (is "?p x") and c1: "c=1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2639
    and bn:"numbound0 e" and ie1: "isint e (a #bs)" using dvd1_eq1[where x="c"] by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2640
    let ?e = "Inum (real_of_int x # bs) e"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2641
    let ?v="(Sub (C (- 1)) e)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2642
    have vb: "?v \<in> set (\<beta> (Eq (CN 0 c e)))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2643
    from p have "real_of_int x= - ?e" by (simp add: c1) with 3(5) show ?case using dp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2644
      by simp (erule ballE[where x="1"],
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2645
        simp_all add:algebra_simps numbound0_I[OF bn,where b="real_of_int x"and b'="a"and bs="bs"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2646
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2647
  case (4 c e)hence p: "Ifm (real_of_int x #bs) (NEq (CN 0 c e))" (is "?p x") and c1: "c=1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2648
    and bn:"numbound0 e" and ie1: "isint e (a #bs)" using dvd1_eq1[where x="c"] by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2649
    let ?e = "Inum (real_of_int x # bs) e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2650
    let ?v="Neg e"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2651
    have vb: "?v \<in> set (\<beta> (NEq (CN 0 c e)))" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2652
    {assume "real_of_int x - real_of_int d + Inum ((real_of_int (x -d)) # bs) e \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2653
      hence ?case by (simp add: c1)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2654
    moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2655
    {assume H: "real_of_int x - real_of_int d + Inum ((real_of_int (x -d)) # bs) e = 0"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2656
      hence "real_of_int x = - Inum ((real_of_int (x -d)) # bs) e + real_of_int d" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2657
      hence "real_of_int x = - Inum (a # bs) e + real_of_int d"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2658
        by (simp add: numbound0_I[OF bn,where b="real_of_int x - real_of_int d"and b'="a"and bs="bs"])
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2659
       with 4(5) have ?case using dp by simp}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2660
  ultimately show ?case by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2661
next
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2662
  case (9 j c e) hence p: "Ifm (real_of_int x #bs) (Dvd j (CN 0 c e))" (is "?p x") and c1: "c=1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2663
    and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2664
  let ?e = "Inum (real_of_int x # bs) e"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2665
  from 9 have "isint e (a #bs)"  by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2666
  hence ie: "real_of_int \<lfloor>?e\<rfloor> = ?e" using isint_iff[where n="e" and bs="(real_of_int x)#bs"] numbound0_I[OF bn,where b="real_of_int x" and b'="a" and bs="bs"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2667
    by (simp add: isint_iff)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2668
  from 9 have id: "j dvd d" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2669
  from c1 ie[symmetric] have "?p x = (real_of_int j rdvd real_of_int (x + \<lfloor>?e\<rfloor>))" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2670
  also have "\<dots> = (j dvd x + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2671
    using int_rdvd_real[where i="j" and x="real_of_int (x + \<lfloor>?e\<rfloor>)"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2672
  also have "\<dots> = (j dvd x - d + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2673
    using dvd_period[OF id, where x="x" and c="-1" and t="\<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2674
  also have "\<dots> = (real_of_int j rdvd real_of_int (x - d + \<lfloor>?e\<rfloor>))"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2675
    using int_rdvd_real[where i="j" and x="real_of_int (x - d + \<lfloor>?e\<rfloor>)",symmetric, simplified]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2676
      ie by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2677
  also have "\<dots> = (real_of_int j rdvd real_of_int x - real_of_int d + ?e)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2678
    using ie by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2679
  finally show ?case
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2680
    using numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"] c1 p by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2681
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2682
  case (10 j c e) hence p: "Ifm (real_of_int x #bs) (NDvd j (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2683
  let ?e = "Inum (real_of_int x # bs) e"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2684
  from 10 have "isint e (a#bs)"  by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2685
  hence ie: "real_of_int \<lfloor>?e\<rfloor> = ?e" using numbound0_I[OF bn,where b="real_of_int x" and b'="a" and bs="bs"] isint_iff[where n="e" and bs="(real_of_int x)#bs"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2686
    by (simp add: isint_iff)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2687
  from 10 have id: "j dvd d" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2688
  from c1 ie[symmetric] have "?p x = (\<not> real_of_int j rdvd real_of_int (x + \<lfloor>?e\<rfloor>))" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2689
  also have "\<dots> = (\<not> j dvd x + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2690
    using int_rdvd_real[where i="j" and x="real_of_int (x + \<lfloor>?e\<rfloor>)"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2691
  also have "\<dots> = (\<not> j dvd x - d + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2692
    using dvd_period[OF id, where x="x" and c="-1" and t="\<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2693
  also have "\<dots> = (\<not> real_of_int j rdvd real_of_int (x - d + \<lfloor>?e\<rfloor>))"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2694
    using int_rdvd_real[where i="j" and x="real_of_int (x - d + \<lfloor>?e\<rfloor>)",symmetric, simplified]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2695
      ie by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2696
  also have "\<dots> = (\<not> real_of_int j rdvd real_of_int x - real_of_int d + ?e)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2697
    using ie by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2698
  finally show ?case
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2699
    using numbound0_I[OF bn,where b="real_of_int (x-d)" and b'="real_of_int x" and bs="bs"] c1 p by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2700
qed (auto simp add: numbound0_I[where bs="bs" and b="real_of_int (x - d)" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2701
  simp del: of_int_diff)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2702
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2703
lemma \<beta>':
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2704
  assumes lp: "iszlfm p (a #bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2705
  and u: "d_\<beta> p 1"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2706
  and d: "d_\<delta> p d"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2707
  and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2708
  shows "\<forall> x. \<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> set(\<beta> p). Ifm ((Inum (a#bs) b + real_of_int j) #bs) p) \<longrightarrow> Ifm (real_of_int x#bs) p \<longrightarrow> Ifm (real_of_int (x - d)#bs) p" (is "\<forall> x. ?b \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2709
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2710
  fix x
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2711
  assume nb:"?b" and px: "?P x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2712
  hence nb2: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> (Inum (a#bs)) ` set(\<beta> p). real_of_int x = b + real_of_int j)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2713
    by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2714
  from  \<beta>[OF lp u d dp nb2 px] show "?P (x -d )" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2715
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2716
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2717
lemma \<beta>_int: assumes lp: "iszlfm p bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2718
  shows "\<forall> b\<in> set (\<beta> p). isint b bs"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2719
using lp by (induct p rule: iszlfm.induct) (auto simp add: isint_neg isint_sub)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2720
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2721
lemma cpmi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. x < z --> (P x = P1 x))
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2722
==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2723
==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2724
==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2725
apply(rule iffI)
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2726
prefer 2
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2727
apply(drule minusinfinity)
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2728
apply assumption+
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44121
diff changeset
  2729
apply(fastforce)
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2730
apply clarsimp
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2731
apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x - k*D)")
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2732
apply(frule_tac x = x and z=z in decr_lemma)
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2733
apply(subgoal_tac "P1(x - (\<bar>x - z\<bar> + 1) * D)")
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2734
prefer 2
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2735
apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2736
prefer 2 apply arith
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44121
diff changeset
  2737
 apply fastforce
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2738
apply(drule (1)  periodic_finite_ex)
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2739
apply blast
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2740
apply(blast dest:decr_mult_lemma)
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2741
done
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2742
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2743
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2744
theorem cp_thm:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2745
  assumes lp: "iszlfm p (a #bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2746
  and u: "d_\<beta> p 1"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2747
  and d: "d_\<delta> p d"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2748
  and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2749
  shows "(\<exists> (x::int). Ifm (real_of_int x #bs) p) = (\<exists> j\<in> {1.. d}. Ifm (real_of_int j #bs) (minusinf p) \<or> (\<exists> b \<in> set (\<beta> p). Ifm ((Inum (a#bs) b + real_of_int j) #bs) p))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2750
  (is "(\<exists> (x::int). ?P (real_of_int x)) = (\<exists> j\<in> ?D. ?M j \<or> (\<exists> b\<in> ?B. ?P (?I b + real_of_int j)))")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2751
proof-
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2752
  from minusinf_inf[OF lp]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2753
  have th: "\<exists>(z::int). \<forall>x<z. ?P (real_of_int x) = ?M x" by blast
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2754
  let ?B' = "{\<lfloor>?I b\<rfloor> | b. b\<in> ?B}"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2755
  from \<beta>_int[OF lp] isint_iff[where bs="a # bs"] have B: "\<forall> b\<in> ?B. real_of_int \<lfloor>?I b\<rfloor> = ?I b" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2756
  from B[rule_format]
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2757
  have "(\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (?I b + real_of_int j)) = (\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (real_of_int \<lfloor>?I b\<rfloor> + real_of_int j))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2758
    by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2759
  also have "\<dots> = (\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (real_of_int (\<lfloor>?I b\<rfloor> + j)))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2760
  also have"\<dots> = (\<exists> j \<in> ?D. \<exists> b \<in> ?B'. ?P (real_of_int (b + j)))"  by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2761
  finally have BB':
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2762
    "(\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (?I b + real_of_int j)) = (\<exists> j \<in> ?D. \<exists> b \<in> ?B'. ?P (real_of_int (b + j)))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2763
    by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2764
  hence th2: "\<forall> x. \<not> (\<exists> j \<in> ?D. \<exists> b \<in> ?B'. ?P (real_of_int (b + j))) \<longrightarrow> ?P (real_of_int x) \<longrightarrow> ?P (real_of_int (x - d))" using \<beta>'[OF lp u d dp] by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2765
  from minusinf_repeats[OF d lp]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2766
  have th3: "\<forall> x k. ?M x = ?M (x-k*d)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2767
  from cpmi_eq[OF dp th th2 th3] BB' show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2768
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2769
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2770
    (* Reddy and Loveland *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2771
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2772
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2773
consts
23316
26c978a475de tuned Proof and Document
chaieb
parents: 23264
diff changeset
  2774
  \<rho> :: "fm \<Rightarrow> (num \<times> int) list" (* Compute the Reddy and Loveland Bset*)
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2775
  \<sigma>_\<rho>:: "fm \<Rightarrow> num \<times> int \<Rightarrow> fm" (* Performs the modified substitution of Reddy and Loveland*)
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2776
  \<alpha>_\<rho> :: "fm \<Rightarrow> (num\<times>int) list"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2777
  a_\<rho> :: "fm \<Rightarrow> int \<Rightarrow> fm"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2778
recdef \<rho> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2779
  "\<rho> (And p q) = (\<rho> p @ \<rho> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2780
  "\<rho> (Or p q) = (\<rho> p @ \<rho> q)"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2781
  "\<rho> (Eq  (CN 0 c e)) = [(Sub (C (- 1)) e,c)]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2782
  "\<rho> (NEq (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2783
  "\<rho> (Lt  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2784
  "\<rho> (Le  (CN 0 c e)) = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2785
  "\<rho> (Gt  (CN 0 c e)) = [(Neg e, c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2786
  "\<rho> (Ge  (CN 0 c e)) = [(Sub (C (-1)) e, c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2787
  "\<rho> p = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2788
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2789
recdef \<sigma>_\<rho> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2790
  "\<sigma>_\<rho> (And p q) = (\<lambda> (t,k). And (\<sigma>_\<rho> p (t,k)) (\<sigma>_\<rho> q (t,k)))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2791
  "\<sigma>_\<rho> (Or p q) = (\<lambda> (t,k). Or (\<sigma>_\<rho> p (t,k)) (\<sigma>_\<rho> q (t,k)))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2792
  "\<sigma>_\<rho> (Eq  (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (Eq (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2793
                                            else (Eq (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2794
  "\<sigma>_\<rho> (NEq (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (NEq (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2795
                                            else (NEq (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2796
  "\<sigma>_\<rho> (Lt  (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (Lt (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2797
                                            else (Lt (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2798
  "\<sigma>_\<rho> (Le  (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (Le (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2799
                                            else (Le (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2800
  "\<sigma>_\<rho> (Gt  (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (Gt (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2801
                                            else (Gt (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2802
  "\<sigma>_\<rho> (Ge  (CN 0 c e)) = (\<lambda> (t,k). if k dvd c then (Ge (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2803
                                            else (Ge (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2804
  "\<sigma>_\<rho> (Dvd i (CN 0 c e)) =(\<lambda> (t,k). if k dvd c then (Dvd i (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2805
                                            else (Dvd (i*k) (Add (Mul c t) (Mul k e))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2806
  "\<sigma>_\<rho> (NDvd i (CN 0 c e))=(\<lambda> (t,k). if k dvd c then (NDvd i (Add (Mul (c div k) t) e))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2807
                                            else (NDvd (i*k) (Add (Mul c t) (Mul k e))))"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2808
  "\<sigma>_\<rho> p = (\<lambda> (t,k). p)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2809
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2810
recdef \<alpha>_\<rho> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2811
  "\<alpha>_\<rho> (And p q) = (\<alpha>_\<rho> p @ \<alpha>_\<rho> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2812
  "\<alpha>_\<rho> (Or p q) = (\<alpha>_\<rho> p @ \<alpha>_\<rho> q)"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2813
  "\<alpha>_\<rho> (Eq  (CN 0 c e)) = [(Add (C (- 1)) e,c)]"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2814
  "\<alpha>_\<rho> (NEq (CN 0 c e)) = [(e,c)]"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2815
  "\<alpha>_\<rho> (Lt  (CN 0 c e)) = [(e,c)]"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  2816
  "\<alpha>_\<rho> (Le  (CN 0 c e)) = [(Add (C (- 1)) e,c)]"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2817
  "\<alpha>_\<rho> p = []"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2818
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2819
    (* Simulates normal substituion by modifying the formula see correctness theorem *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2820
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  2821
definition \<sigma> :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm" where
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2822
  "\<sigma> p k t \<equiv> And (Dvd k t) (\<sigma>_\<rho> p (t,k))"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2823
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2824
lemma \<sigma>_\<rho>:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2825
  assumes linp: "iszlfm p (real_of_int (x::int)#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2826
  and kpos: "real_of_int k > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2827
  and tnb: "numbound0 t"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2828
  and tint: "isint t (real_of_int x#bs)"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2829
  and kdt: "k dvd \<lfloor>Inum (b'#bs) t\<rfloor>"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2830
  shows "Ifm (real_of_int x#bs) (\<sigma>_\<rho> p (t,k)) = (Ifm ((real_of_int (\<lfloor>Inum (b'#bs) t\<rfloor> div k))#bs) p)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2831
  (is "?I (real_of_int x) (?s p) = (?I (real_of_int (\<lfloor>?N b' t\<rfloor> div k)) p)" is "_ = (?I ?tk p)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2832
using linp kpos tnb
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  2833
proof(induct p rule: \<sigma>_\<rho>.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2834
  case (3 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2835
  from 3 have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2836
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2837
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2838
    from kdc have ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2839
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2840
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2841
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2842
  { assume *: "\<not> k dvd c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2843
    from kpos have knz': "real_of_int k \<noteq> 0" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2844
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2845
      using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2846
    from assms * have "?I (real_of_int x) (?s (Eq (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k = 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2847
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2848
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2849
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2850
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2851
      also have "\<dots> = (?I ?tk (Eq (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2852
        using nonzero_eq_divide_eq[OF knz',
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2853
            where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2854
          real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2855
          numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  2856
        by (simp add: ti)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2857
      finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2858
    ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2859
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2860
  case (4 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2861
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2862
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2863
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2864
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2865
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2866
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2867
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2868
  { assume *: "\<not> k dvd c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2869
    from kpos have knz': "real_of_int k \<noteq> 0" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2870
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2871
    from assms * have "?I (real_of_int x) (?s (NEq (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k \<noteq> 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2872
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2873
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2874
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2875
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2876
    also have "\<dots> = (?I ?tk (NEq (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2877
      using nonzero_eq_divide_eq[OF knz',
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2878
          where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2879
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2880
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2881
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2882
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2883
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2884
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2885
  case (5 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2886
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2887
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2888
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2889
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2890
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2891
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2892
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2893
  { assume *: "\<not> k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2894
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2895
    from assms * have "?I (real_of_int x) (?s (Lt (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k < 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2896
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2897
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2898
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2899
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2900
    also have "\<dots> = (?I ?tk (Lt (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2901
      using pos_less_divide_eq[OF kpos,
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2902
          where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2903
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2904
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2905
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2906
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2907
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2908
next
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2909
  case (6 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2910
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2911
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2912
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2913
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2914
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2915
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2916
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2917
  { assume *: "\<not> k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2918
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2919
    from assms * have "?I (real_of_int x) (?s (Le (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k \<le> 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2920
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2921
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2922
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2923
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2924
    also have "\<dots> = (?I ?tk (Le (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2925
      using pos_le_divide_eq[OF kpos,
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2926
          where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2927
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2928
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2929
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2930
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2931
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2932
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2933
  case (7 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2934
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2935
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2936
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2937
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2938
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2939
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2940
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2941
  { assume *: "\<not> k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2942
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2943
    from assms * have "?I (real_of_int x) (?s (Gt (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k > 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2944
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2945
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2946
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2947
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2948
    also have "\<dots> = (?I ?tk (Gt (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2949
      using pos_divide_less_eq[OF kpos,
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2950
          where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2951
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2952
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2953
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2954
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2955
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2956
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2957
  case (8 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2958
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2959
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2960
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2961
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2962
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2963
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2964
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2965
  { assume *: "\<not> k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2966
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2967
    from assms * have "?I (real_of_int x) (?s (Ge (CN 0 c e))) = ((real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k \<ge> 0)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2968
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2969
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2970
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2971
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2972
    also have "\<dots> = (?I ?tk (Ge (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2973
      using pos_divide_le_eq[OF kpos,
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2974
          where a="real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e" and b="0", symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2975
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2976
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2977
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2978
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2979
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  2980
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2981
  case (9 i c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2982
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2983
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2984
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2985
    from kdc have ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2986
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2987
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  2988
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2989
  { assume *: "\<not> k dvd c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2990
    from kpos have knz: "k\<noteq>0" by simp hence knz': "real_of_int k \<noteq> 0" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  2991
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2992
    from assms * have "?I (real_of_int x) (?s (Dvd i (CN 0 c e))) = (real_of_int i * real_of_int k rdvd (real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k)"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  2993
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2994
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2995
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2996
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2997
    also have "\<dots> = (?I ?tk (Dvd i (CN 0 c e)))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  2998
      using rdvd_mult[OF knz, where n="i"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  2999
        real_of_int_div[OF kdt] numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3000
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3001
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3002
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3003
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3004
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3005
  case (10 i c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3006
  then have cp: "c > 0" and nb: "numbound0 e" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3007
  { assume kdc: "k dvd c"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3008
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  3009
    from kdc have  ?case using real_of_int_div[OF kdc] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3010
      numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3011
      numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"] by (simp add: ti) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3012
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3013
  { assume *: "\<not> k dvd c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3014
    from kpos have knz: "k\<noteq>0" by simp hence knz': "real_of_int k \<noteq> 0" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3015
    from tint have ti: "real_of_int \<lfloor>?N (real_of_int x) t\<rfloor> = ?N (real_of_int x) t" using isint_def by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3016
    from assms * have "?I (real_of_int x) (?s (NDvd i (CN 0 c e))) = (\<not> (real_of_int i * real_of_int k rdvd (real_of_int c * (?N (real_of_int x) t / real_of_int k) + ?N (real_of_int x) e)* real_of_int k))"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  3017
      using real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3018
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3019
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3020
      by (simp add: ti algebra_simps)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3021
    also have "\<dots> = (?I ?tk (NDvd i (CN 0 c e)))"
46670
e9aa6d151329 removing unnecessary assumptions in RealDef;
bulwahn
parents: 46130
diff changeset
  3022
      using rdvd_mult[OF knz, where n="i"] real_of_int_div[OF kdt]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3023
        numbound0_I[OF tnb, where bs="bs" and b="b'" and b'="real_of_int x"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3024
        numbound0_I[OF nb, where bs="bs" and b="?tk" and b'="real_of_int x"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3025
      by (simp add: ti)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3026
    finally have ?case . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3027
  ultimately show ?case by blast
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3028
qed (simp_all add: bound0_I[where bs="bs" and b="real_of_int (\<lfloor>?N b' t\<rfloor> div k)" and b'="real_of_int x"]
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3029
  numbound0_I[where bs="bs" and b="real_of_int (\<lfloor>?N b' t\<rfloor> div k)" and b'="real_of_int x"])
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3030
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3031
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3032
lemma \<sigma>_\<rho>_nb: assumes lp:"iszlfm p (a#bs)" and nb: "numbound0 t"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3033
  shows "bound0 (\<sigma>_\<rho> p (t,k))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3034
  using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3035
  by (induct p rule: iszlfm.induct, auto simp add: nb)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3036
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3037
lemma \<rho>_l:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3038
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3039
  shows "\<forall> (b,k) \<in> set (\<rho> p). k >0 \<and> numbound0 b \<and> isint b (real_of_int i#bs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3040
using lp by (induct p rule: \<rho>.induct, auto simp add: isint_sub isint_neg)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3041
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3042
lemma \<alpha>_\<rho>_l:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3043
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3044
  shows "\<forall> (b,k) \<in> set (\<alpha>_\<rho> p). k >0 \<and> numbound0 b \<and> isint b (real_of_int i#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3045
using lp isint_add [OF isint_c[where j="- 1"],where bs="real_of_int i#bs"]
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3046
 by (induct p rule: \<alpha>_\<rho>.induct, auto)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3047
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3048
lemma \<rho>: assumes lp: "iszlfm p (real_of_int (i::int) #bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3049
  and pi: "Ifm (real_of_int i#bs) p"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3050
  and d: "d_\<delta> p d"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3051
  and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3052
  and nob: "\<forall>(e,c) \<in> set (\<rho> p). \<forall> j\<in> {1 .. c*d}. real_of_int (c*i) \<noteq> Inum (real_of_int i#bs) e + real_of_int j"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3053
  (is "\<forall>(e,c) \<in> set (\<rho> p). \<forall> j\<in> {1 .. c*d}. _ \<noteq> ?N i e + _")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3054
  shows "Ifm (real_of_int(i - d)#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3055
  using lp pi d nob
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3056
proof(induct p rule: iszlfm.induct)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3057
  case (3 c e) hence cp: "c >0" and nb: "numbound0 e" and ei: "isint e (real_of_int i#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3058
    and pi: "real_of_int (c*i) = - 1 -  ?N i e + real_of_int (1::int)" and nob: "\<forall> j\<in> {1 .. c*d}. real_of_int (c*i) \<noteq> -1 - ?N i e + real_of_int j"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3059
    by simp+
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3060
  from mult_strict_left_mono[OF dp cp]  have one:"1 \<in> {1 .. c*d}" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3061
  from nob[rule_format, where j="1", OF one] pi show ?case by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3062
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3063
  case (4 c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3064
  hence cp: "c >0" and nb: "numbound0 e" and ei: "isint e (real_of_int i#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3065
    and nob: "\<forall> j\<in> {1 .. c*d}. real_of_int (c*i) \<noteq> - ?N i e + real_of_int j"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3066
    by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3067
  {assume "real_of_int (c*i) \<noteq> - ?N i e + real_of_int (c*d)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3068
    with numbound0_I[OF nb, where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"]
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  3069
    have ?case by (simp add: algebra_simps)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3070
  moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3071
  {assume pi: "real_of_int (c*i) = - ?N i e + real_of_int (c*d)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3072
    from mult_strict_left_mono[OF dp cp] have d: "(c*d) \<in> {1 .. c*d}" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3073
    from nob[rule_format, where j="c*d", OF d] pi have ?case by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3074
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3075
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3076
  case (5 c e) hence cp: "c > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3077
  from 5 mult_strict_left_mono[OF dp cp, simplified of_int_less_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3078
    of_int_mult]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3079
  show ?case using 5 dp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3080
    apply (simp add: numbound0_I[where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"]
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56479
diff changeset
  3081
      algebra_simps del: mult_pos_pos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3082
     by (metis add.right_neutral of_int_0_less_iff of_int_mult pos_add_strict)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3083
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3084
  case (6 c e) hence cp: "c > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3085
  from 6 mult_strict_left_mono[OF dp cp, simplified of_int_less_iff[symmetric]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3086
    of_int_mult]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3087
  show ?case using 6 dp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3088
    apply (simp add: numbound0_I[where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"]
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56479
diff changeset
  3089
      algebra_simps del: mult_pos_pos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3090
      using order_trans by fastforce
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3091
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3092
  case (7 c e) hence cp: "c >0" and nb: "numbound0 e" and ei: "isint e (real_of_int i#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3093
    and nob: "\<forall> j\<in> {1 .. c*d}. real_of_int (c*i) \<noteq> - ?N i e + real_of_int j"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3094
    and pi: "real_of_int (c*i) + ?N i e > 0" and cp': "real_of_int c >0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3095
    by simp+
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3096
  let ?fe = "\<lfloor>?N i e\<rfloor>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3097
  from pi cp have th:"(real_of_int i +?N i e / real_of_int c)*real_of_int c > 0" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3098
  from pi ei[simplified isint_iff] have "real_of_int (c*i + ?fe) > real_of_int (0::int)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3099
  hence pi': "c*i + ?fe > 0" by (simp only: of_int_less_iff[symmetric])
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3100
  have "real_of_int (c*i) + ?N i e > real_of_int (c*d) \<or> real_of_int (c*i) + ?N i e \<le> real_of_int (c*d)" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3101
  moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3102
  {assume "real_of_int (c*i) + ?N i e > real_of_int (c*d)" hence ?case
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3103
      by (simp add: algebra_simps
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3104
        numbound0_I[OF nb,where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"])}
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3105
  moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3106
  {assume H:"real_of_int (c*i) + ?N i e \<le> real_of_int (c*d)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3107
    with ei[simplified isint_iff] have "real_of_int (c*i + ?fe) \<le> real_of_int (c*d)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3108
    hence pid: "c*i + ?fe \<le> c*d" by (simp only: of_int_le_iff)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3109
    with pi' have "\<exists> j1\<in> {1 .. c*d}. c*i + ?fe = j1" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3110
    hence "\<exists> j1\<in> {1 .. c*d}. real_of_int (c*i) = - ?N i e + real_of_int j1"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3111
      unfolding Bex_def using ei[simplified isint_iff] by fastforce
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3112
    with nob  have ?case by blast }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3113
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3114
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3115
  case (8 c e)  hence cp: "c >0" and nb: "numbound0 e" and ei: "isint e (real_of_int i#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3116
    and nob: "\<forall> j\<in> {1 .. c*d}. real_of_int (c*i) \<noteq> - 1 - ?N i e + real_of_int j"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3117
    and pi: "real_of_int (c*i) + ?N i e \<ge> 0" and cp': "real_of_int c >0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3118
    by simp+
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3119
  let ?fe = "\<lfloor>?N i e\<rfloor>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3120
  from pi cp have th:"(real_of_int i +?N i e / real_of_int c)*real_of_int c \<ge> 0" by (simp add: algebra_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3121
  from pi ei[simplified isint_iff] have "real_of_int (c*i + ?fe) \<ge> real_of_int (0::int)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3122
  hence pi': "c*i + 1 + ?fe \<ge> 1" by (simp only: of_int_le_iff[symmetric])
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3123
  have "real_of_int (c*i) + ?N i e \<ge> real_of_int (c*d) \<or> real_of_int (c*i) + ?N i e < real_of_int (c*d)" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3124
  moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3125
  {assume "real_of_int (c*i) + ?N i e \<ge> real_of_int (c*d)" hence ?case
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3126
      by (simp add: algebra_simps
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3127
        numbound0_I[OF nb,where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"])}
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3128
  moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3129
  {assume H:"real_of_int (c*i) + ?N i e < real_of_int (c*d)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3130
    with ei[simplified isint_iff] have "real_of_int (c*i + ?fe) < real_of_int (c*d)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3131
    hence pid: "c*i + 1 + ?fe \<le> c*d" by (simp only: of_int_le_iff)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3132
    with pi' have "\<exists> j1\<in> {1 .. c*d}. c*i + 1+ ?fe = j1" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3133
    hence "\<exists> j1\<in> {1 .. c*d}. real_of_int (c*i) + 1= - ?N i e + real_of_int j1"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3134
      unfolding Bex_def using ei[simplified isint_iff] by fastforce
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3135
    hence "\<exists> j1\<in> {1 .. c*d}. real_of_int (c*i) = (- ?N i e + real_of_int j1) - 1"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3136
      by (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3137
        hence "\<exists> j1\<in> {1 .. c*d}. real_of_int (c*i) = - 1 - ?N i e + real_of_int j1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  3138
          by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3139
    with nob  have ?case by blast }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3140
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3141
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3142
  case (9 j c e)  hence p: "real_of_int j rdvd real_of_int (c*i) + ?N i e" (is "?p x") and cp: "c > 0" and bn:"numbound0 e"  by simp+
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3143
  let ?e = "Inum (real_of_int i # bs) e"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3144
  from 9 have "isint e (real_of_int i #bs)"  by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3145
  hence ie: "real_of_int \<lfloor>?e\<rfloor> = ?e" using isint_iff[where n="e" and bs="(real_of_int i)#bs"] numbound0_I[OF bn,where b="real_of_int i" and b'="real_of_int i" and bs="bs"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3146
    by (simp add: isint_iff)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3147
  from 9 have id: "j dvd d" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3148
  from ie[symmetric] have "?p i = (real_of_int j rdvd real_of_int (c*i + \<lfloor>?e\<rfloor>))" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3149
  also have "\<dots> = (j dvd c*i + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3150
    using int_rdvd_iff [where i="j" and t="c*i + \<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3151
  also have "\<dots> = (j dvd c*i - c*d + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3152
    using dvd_period[OF id, where x="c*i" and c="-c" and t="\<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3153
  also have "\<dots> = (real_of_int j rdvd real_of_int (c*i - c*d + \<lfloor>?e\<rfloor>))"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3154
    using int_rdvd_iff[where i="j" and t="(c*i - c*d + \<lfloor>?e\<rfloor>)",symmetric, simplified]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3155
      ie by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3156
  also have "\<dots> = (real_of_int j rdvd real_of_int (c*(i - d)) + ?e)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3157
    using ie by (simp add:algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3158
  finally show ?case
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3159
    using numbound0_I[OF bn,where b="real_of_int i - real_of_int d" and b'="real_of_int i" and bs="bs"] p
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3160
    by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3161
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3162
  case (10 j c e)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3163
  hence p: "\<not> (real_of_int j rdvd real_of_int (c*i) + ?N i e)" (is "?p x") and cp: "c > 0" and bn:"numbound0 e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3164
    by simp+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3165
  let ?e = "Inum (real_of_int i # bs) e"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3166
  from 10 have "isint e (real_of_int i #bs)"  by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3167
  hence ie: "real_of_int \<lfloor>?e\<rfloor> = ?e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3168
    using isint_iff[where n="e" and bs="(real_of_int i)#bs"] numbound0_I[OF bn,where b="real_of_int i" and b'="real_of_int i" and bs="bs"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3169
    by (simp add: isint_iff)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3170
  from 10 have id: "j dvd d" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3171
  from ie[symmetric] have "?p i = (\<not> (real_of_int j rdvd real_of_int (c*i + \<lfloor>?e\<rfloor>)))" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3172
  also have "\<dots> = Not (j dvd c*i + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3173
    using int_rdvd_iff [where i="j" and t="c*i + \<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3174
  also have "\<dots> = Not (j dvd c*i - c*d + \<lfloor>?e\<rfloor>)"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3175
    using dvd_period[OF id, where x="c*i" and c="-c" and t="\<lfloor>?e\<rfloor>"] by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3176
  also have "\<dots> = Not (real_of_int j rdvd real_of_int (c*i - c*d + \<lfloor>?e\<rfloor>))"
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3177
    using int_rdvd_iff[where i="j" and t="(c*i - c*d + \<lfloor>?e\<rfloor>)",symmetric, simplified]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3178
      ie by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3179
  also have "\<dots> = Not (real_of_int j rdvd real_of_int (c*(i - d)) + ?e)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3180
    using ie by (simp add:algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3181
  finally show ?case
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3182
    using numbound0_I[OF bn,where b="real_of_int i - real_of_int d" and b'="real_of_int i" and bs="bs"] p
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3183
    by (simp add: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3184
qed (auto simp add: numbound0_I[where bs="bs" and b="real_of_int i - real_of_int d" and b'="real_of_int i"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3185
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3186
lemma \<sigma>_nb: assumes lp: "iszlfm p (a#bs)" and nb: "numbound0 t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3187
  shows "bound0 (\<sigma> p k t)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3188
  using \<sigma>_\<rho>_nb[OF lp nb] nb by (simp add: \<sigma>_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3189
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3190
lemma \<rho>':   assumes lp: "iszlfm p (a #bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3191
  and d: "d_\<delta> p d"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3192
  and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3193
  shows "\<forall> x. \<not>(\<exists> (e,c) \<in> set(\<rho> p). \<exists>(j::int) \<in> {1 .. c*d}. Ifm (a #bs) (\<sigma> p c (Add e (C j)))) \<longrightarrow> Ifm (real_of_int x#bs) p \<longrightarrow> Ifm (real_of_int (x - d)#bs) p" (is "\<forall> x. ?b x \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3194
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3195
  fix x
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3196
  assume nob1:"?b x" and px: "?P x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3197
  from iszlfm_gen[OF lp, rule_format, where y="real_of_int x"] have lp': "iszlfm p (real_of_int x#bs)".
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3198
  have nob: "\<forall>(e, c)\<in>set (\<rho> p). \<forall>j\<in>{1..c * d}. real_of_int (c * x) \<noteq> Inum (real_of_int x # bs) e + real_of_int j"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3199
  proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3200
    fix e c j assume ecR: "(e,c) \<in> set (\<rho> p)" and jD: "j\<in> {1 .. c*d}"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3201
      and cx: "real_of_int (c*x) = Inum (real_of_int x#bs) e + real_of_int j"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3202
    let ?e = "Inum (real_of_int x#bs) e"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3203
    from \<rho>_l[OF lp'] ecR have ei:"isint e (real_of_int x#bs)" and cp:"c>0" and nb:"numbound0 e"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3204
      by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3205
    from numbound0_gen [OF nb ei, rule_format,where y="a"] have "isint e (a#bs)" .
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3206
    from cx ei[simplified isint_iff] have "real_of_int (c*x) = real_of_int (\<lfloor>?e\<rfloor> + j)" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3207
    hence cx: "c*x = \<lfloor>?e\<rfloor> + j" by (simp only: of_int_eq_iff)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3208
    hence cdej:"c dvd \<lfloor>?e\<rfloor> + j" by (simp add: dvd_def) (rule_tac x="x" in exI, simp)
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3209
    hence "real_of_int c rdvd real_of_int (\<lfloor>?e\<rfloor> + j)" by (simp only: int_rdvd_iff)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3210
    hence rcdej: "real_of_int c rdvd ?e + real_of_int j" by (simp add: ei[simplified isint_iff])
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3211
    from cx have "(c*x) div c = (\<lfloor>?e\<rfloor> + j) div c" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3212
    with cp have "x = (\<lfloor>?e\<rfloor> + j) div c" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3213
    with px have th: "?P ((\<lfloor>?e\<rfloor> + j) div c)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3214
    from cp have cp': "real_of_int c > 0" by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3215
    from cdej have cdej': "c dvd \<lfloor>Inum (real_of_int x#bs) (Add e (C j))\<rfloor>" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3216
    from nb have nb': "numbound0 (Add e (C j))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3217
    have ji: "isint (C j) (real_of_int x#bs)" by (simp add: isint_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3218
    from isint_add[OF ei ji] have ei':"isint (Add e (C j)) (real_of_int x#bs)" .
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3219
    from th \<sigma>_\<rho>[where b'="real_of_int x", OF lp' cp' nb' ei' cdej',symmetric]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3220
    have "Ifm (real_of_int x#bs) (\<sigma>_\<rho> p (Add e (C j), c))" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3221
    with rcdej have th: "Ifm (real_of_int x#bs) (\<sigma> p c (Add e (C j)))" by (simp add: \<sigma>_def)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3222
    from th bound0_I[OF \<sigma>_nb[OF lp nb', where k="c"],where bs="bs" and b="real_of_int x" and b'="a"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3223
    have "Ifm (a#bs) (\<sigma> p c (Add e (C j)))" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3224
      with ecR jD nob1    show "False" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3225
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3226
  from \<rho>[OF lp' px d dp nob] show "?P (x -d )" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3227
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3228
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3229
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3230
lemma rl_thm:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3231
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3232
  shows "(\<exists> (x::int). Ifm (real_of_int x#bs) p) = ((\<exists> j\<in> {1 .. \<delta> p}. Ifm (real_of_int j#bs) (minusinf p)) \<or> (\<exists> (e,c) \<in> set (\<rho> p). \<exists> j\<in> {1 .. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j)))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3233
  (is "(\<exists>(x::int). ?P x) = ((\<exists> j\<in> {1.. \<delta> p}. ?MP j)\<or>(\<exists> (e,c) \<in> ?R. \<exists> j\<in> _. ?SP c e j))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3234
    is "?lhs = (?MD \<or> ?RD)"  is "?lhs = ?rhs")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3235
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3236
  let ?d= "\<delta> p"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3237
  from \<delta>[OF lp] have d:"d_\<delta> p ?d" and dp: "?d > 0" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3238
  { assume H:"?MD" hence th:"\<exists> (x::int). ?MP x" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3239
    from H minusinf_ex[OF lp th] have ?thesis  by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3240
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3241
  { fix e c j assume exR:"(e,c) \<in> ?R" and jD:"j\<in> {1 .. c*?d}" and spx:"?SP c e j"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3242
    from exR \<rho>_l[OF lp] have nb: "numbound0 e" and ei:"isint e (real_of_int i#bs)" and cp: "c > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3243
      by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3244
    have "isint (C j) (real_of_int i#bs)" by (simp add: isint_iff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3245
    with isint_add[OF numbound0_gen[OF nb ei,rule_format, where y="real_of_int i"]]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3246
    have eji:"isint (Add e (C j)) (real_of_int i#bs)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3247
    from nb have nb': "numbound0 (Add e (C j))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3248
    from spx bound0_I[OF \<sigma>_nb[OF lp nb', where k="c"], where bs="bs" and b="a" and b'="real_of_int i"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3249
    have spx': "Ifm (real_of_int i # bs) (\<sigma> p c (Add e (C j)))" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3250
    from spx' have rcdej:"real_of_int c rdvd (Inum (real_of_int i#bs) (Add e (C j)))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3251
      and sr:"Ifm (real_of_int i#bs) (\<sigma>_\<rho> p (Add e (C j),c))" by (simp add: \<sigma>_def)+
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3252
    from rcdej eji[simplified isint_iff]
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3253
    have "real_of_int c rdvd real_of_int \<lfloor>Inum (real_of_int i#bs) (Add e (C j))\<rfloor>" by simp
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3254
    hence cdej:"c dvd \<lfloor>Inum (real_of_int i#bs) (Add e (C j))\<rfloor>" by (simp only: int_rdvd_iff)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3255
    from cp have cp': "real_of_int c > 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3256
    from \<sigma>_\<rho>[OF lp cp' nb' eji cdej] spx' have "?P (\<lfloor>Inum (real_of_int i # bs) (Add e (C j))\<rfloor> div c)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3257
      by (simp add: \<sigma>_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3258
    hence ?lhs by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3259
    with exR jD spx have ?thesis by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3260
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3261
  { fix x assume px: "?P x" and nob: "\<not> ?RD"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3262
    from iszlfm_gen [OF lp,rule_format, where y="a"] have lp':"iszlfm p (a#bs)" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3263
    from \<rho>'[OF lp' d dp, rule_format, OF nob] have th:"\<forall> x. ?P x \<longrightarrow> ?P (x - ?d)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3264
    from minusinf_inf[OF lp] obtain z where z:"\<forall> x<z. ?MP x = ?P x" by blast
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3265
    have zp: "\<bar>x - z\<bar> + 1 \<ge> 0" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3266
    from decr_lemma[OF dp,where x="x" and z="z"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3267
      decr_mult_lemma[OF dp th zp, rule_format, OF px] z have th:"\<exists> x. ?MP x" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3268
    with minusinf_bex[OF lp] px nob have ?thesis by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3269
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3270
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3271
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3272
lemma mirror_\<alpha>_\<rho>:   assumes lp: "iszlfm p (a#bs)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  3273
  shows "(\<lambda> (t,k). (Inum (a#bs) t, k)) ` set (\<alpha>_\<rho> p) = (\<lambda> (t,k). (Inum (a#bs) t,k)) ` set (\<rho> (mirror p))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3274
  using lp
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3275
  by (induct p rule: mirror.induct) (simp_all add: split_def image_Un)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3276
61586
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  3277
text \<open>The \<open>\<real>\<close> part\<close>
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  3278
5197a2ecb658 isabelle update_cartouches -c -t;
wenzelm
parents: 61424
diff changeset
  3279
text\<open>Linearity for fm where Bound 0 ranges over \<open>\<real>\<close>\<close>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3280
consts
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3281
  isrlfm :: "fm \<Rightarrow> bool"   (* Linearity test for fm *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3282
recdef isrlfm "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3283
  "isrlfm (And p q) = (isrlfm p \<and> isrlfm q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3284
  "isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3285
  "isrlfm (Eq  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3286
  "isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3287
  "isrlfm (Lt  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3288
  "isrlfm (Le  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3289
  "isrlfm (Gt  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3290
  "isrlfm (Ge  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3291
  "isrlfm p = (isatom p \<and> (bound0 p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3292
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  3293
definition fp :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> int \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3294
  "fp p n s j \<equiv> (if n > 0 then
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3295
            (And p (And (Ge (CN 0 n (Sub s (Add (Floor s) (C j)))))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3296
                        (Lt (CN 0 n (Sub s (Add (Floor s) (C (j+1))))))))
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3297
            else
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3298
            (And p (And (Le (CN 0 (-n) (Add (Neg s) (Add (Floor s) (C j)))))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3299
                        (Gt (CN 0 (-n) (Add (Neg s) (Add (Floor s) (C (j + 1)))))))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3300
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3301
  (* splits the bounded from the unbounded part*)
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3302
function (sequential) rsplit0 :: "num \<Rightarrow> (fm \<times> int \<times> num) list" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3303
  "rsplit0 (Bound 0) = [(T,1,C 0)]"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3304
| "rsplit0 (Add a b) = (let acs = rsplit0 a ; bcs = rsplit0 b
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  3305
              in map (\<lambda> ((p,n,t),(q,m,s)). (And p q, n+m, Add t s)) [(a,b). a\<leftarrow>acs,b\<leftarrow>bcs])"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3306
| "rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3307
| "rsplit0 (Neg a) = map (\<lambda> (p,n,s). (p,-n,Neg s)) (rsplit0 a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3308
| "rsplit0 (Floor a) = concat (map
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3309
      (\<lambda> (p,n,s). if n=0 then [(p,0,Floor s)]
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3310
          else (map (\<lambda> j. (fp p n s j, 0, Add (Floor s) (C j))) (if n > 0 then [0 .. n] else [n .. 0])))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3311
       (rsplit0 a))"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3312
| "rsplit0 (CN 0 c a) = map (\<lambda> (p,n,s). (p,n+c,s)) (rsplit0 a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3313
| "rsplit0 (CN m c a) = map (\<lambda> (p,n,s). (p,n,CN m c s)) (rsplit0 a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3314
| "rsplit0 (CF c t s) = rsplit0 (Add (Mul c (Floor t)) s)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3315
| "rsplit0 (Mul c a) = map (\<lambda> (p,n,s). (p,c*n,Mul c s)) (rsplit0 a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3316
| "rsplit0 t = [(T,0,t)]"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3317
by pat_completeness auto
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  3318
termination by (relation "measure num_size") auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3319
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3320
lemma conj_rl[simp]: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3321
  using conj_def by (cases p, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3322
lemma disj_rl[simp]: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3323
  using disj_def by (cases p, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3324
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3325
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3326
lemma rsplit0_cs:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3327
  shows "\<forall> (p,n,s) \<in> set (rsplit0 t).
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3328
  (Ifm (x#bs) p \<longrightarrow>  (Inum (x#bs) t = Inum (x#bs) (CN 0 n s))) \<and> numbound0 s \<and> isrlfm p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3329
  (is "\<forall> (p,n,s) \<in> ?SS t. (?I p \<longrightarrow> ?N t = ?N (CN 0 n s)) \<and> _ \<and> _ ")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3330
proof(induct t rule: rsplit0.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3331
  case (5 a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3332
  let ?p = "\<lambda> (p,n,s) j. fp p n s j"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3333
  let ?f = "(\<lambda> (p,n,s) j. (?p (p,n,s) j, (0::int),Add (Floor s) (C j)))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3334
  let ?J = "\<lambda> n. if n>0 then [0..n] else [n..0]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3335
  let ?ff=" (\<lambda> (p,n,s). if n= 0 then [(p,0,Floor s)] else map (?f (p,n,s)) (?J n))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3336
  have int_cases: "\<forall> (i::int). i= 0 \<or> i < 0 \<or> i > 0" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3337
  have U1: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) =
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3338
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set [(p,0,Floor s)]))" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3339
  have U2': "\<forall> (p,n,s) \<in> {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0}.
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3340
    ?ff (p,n,s) = map (?f(p,n,s)) [0..n]" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3341
  hence U2: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3342
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s).
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3343
    set (map (?f(p,n,s)) [0..n])))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3344
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3345
    fix M :: "('a\<times>'b\<times>'c) set" and f :: "('a\<times>'b\<times>'c) \<Rightarrow> 'd list" and g
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3346
    assume "\<forall> (a,b,c) \<in> M. f (a,b,c) = g a b c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3347
    thus "(UNION M (\<lambda> (a,b,c). set (f (a,b,c)))) = (UNION M (\<lambda> (a,b,c). set (g a b c)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3348
      by (auto simp add: split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3349
  qed
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3350
  have U3': "\<forall> (p,n,s) \<in> {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0}. ?ff (p,n,s) = map (?f(p,n,s)) [n..0]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3351
    by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3352
  hence U3: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) =
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3353
    (UNION {(p,n,s). (p,n,s)\<in> ?SS a\<and>n<0} (\<lambda>(p,n,s). set (map (?f(p,n,s)) [n..0])))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3354
      proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3355
    fix M :: "('a\<times>'b\<times>'c) set" and f :: "('a\<times>'b\<times>'c) \<Rightarrow> 'd list" and g
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3356
    assume "\<forall> (a,b,c) \<in> M. f (a,b,c) = g a b c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3357
    thus "(UNION M (\<lambda> (a,b,c). set (f (a,b,c)))) = (UNION M (\<lambda> (a,b,c). set (g a b c)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3358
      by (auto simp add: split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3359
  qed
41464
cb2e3e651893 adopting proofs due to new list comprehension to set comprehension simproc
bulwahn
parents: 41413
diff changeset
  3360
  have "?SS (Floor a) = UNION (?SS a) (\<lambda>x. set (?ff x))"
46130
4821af078cd6 prefer concat over foldl append []
haftmann
parents: 45740
diff changeset
  3361
    by auto
41464
cb2e3e651893 adopting proofs due to new list comprehension to set comprehension simproc
bulwahn
parents: 41413
diff changeset
  3362
  also have "\<dots> = UNION (?SS a) (\<lambda> (p,n,s). set (?ff (p,n,s)))" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3363
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3364
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3365
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3366
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (?ff (p,n,s)))))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3367
    using int_cases[rule_format] by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3368
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3369
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set [(p,0,Floor s)])) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3370
   (UNION {(p,n,s). (p,n,s)\<in> ?SS a\<and>n>0} (\<lambda>(p,n,s). set(map(?f(p,n,s)) [0..n]))) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3371
   (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s).
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3372
    set (map (?f(p,n,s)) [n..0]))))" by (simp only: U1 U2 U3)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3373
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3374
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3375
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). (?f(p,n,s)) ` {0 .. n})) Un
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3376
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). (?f(p,n,s)) ` {n .. 0})))"
57816
d8bbb97689d3 no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
blanchet
parents: 57514
diff changeset
  3377
    by (simp only: set_map set_upto list.set)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3378
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3379
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3380
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). {?f(p,n,s) j| j. j\<in> {0 .. n}})) Un
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3381
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s).  {?f(p,n,s) j| j. j\<in> {n .. 0}})))" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3382
  finally
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3383
  have FS: "?SS (Floor a) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3384
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3385
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). {?f(p,n,s) j| j. j\<in> {0 .. n}})) Un
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3386
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s).  {?f(p,n,s) j| j. j\<in> {n .. 0}})))"    by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3387
  show ?case
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3388
  proof(simp only: FS, clarsimp simp del: Ifm.simps Inum.simps, -)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3389
    fix p n s
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3390
    let ?ths = "(?I p \<longrightarrow> (?N (Floor a) = ?N (CN 0 n s))) \<and> numbound0 s \<and> isrlfm p"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3391
    assume "(\<exists>ba. (p, 0, ba) \<in> set (rsplit0 a) \<and> n = 0 \<and> s = Floor ba) \<or>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3392
       (\<exists>ab ac ba.
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3393
           (ab, ac, ba) \<in> set (rsplit0 a) \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3394
           0 < ac \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3395
           (\<exists>j. p = fp ab ac ba j \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3396
                n = 0 \<and> s = Add (Floor ba) (C j) \<and> 0 \<le> j \<and> j \<le> ac)) \<or>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3397
       (\<exists>ab ac ba.
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3398
           (ab, ac, ba) \<in> set (rsplit0 a) \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3399
           ac < 0 \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3400
           (\<exists>j. p = fp ab ac ba j \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3401
                n = 0 \<and> s = Add (Floor ba) (C j) \<and> ac \<le> j \<and> j \<le> 0))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3402
    moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3403
    { fix s'
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3404
      assume "(p, 0, s') \<in> ?SS a" and "n = 0" and "s = Floor s'"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3405
      hence ?ths using 5(1) by auto }
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3406
    moreover
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3407
    { fix p' n' s' j
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3408
      assume pns: "(p', n', s') \<in> ?SS a"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3409
        and np: "0 < n'"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3410
        and p_def: "p = ?p (p',n',s') j"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3411
        and n0: "n = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3412
        and s_def: "s = (Add (Floor s') (C j))"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3413
        and jp: "0 \<le> j" and jn: "j \<le> n'"
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60533
diff changeset
  3414
      from 5 pns have H:"(Ifm ((x::real) # (bs::real list)) p' \<longrightarrow>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3415
          Inum (x # bs) a = Inum (x # bs) (CN 0 n' s')) \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3416
          numbound0 s' \<and> isrlfm p'" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3417
      hence nb: "numbound0 s'" by simp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3418
      from H have nf: "isrlfm (?p (p',n',s') j)" using fp_def np by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3419
      let ?nxs = "CN 0 n' s'"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3420
      let ?l = "\<lfloor>?N s'\<rfloor> + j"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3421
      from H
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3422
      have "?I (?p (p',n',s') j) \<longrightarrow>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3423
          (((?N ?nxs \<ge> real_of_int ?l) \<and> (?N ?nxs < real_of_int (?l + 1))) \<and> (?N a = ?N ?nxs ))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3424
        by (simp add: fp_def np algebra_simps)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3425
      also have "\<dots> \<longrightarrow> \<lfloor>?N ?nxs\<rfloor> = ?l \<and> ?N a = ?N ?nxs"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66453
diff changeset
  3426
        using floor_eq_iff[where x="?N ?nxs" and a="?l"] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3427
      moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3428
      have "\<dots> \<longrightarrow> (?N (Floor a) = ?N ((Add (Floor s') (C j))))" by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3429
      ultimately have "?I (?p (p',n',s') j) \<longrightarrow> (?N (Floor a) = ?N ((Add (Floor s') (C j))))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3430
        by blast
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3431
      with s_def n0 p_def nb nf have ?ths by auto}
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3432
    moreover
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3433
    { fix p' n' s' j
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3434
      assume pns: "(p', n', s') \<in> ?SS a"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3435
        and np: "n' < 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3436
        and p_def: "p = ?p (p',n',s') j"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3437
        and n0: "n = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3438
        and s_def: "s = (Add (Floor s') (C j))"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3439
        and jp: "n' \<le> j" and jn: "j \<le> 0"
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60533
diff changeset
  3440
      from 5 pns have H:"(Ifm ((x::real) # (bs::real list)) p' \<longrightarrow>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3441
          Inum (x # bs) a = Inum (x # bs) (CN 0 n' s')) \<and>
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3442
          numbound0 s' \<and> isrlfm p'" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3443
      hence nb: "numbound0 s'" by simp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3444
      from H have nf: "isrlfm (?p (p',n',s') j)" using fp_def np by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3445
      let ?nxs = "CN 0 n' s'"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3446
      let ?l = "\<lfloor>?N s'\<rfloor> + j"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3447
      from H
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3448
      have "?I (?p (p',n',s') j) \<longrightarrow>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3449
          (((?N ?nxs \<ge> real_of_int ?l) \<and> (?N ?nxs < real_of_int (?l + 1))) \<and> (?N a = ?N ?nxs ))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3450
        by (simp add: np fp_def algebra_simps)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3451
      also have "\<dots> \<longrightarrow> \<lfloor>?N ?nxs\<rfloor> = ?l \<and> ?N a = ?N ?nxs"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66453
diff changeset
  3452
        using floor_eq_iff[where x="?N ?nxs" and a="?l"] by simp
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3453
      moreover
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3454
      have "\<dots> \<longrightarrow> (?N (Floor a) = ?N ((Add (Floor s') (C j))))"  by simp
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3455
      ultimately have "?I (?p (p',n',s') j) \<longrightarrow> (?N (Floor a) = ?N ((Add (Floor s') (C j))))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3456
        by blast
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3457
      with s_def n0 p_def nb nf have ?ths by auto}
61652
90c65a811257 MIR decision procedure again working
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3458
    ultimately show ?ths by fastforce
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3459
  qed
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3460
next
28741
1b257449f804 simproc for let
haftmann
parents: 28290
diff changeset
  3461
  case (3 a b) then show ?case
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  3462
    by auto
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3463
qed (auto simp add: Let_def split_def algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3464
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3465
lemma real_in_int_intervals:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3466
  assumes xb: "real_of_int m \<le> x \<and> x < real_of_int ((n::int) + 1)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3467
  shows "\<exists> j\<in> {m.. n}. real_of_int j \<le> x \<and> x < real_of_int (j+1)" (is "\<exists> j\<in> ?N. ?P j")
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3468
by (rule bexI[where P="?P" and x="\<lfloor>x\<rfloor>" and A="?N"])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3469
(auto simp add: floor_less_iff[where x="x" and z="n+1", simplified]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3470
  xb[simplified] floor_mono[where x="real_of_int m" and y="x", OF conjunct1[OF xb], simplified floor_of_int[where z="m"]])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3471
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3472
lemma rsplit0_complete:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3473
  assumes xp:"0 \<le> x" and x1:"x < 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3474
  shows "\<exists> (p,n,s) \<in> set (rsplit0 t). Ifm (x#bs) p" (is "\<exists> (p,n,s) \<in> ?SS t. ?I p")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3475
proof(induct t rule: rsplit0.induct)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3476
  case (2 a b)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3477
  then have "\<exists> (pa,na,sa) \<in> ?SS a. ?I pa" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3478
  then obtain "pa" "na" "sa" where pa: "(pa,na,sa)\<in> ?SS a \<and> ?I pa" by blast
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3479
  with 2 have "\<exists> (pb,nb,sb) \<in> ?SS b. ?I pb" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3480
  then obtain "pb" "nb" "sb" where pb: "(pb,nb,sb)\<in> ?SS b \<and> ?I pb" by blast
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  3481
  from pa pb have th: "((pa,na,sa),(pb,nb,sb)) \<in> set[(x,y). x\<leftarrow>rsplit0 a, y\<leftarrow>rsplit0 b]"
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  3482
    by (auto)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3483
  let ?f="(\<lambda> ((p,n,t),(q,m,s)). (And p q, n+m, Add t s))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3484
  from imageI[OF th, where f="?f"] have "?f ((pa,na,sa),(pb,nb,sb)) \<in> ?SS (Add a b)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3485
    by (simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3486
  hence "(And pa pb, na +nb, Add sa sb) \<in> ?SS (Add a b)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3487
  moreover from pa pb have "?I (And pa pb)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3488
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3489
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3490
  case (5 a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3491
  let ?p = "\<lambda> (p,n,s) j. fp p n s j"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3492
  let ?f = "(\<lambda> (p,n,s) j. (?p (p,n,s) j, (0::int),(Add (Floor s) (C j))))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3493
  let ?J = "\<lambda> n. if n>0 then [0..n] else [n..0]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3494
  let ?ff=" (\<lambda> (p,n,s). if n= 0 then [(p,0,Floor s)] else map (?f (p,n,s)) (?J n))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3495
  have int_cases: "\<forall> (i::int). i= 0 \<or> i < 0 \<or> i > 0" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3496
  have U1: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) = (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set [(p,0,Floor s)]))" by auto
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3497
  have U2': "\<forall> (p,n,s) \<in> {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0}. ?ff (p,n,s) = map (?f(p,n,s)) [0..n]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3498
    by auto
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3499
  hence U2: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) = (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (map (?f(p,n,s)) [0..n])))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3500
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3501
    fix M :: "('a\<times>'b\<times>'c) set" and f :: "('a\<times>'b\<times>'c) \<Rightarrow> 'd list" and g
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3502
    assume "\<forall> (a,b,c) \<in> M. f (a,b,c) = g a b c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3503
    thus "(UNION M (\<lambda> (a,b,c). set (f (a,b,c)))) = (UNION M (\<lambda> (a,b,c). set (g a b c)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3504
      by (auto simp add: split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3505
  qed
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3506
  have U3': "\<forall> (p,n,s) \<in> {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0}. ?ff (p,n,s) = map (?f(p,n,s)) [n..0]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3507
    by auto
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3508
  hence U3: "(UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) = (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (map (?f(p,n,s)) [n..0])))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3509
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3510
    fix M :: "('a\<times>'b\<times>'c) set" and f :: "('a\<times>'b\<times>'c) \<Rightarrow> 'd list" and g
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3511
    assume "\<forall> (a,b,c) \<in> M. f (a,b,c) = g a b c"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3512
    thus "(UNION M (\<lambda> (a,b,c). set (f (a,b,c)))) = (UNION M (\<lambda> (a,b,c). set (g a b c)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3513
      by (auto simp add: split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3514
  qed
24473
acd19ea21fbb fixed Proofs
chaieb
parents: 24348
diff changeset
  3515
46130
4821af078cd6 prefer concat over foldl append []
haftmann
parents: 45740
diff changeset
  3516
  have "?SS (Floor a) = UNION (?SS a) (\<lambda>x. set (?ff x))" by auto
41464
cb2e3e651893 adopting proofs due to new list comprehension to set comprehension simproc
bulwahn
parents: 41413
diff changeset
  3517
  also have "\<dots> = UNION (?SS a) (\<lambda> (p,n,s). set (?ff (p,n,s)))" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3518
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3519
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3520
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (?ff (p,n,s)))) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3521
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (?ff (p,n,s)))))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3522
    using int_cases[rule_format] by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3523
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3524
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). set [(p,0,Floor s)])) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3525
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). set (map (?f(p,n,s)) [0..n]))) Un
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3526
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). set (map (?f(p,n,s)) [n..0]))))"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3527
    by (simp only: U1 U2 U3)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3528
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3529
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3530
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). (?f(p,n,s)) ` {0 .. n})) Un
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3531
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s). (?f(p,n,s)) ` {n .. 0})))"
57816
d8bbb97689d3 no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
blanchet
parents: 57514
diff changeset
  3532
    by (simp only: set_map set_upto list.set)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3533
  also have "\<dots> =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3534
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3535
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). {?f(p,n,s) j| j. j\<in> {0 .. n}})) Un
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3536
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s).  {?f(p,n,s) j| j. j\<in> {n .. 0}})))"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3537
    by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3538
  finally
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3539
  have FS: "?SS (Floor a) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3540
    ((UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n=0} (\<lambda> (p,n,s). {(p,0,Floor s)})) Un
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3541
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n>0} (\<lambda> (p,n,s). {?f(p,n,s) j| j. j\<in> {0 .. n}})) Un
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3542
    (UNION {(p,n,s). (p,n,s) \<in> ?SS a \<and> n<0} (\<lambda> (p,n,s).  {?f(p,n,s) j| j. j\<in> {n .. 0}})))"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3543
    by blast
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3544
  from 5 have "\<exists> (p,n,s) \<in> ?SS a. ?I p" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3545
  then obtain "p" "n" "s" where pns: "(p,n,s) \<in> ?SS a \<and> ?I p" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3546
  let ?N = "\<lambda> t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3547
  from rsplit0_cs[rule_format] pns have ans:"(?N a = ?N (CN 0 n s)) \<and> numbound0 s \<and> isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3548
    by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3549
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3550
  have "n=0 \<or> n >0 \<or> n <0" by arith
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3551
  moreover {assume "n=0" hence ?case using pns by (simp only: FS) auto }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3552
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3553
  {
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3554
    assume np: "n > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3555
    from of_int_floor_le[of "?N s"] have "?N (Floor s) \<le> ?N s" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3556
    also from mult_left_mono[OF xp] np have "?N s \<le> real_of_int n * x + ?N s" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3557
    finally have "?N (Floor s) \<le> real_of_int n * x + ?N s" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3558
    moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3559
    {from x1 np have "real_of_int n *x + ?N s < real_of_int n + ?N s" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3560
      also from real_of_int_floor_add_one_gt[where r="?N s"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3561
      have "\<dots> < real_of_int n + ?N (Floor s) + 1" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3562
      finally have "real_of_int n *x + ?N s < ?N (Floor s) + real_of_int (n+1)" by simp}
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3563
    ultimately have "?N (Floor s) \<le> real_of_int n *x + ?N s\<and> real_of_int n *x + ?N s < ?N (Floor s) + real_of_int (n+1)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3564
    hence th: "0 \<le> real_of_int n *x + ?N s - ?N (Floor s) \<and> real_of_int n *x + ?N s - ?N (Floor s) < real_of_int (n+1)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3565
    from real_in_int_intervals th have  "\<exists> j\<in> {0 .. n}. real_of_int j \<le> real_of_int n *x + ?N s - ?N (Floor s)\<and> real_of_int n *x + ?N s - ?N (Floor s) < real_of_int (j+1)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3566
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3567
    hence "\<exists> j\<in> {0 .. n}. 0 \<le> real_of_int n *x + ?N s - ?N (Floor s) - real_of_int j \<and> real_of_int n *x + ?N s - ?N (Floor s) - real_of_int (j+1) < 0"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3568
      by(simp only: myle[of _ "real_of_int n * x + Inum (x # bs) s - Inum (x # bs) (Floor s)"] less_iff_diff_less_0[where a="real_of_int n *x + ?N s - ?N (Floor s)"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3569
    hence "\<exists> j\<in> {0.. n}. ?I (?p (p,n,s) j)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3570
      using pns by (simp add: fp_def np algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3571
    then obtain "j" where j_def: "j\<in> {0 .. n} \<and> ?I (?p (p,n,s) j)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3572
    hence "\<exists>x \<in> {?p (p,n,s) j |j. 0\<le> j \<and> j \<le> n }. ?I x" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3573
    hence ?case using pns
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3574
      by (simp only: FS,simp add: bex_Un)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3575
    (rule disjI2, rule disjI1,rule exI [where x="p"],
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3576
      rule exI [where x="n"],rule exI [where x="s"],simp_all add: np)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3577
  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3578
  moreover
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3579
  { assume nn: "n < 0" hence np: "-n >0" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3580
    from of_int_floor_le[of "?N s"] have "?N (Floor s) + 1 > ?N s" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3581
    moreover from mult_left_mono_neg[OF xp] nn have "?N s \<ge> real_of_int n * x + ?N s" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3582
    ultimately have "?N (Floor s) + 1 > real_of_int n * x + ?N s" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3583
    moreover
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3584
    {from x1 nn have "real_of_int n *x + ?N s \<ge> real_of_int n + ?N s" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3585
      moreover from of_int_floor_le[of "?N s"]  have "real_of_int n + ?N s \<ge> real_of_int n + ?N (Floor s)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3586
      ultimately have "real_of_int n *x + ?N s \<ge> ?N (Floor s) + real_of_int n"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  3587
        by (simp only: algebra_simps)}
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3588
    ultimately have "?N (Floor s) + real_of_int n \<le> real_of_int n *x + ?N s\<and> real_of_int n *x + ?N s < ?N (Floor s) + real_of_int (1::int)" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3589
    hence th: "real_of_int n \<le> real_of_int n *x + ?N s - ?N (Floor s) \<and> real_of_int n *x + ?N s - ?N (Floor s) < real_of_int (1::int)" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3590
    have th1: "\<forall> (a::real). (- a > 0) = (a < 0)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3591
    have th2: "\<forall> (a::real). (0 \<ge> - a) = (a \<ge> 0)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3592
    from real_in_int_intervals th  have  "\<exists> j\<in> {n .. 0}. real_of_int j \<le> real_of_int n *x + ?N s - ?N (Floor s)\<and> real_of_int n *x + ?N s - ?N (Floor s) < real_of_int (j+1)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3593
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3594
    hence "\<exists> j\<in> {n .. 0}. 0 \<le> real_of_int n *x + ?N s - ?N (Floor s) - real_of_int j \<and> real_of_int n *x + ?N s - ?N (Floor s) - real_of_int (j+1) < 0"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3595
      by(simp only: myle[of _ "real_of_int n * x + Inum (x # bs) s - Inum (x # bs) (Floor s)"] less_iff_diff_less_0[where a="real_of_int n *x + ?N s - ?N (Floor s)"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3596
    hence "\<exists> j\<in> {n .. 0}. 0 \<ge> - (real_of_int n *x + ?N s - ?N (Floor s) - real_of_int j) \<and> - (real_of_int n *x + ?N s - ?N (Floor s) - real_of_int (j+1)) > 0" by (simp only: th1[rule_format] th2[rule_format])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3597
    hence "\<exists> j\<in> {n.. 0}. ?I (?p (p,n,s) j)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  3598
      using pns by (simp add: fp_def nn algebra_simps
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3599
        del: diff_less_0_iff_less diff_le_0_iff_le)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3600
    then obtain "j" where j_def: "j\<in> {n .. 0} \<and> ?I (?p (p,n,s) j)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3601
    hence "\<exists>x \<in> {?p (p,n,s) j |j. n\<le> j \<and> j \<le> 0 }. ?I x" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3602
    hence ?case using pns
23464
bc2563c37b1a tuned proofs -- avoid implicit prems;
wenzelm
parents: 23316
diff changeset
  3603
      by (simp only: FS,simp add: bex_Un)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3604
    (rule disjI2, rule disjI2,rule exI [where x="p"],
23464
bc2563c37b1a tuned proofs -- avoid implicit prems;
wenzelm
parents: 23316
diff changeset
  3605
      rule exI [where x="n"],rule exI [where x="s"],simp_all add: nn)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3606
  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3607
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3608
qed (auto simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3609
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3610
    (* Linearize a formula where Bound 0 ranges over [0,1) *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3611
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  3612
definition rsplit :: "(int \<Rightarrow> num \<Rightarrow> fm) \<Rightarrow> num \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3613
  "rsplit f a \<equiv> foldr disj (map (\<lambda> (\<phi>, n, s). conj \<phi> (f n s)) (rsplit0 a)) F"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3614
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3615
lemma foldr_disj_map: "Ifm bs (foldr disj (map f xs) F) = (\<exists> x \<in> set xs. Ifm bs (f x))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3616
by(induct xs, simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3617
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3618
lemma foldr_conj_map: "Ifm bs (foldr conj (map f xs) T) = (\<forall> x \<in> set xs. Ifm bs (f x))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3619
by(induct xs, simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3620
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3621
lemma foldr_disj_map_rlfm:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3622
  assumes lf: "\<forall> n s. numbound0 s \<longrightarrow> isrlfm (f n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3623
  and \<phi>: "\<forall> (\<phi>,n,s) \<in> set xs. numbound0 s \<and> isrlfm \<phi>"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3624
  shows "isrlfm (foldr disj (map (\<lambda> (\<phi>, n, s). conj \<phi> (f n s)) xs) F)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3625
using lf \<phi> by (induct xs, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3626
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3627
lemma rsplit_ex: "Ifm bs (rsplit f a) = (\<exists> (\<phi>,n,s) \<in> set (rsplit0 a). Ifm bs (conj \<phi> (f n s)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3628
using foldr_disj_map[where xs="rsplit0 a"] rsplit_def by (simp add: split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3629
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3630
lemma rsplit_l: assumes lf: "\<forall> n s. numbound0 s \<longrightarrow> isrlfm (f n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3631
  shows "isrlfm (rsplit f a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3632
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3633
  from rsplit0_cs[where t="a"] have th: "\<forall> (\<phi>,n,s) \<in> set (rsplit0 a). numbound0 s \<and> isrlfm \<phi>" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3634
  from foldr_disj_map_rlfm[OF lf th] rsplit_def show ?thesis by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3635
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3636
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3637
lemma rsplit:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3638
  assumes xp: "x \<ge> 0" and x1: "x < 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3639
  and f: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> (Ifm (x#bs) (f n s) = Ifm (x#bs) (g a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3640
  shows "Ifm (x#bs) (rsplit f a) = Ifm (x#bs) (g a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3641
proof(auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3642
  let ?I = "\<lambda>x p. Ifm (x#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3643
  let ?N = "\<lambda> x t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3644
  assume "?I x (rsplit f a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3645
  hence "\<exists> (\<phi>,n,s) \<in> set (rsplit0 a). ?I x (And \<phi> (f n s))" using rsplit_ex by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3646
  then obtain "\<phi>" "n" "s" where fnsS:"(\<phi>,n,s) \<in> set (rsplit0 a)" and "?I x (And \<phi> (f n s))" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3647
  hence \<phi>: "?I x \<phi>" and fns: "?I x (f n s)" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3648
  from rsplit0_cs[where t="a" and bs="bs" and x="x", rule_format, OF fnsS] \<phi>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3649
  have th: "(?N x a = ?N x (CN 0 n s)) \<and> numbound0 s" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3650
  from f[rule_format, OF th] fns show "?I x (g a)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3651
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3652
  let ?I = "\<lambda>x p. Ifm (x#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3653
  let ?N = "\<lambda> x t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3654
  assume ga: "?I x (g a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3655
  from rsplit0_complete[OF xp x1, where bs="bs" and t="a"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3656
  obtain "\<phi>" "n" "s" where fnsS:"(\<phi>,n,s) \<in> set (rsplit0 a)" and fx: "?I x \<phi>" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3657
  from rsplit0_cs[where t="a" and x="x" and bs="bs"] fnsS fx
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3658
  have ans: "?N x a = ?N x (CN 0 n s)" and nb: "numbound0 s" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3659
  with ga f have "?I x (f n s)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3660
  with rsplit_ex fnsS fx show "?I x (rsplit f a)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3661
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3662
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3663
definition lt :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3664
  lt_def: "lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3665
                        else (Gt (CN 0 (-c) (Neg t))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3666
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3667
definition  le :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3668
  le_def: "le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3669
                        else (Ge (CN 0 (-c) (Neg t))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3670
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3671
definition  gt :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3672
  gt_def: "gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3673
                        else (Lt (CN 0 (-c) (Neg t))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3674
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3675
definition  ge :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3676
  ge_def: "ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3677
                        else (Le (CN 0 (-c) (Neg t))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3678
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3679
definition  eq :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3680
  eq_def: "eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3681
                        else (Eq (CN 0 (-c) (Neg t))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3682
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3683
definition neq :: "int \<Rightarrow> num \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3684
  neq_def: "neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3685
                        else (NEq (CN 0 (-c) (Neg t))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3686
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3687
lemma lt_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (lt n s) = Ifm (x#bs) (Lt a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3688
  (is "\<forall> a n s . ?N a = ?N (CN 0 n s) \<and> _\<longrightarrow> ?I (lt n s) = ?I (Lt a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3689
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3690
  fix a n s
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3691
  assume H: "?N a = ?N (CN 0 n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3692
  show "?I (lt n s) = ?I (Lt a)" using H by (cases "n=0", (simp add: lt_def))
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3693
  (cases "n > 0", simp_all add: lt_def algebra_simps myless[of _ "0"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3694
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3695
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3696
lemma lt_l: "isrlfm (rsplit lt a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3697
  by (rule rsplit_l[where f="lt" and a="a"], auto simp add: lt_def,
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3698
    case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3699
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3700
lemma le_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (le n s) = Ifm (x#bs) (Le a)" (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (le n s) = ?I (Le a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3701
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3702
  fix a n s
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3703
  assume H: "?N a = ?N (CN 0 n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3704
  show "?I (le n s) = ?I (Le a)" using H by (cases "n=0", (simp add: le_def))
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3705
  (cases "n > 0", simp_all add: le_def algebra_simps myle[of _ "0"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3706
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3707
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3708
lemma le_l: "isrlfm (rsplit le a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3709
  by (rule rsplit_l[where f="le" and a="a"], auto simp add: le_def)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3710
(case_tac s, simp_all, rename_tac nat a b, case_tac "nat",simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3711
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3712
lemma gt_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (gt n s) = Ifm (x#bs) (Gt a)" (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (gt n s) = ?I (Gt a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3713
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3714
  fix a n s
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3715
  assume H: "?N a = ?N (CN 0 n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3716
  show "?I (gt n s) = ?I (Gt a)" using H by (cases "n=0", (simp add: gt_def))
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3717
  (cases "n > 0", simp_all add: gt_def algebra_simps myless[of _ "0"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3718
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3719
lemma gt_l: "isrlfm (rsplit gt a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3720
  by (rule rsplit_l[where f="gt" and a="a"], auto simp add: gt_def)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3721
(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3722
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3723
lemma ge_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (ge n s) = Ifm (x#bs) (Ge a)" (is "\<forall> a n s . ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (ge n s) = ?I (Ge a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3724
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3725
  fix a n s
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3726
  assume H: "?N a = ?N (CN 0 n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3727
  show "?I (ge n s) = ?I (Ge a)" using H by (cases "n=0", (simp add: ge_def))
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3728
  (cases "n > 0", simp_all add: ge_def algebra_simps myle[of _ "0"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3729
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3730
lemma ge_l: "isrlfm (rsplit ge a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3731
  by (rule rsplit_l[where f="ge" and a="a"], auto simp add: ge_def)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3732
(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3733
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3734
lemma eq_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (eq n s) = Ifm (x#bs) (Eq a)" (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (eq n s) = ?I (Eq a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3735
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3736
  fix a n s
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3737
  assume H: "?N a = ?N (CN 0 n s)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  3738
  show "?I (eq n s) = ?I (Eq a)" using H by (auto simp add: eq_def algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3739
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3740
lemma eq_l: "isrlfm (rsplit eq a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3741
  by (rule rsplit_l[where f="eq" and a="a"], auto simp add: eq_def)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3742
(case_tac s, simp_all, rename_tac nat a b, case_tac"nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3743
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3744
lemma neq_mono: "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (neq n s) = Ifm (x#bs) (NEq a)" (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (neq n s) = ?I (NEq a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3745
proof(clarify)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3746
  fix a n s bs
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3747
  assume H: "?N a = ?N (CN 0 n s)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  3748
  show "?I (neq n s) = ?I (NEq a)" using H by (auto simp add: neq_def algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3749
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3750
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3751
lemma neq_l: "isrlfm (rsplit neq a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3752
  by (rule rsplit_l[where f="neq" and a="a"], auto simp add: neq_def)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3753
(case_tac s, simp_all, rename_tac nat a b, case_tac"nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3754
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3755
lemma small_le:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3756
  assumes u0:"0 \<le> u" and u1: "u < 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3757
  shows "(-u \<le> real_of_int (n::int)) = (0 \<le> n)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3758
using u0 u1  by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3759
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3760
lemma small_lt:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3761
  assumes u0:"0 \<le> u" and u1: "u < 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3762
  shows "(real_of_int (n::int) < real_of_int (m::int) - u) = (n < m)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3763
using u0 u1  by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3764
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3765
lemma rdvd01_cs:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3766
  assumes up: "u \<ge> 0" and u1: "u<1" and np: "real_of_int n > 0"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3767
  shows "(real_of_int (i::int) rdvd real_of_int (n::int) * u - s) = (\<exists> j\<in> {0 .. n - 1}. real_of_int n * u = s - real_of_int \<lfloor>s\<rfloor> + real_of_int j \<and> real_of_int i rdvd real_of_int (j - \<lfloor>s\<rfloor>))" (is "?lhs = ?rhs")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3768
proof-
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3769
  let ?ss = "s - real_of_int \<lfloor>s\<rfloor>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3770
  from real_of_int_floor_add_one_gt[where r="s", simplified myless[of "s"]]
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  3771
    of_int_floor_le  have ss0:"?ss \<ge> 0" and ss1:"?ss < 1" by (auto simp: floor_less_cancel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3772
  from np have n0: "real_of_int n \<ge> 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3773
  from mult_left_mono[OF up n0] mult_strict_left_mono[OF u1 np]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3774
  have nu0:"real_of_int n * u - s \<ge> -s" and nun:"real_of_int n * u -s < real_of_int n - s" by auto
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3775
  from int_rdvd_real[where i="i" and x="real_of_int (n::int) * u - s"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3776
  have "real_of_int i rdvd real_of_int n * u - s =
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3777
    (i dvd \<lfloor>real_of_int n * u - s\<rfloor> \<and> (real_of_int \<lfloor>real_of_int n * u - s\<rfloor> = real_of_int n * u - s ))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3778
    (is "_ = (?DE)" is "_ = (?D \<and> ?E)") by simp
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3779
  also have "\<dots> = (?DE \<and> real_of_int (\<lfloor>real_of_int n * u - s\<rfloor> + \<lfloor>s\<rfloor>) \<ge> -?ss
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3780
    \<and> real_of_int (\<lfloor>real_of_int n * u - s\<rfloor> + \<lfloor>s\<rfloor>) < real_of_int n - ?ss)" (is "_=(?DE \<and>real_of_int ?a \<ge> _ \<and> real_of_int ?a < _)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3781
    using nu0 nun  by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3782
  also have "\<dots> = (?DE \<and> ?a \<ge> 0 \<and> ?a < n)" by(simp only: small_le[OF ss0 ss1] small_lt[OF ss0 ss1])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3783
  also have "\<dots> = (?DE \<and> (\<exists> j\<in> {0 .. (n - 1)}. ?a = j))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3784
  also have "\<dots> = (?DE \<and> (\<exists> j\<in> {0 .. (n - 1)}. real_of_int (\<lfloor>real_of_int n * u - s\<rfloor>) = real_of_int j - real_of_int \<lfloor>s\<rfloor> ))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3785
    by (simp only: algebra_simps of_int_diff[symmetric] of_int_eq_iff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3786
  also have "\<dots> = ((\<exists> j\<in> {0 .. (n - 1)}. real_of_int n * u - s = real_of_int j - real_of_int \<lfloor>s\<rfloor> \<and> real_of_int i rdvd real_of_int n * u - s))" using int_rdvd_iff[where i="i" and t="\<lfloor>real_of_int n * u - s\<rfloor>"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3787
    by (auto cong: conj_cong)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  3788
  also have "\<dots> = ?rhs" by(simp cong: conj_cong) (simp add: algebra_simps )
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3789
  finally show ?thesis .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3790
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3791
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3792
definition
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3793
  DVDJ:: "int \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm"
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3794
where
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3795
  DVDJ_def: "DVDJ i n s = (foldr disj (map (\<lambda> j. conj (Eq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j))))) (Dvd i (Sub (C j) (Floor (Neg s))))) [0..n - 1]) F)"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3796
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3797
definition
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3798
  NDVDJ:: "int \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm"
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3799
where
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3800
  NDVDJ_def: "NDVDJ i n s = (foldr conj (map (\<lambda> j. disj (NEq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j))))) (NDvd i (Sub (C j) (Floor (Neg s))))) [0..n - 1]) T)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3801
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3802
lemma DVDJ_DVD:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3803
  assumes xp:"x\<ge> 0" and x1: "x < 1" and np:"real_of_int n > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3804
  shows "Ifm (x#bs) (DVDJ i n s) = Ifm (x#bs) (Dvd i (CN 0 n s))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3805
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3806
  let ?f = "\<lambda> j. conj (Eq(CN 0 n (Add s (Sub(Floor (Neg s)) (C j))))) (Dvd i (Sub (C j) (Floor (Neg s))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3807
  let ?s= "Inum (x#bs) s"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3808
  from foldr_disj_map[where xs="[0..n - 1]" and bs="x#bs" and f="?f"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3809
  have "Ifm (x#bs) (DVDJ i n s) = (\<exists> j\<in> {0 .. (n - 1)}. Ifm (x#bs) (?f j))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3810
    by (simp add: np DVDJ_def)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3811
  also have "\<dots> = (\<exists> j\<in> {0 .. (n - 1)}. real_of_int n * x = (- ?s) - real_of_int \<lfloor>- ?s\<rfloor> + real_of_int j \<and> real_of_int i rdvd real_of_int (j - \<lfloor>- ?s\<rfloor>))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3812
    by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3813
  also from rdvd01_cs[OF xp x1 np, where i="i" and s="-?s"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3814
  have "\<dots> = (real_of_int i rdvd real_of_int n * x - (-?s))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3815
  finally show ?thesis by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3816
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3817
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3818
lemma NDVDJ_NDVD:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3819
  assumes xp:"x\<ge> 0" and x1: "x < 1" and np:"real_of_int n > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3820
  shows "Ifm (x#bs) (NDVDJ i n s) = Ifm (x#bs) (NDvd i (CN 0 n s))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3821
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3822
  let ?f = "\<lambda> j. disj(NEq(CN 0 n (Add s (Sub (Floor (Neg s)) (C j))))) (NDvd i (Sub (C j) (Floor(Neg s))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3823
  let ?s= "Inum (x#bs) s"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3824
  from foldr_conj_map[where xs="[0..n - 1]" and bs="x#bs" and f="?f"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3825
  have "Ifm (x#bs) (NDVDJ i n s) = (\<forall> j\<in> {0 .. (n - 1)}. Ifm (x#bs) (?f j))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  3826
    by (simp add: np NDVDJ_def)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  3827
  also have "\<dots> = (\<not> (\<exists> j\<in> {0 .. (n - 1)}. real_of_int n * x = (- ?s) - real_of_int \<lfloor>- ?s\<rfloor> + real_of_int j \<and> real_of_int i rdvd real_of_int (j - \<lfloor>- ?s\<rfloor>)))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3828
    by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3829
  also from rdvd01_cs[OF xp x1 np, where i="i" and s="-?s"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  3830
  have "\<dots> = (\<not> (real_of_int i rdvd real_of_int n * x - (-?s)))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3831
  finally show ?thesis by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3832
qed
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3833
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3834
lemma foldr_disj_map_rlfm2:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3835
  assumes lf: "\<forall> n . isrlfm (f n)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3836
  shows "isrlfm (foldr disj (map f xs) F)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3837
using lf by (induct xs, auto)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3838
lemma foldr_And_map_rlfm2:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3839
  assumes lf: "\<forall> n . isrlfm (f n)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3840
  shows "isrlfm (foldr conj (map f xs) T)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3841
using lf by (induct xs, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3842
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3843
lemma DVDJ_l: assumes ip: "i >0" and np: "n>0" and nb: "numbound0 s"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3844
  shows "isrlfm (DVDJ i n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3845
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3846
  let ?f="\<lambda>j. conj (Eq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j)))))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3847
                         (Dvd i (Sub (C j) (Floor (Neg s))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3848
  have th: "\<forall> j. isrlfm (?f j)" using nb np by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3849
  from DVDJ_def foldr_disj_map_rlfm2[OF th] show ?thesis by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3850
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3851
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3852
lemma NDVDJ_l: assumes ip: "i >0" and np: "n>0" and nb: "numbound0 s"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3853
  shows "isrlfm (NDVDJ i n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3854
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3855
  let ?f="\<lambda>j. disj (NEq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j)))))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3856
                      (NDvd i (Sub (C j) (Floor (Neg s))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3857
  have th: "\<forall> j. isrlfm (?f j)" using nb np by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3858
  from NDVDJ_def foldr_And_map_rlfm2[OF th] show ?thesis by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3859
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3860
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3861
definition DVD :: "int \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm" where
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3862
  DVD_def: "DVD i c t =
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3863
  (if i=0 then eq c t else
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3864
  if c = 0 then (Dvd i t) else if c >0 then DVDJ \<bar>i\<bar> c t else DVDJ \<bar>i\<bar> (-c) (Neg t))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3865
23997
a23d0b4b1c1f Updated proofs;
chaieb
parents: 23993
diff changeset
  3866
definition  NDVD :: "int \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm" where
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  3867
  "NDVD i c t =
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3868
  (if i=0 then neq c t else
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3869
  if c = 0 then (NDvd i t) else if c >0 then NDVDJ \<bar>i\<bar> c t else NDVDJ \<bar>i\<bar> (-c) (Neg t))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3870
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3871
lemma DVD_mono:
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3872
  assumes xp: "0\<le> x" and x1: "x < 1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3873
  shows "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (DVD i n s) = Ifm (x#bs) (Dvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3874
  (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (DVD i n s) = ?I (Dvd i a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3875
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3876
  fix a n s
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3877
  assume H: "?N a = ?N (CN 0 n s)" and nb: "numbound0 s"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3878
  let ?th = "?I (DVD i n s) = ?I (Dvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3879
  have "i=0 \<or> (i\<noteq>0 \<and> n=0) \<or> (i\<noteq>0 \<and> n < 0) \<or> (i\<noteq>0 \<and> n > 0)" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3880
  moreover {assume iz: "i=0" hence ?th using eq_mono[rule_format, OF conjI[OF H nb]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3881
      by (simp add: DVD_def rdvd_left_0_eq)}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3882
  moreover {assume inz: "i\<noteq>0" and "n=0" hence ?th by (simp add: H DVD_def) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3883
  moreover {assume inz: "i\<noteq>0" and "n<0" hence ?th
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3884
      by (simp add: DVD_def H DVDJ_DVD[OF xp x1] rdvd_abs1
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3885
        rdvd_minus[where d="i" and t="real_of_int n * x + Inum (x # bs) s"]) }
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3886
  moreover {assume inz: "i\<noteq>0" and "n>0" hence ?th by (simp add:DVD_def H DVDJ_DVD[OF xp x1] rdvd_abs1)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3887
  ultimately show ?th by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3888
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3889
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3890
lemma NDVD_mono:   assumes xp: "0\<le> x" and x1: "x < 1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3891
  shows "\<forall> a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \<and> numbound0 s \<longrightarrow> Ifm (x#bs) (NDVD i n s) = Ifm (x#bs) (NDvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3892
  (is "\<forall> a n s. ?N a = ?N (CN 0 n s) \<and> _ \<longrightarrow> ?I (NDVD i n s) = ?I (NDvd i a)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3893
proof(clarify)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3894
  fix a n s
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3895
  assume H: "?N a = ?N (CN 0 n s)" and nb: "numbound0 s"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3896
  let ?th = "?I (NDVD i n s) = ?I (NDvd i a)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3897
  have "i=0 \<or> (i\<noteq>0 \<and> n=0) \<or> (i\<noteq>0 \<and> n < 0) \<or> (i\<noteq>0 \<and> n > 0)" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3898
  moreover {assume iz: "i=0" hence ?th using neq_mono[rule_format, OF conjI[OF H nb]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3899
      by (simp add: NDVD_def rdvd_left_0_eq)}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3900
  moreover {assume inz: "i\<noteq>0" and "n=0" hence ?th by (simp add: H NDVD_def) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3901
  moreover {assume inz: "i\<noteq>0" and "n<0" hence ?th
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3902
      by (simp add: NDVD_def H NDVDJ_NDVD[OF xp x1] rdvd_abs1
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3903
        rdvd_minus[where d="i" and t="real_of_int n * x + Inum (x # bs) s"]) }
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3904
  moreover {assume inz: "i\<noteq>0" and "n>0" hence ?th
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3905
      by (simp add:NDVD_def H NDVDJ_NDVD[OF xp x1] rdvd_abs1)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3906
  ultimately show ?th by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3907
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3908
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3909
lemma DVD_l: "isrlfm (rsplit (DVD i) a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3910
  by (rule rsplit_l[where f="DVD i" and a="a"], auto simp add: DVD_def eq_def DVDJ_l)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3911
(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3912
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3913
lemma NDVD_l: "isrlfm (rsplit (NDVD i) a)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3914
  by (rule rsplit_l[where f="NDVD i" and a="a"], auto simp add: NDVD_def neq_def NDVDJ_l)
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3915
(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3916
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3917
consts rlfm :: "fm \<Rightarrow> fm"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3918
recdef rlfm "measure fmsize"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3919
  "rlfm (And p q) = conj (rlfm p) (rlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3920
  "rlfm (Or p q) = disj (rlfm p) (rlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3921
  "rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3922
  "rlfm (Iff p q) = disj (conj(rlfm p) (rlfm q)) (conj(rlfm (NOT p)) (rlfm (NOT q)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3923
  "rlfm (Lt a) = rsplit lt a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3924
  "rlfm (Le a) = rsplit le a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3925
  "rlfm (Gt a) = rsplit gt a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3926
  "rlfm (Ge a) = rsplit ge a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3927
  "rlfm (Eq a) = rsplit eq a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3928
  "rlfm (NEq a) = rsplit neq a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3929
  "rlfm (Dvd i a) = rsplit (\<lambda> t. DVD i t) a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3930
  "rlfm (NDvd i a) = rsplit (\<lambda> t. NDVD i t) a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3931
  "rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3932
  "rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3933
  "rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3934
  "rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3935
  "rlfm (NOT (NOT p)) = rlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3936
  "rlfm (NOT T) = F"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3937
  "rlfm (NOT F) = T"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3938
  "rlfm (NOT (Lt a)) = simpfm (rlfm (Ge a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3939
  "rlfm (NOT (Le a)) = simpfm (rlfm (Gt a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3940
  "rlfm (NOT (Gt a)) = simpfm (rlfm (Le a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3941
  "rlfm (NOT (Ge a)) = simpfm (rlfm (Lt a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3942
  "rlfm (NOT (Eq a)) = simpfm (rlfm (NEq a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3943
  "rlfm (NOT (NEq a)) = simpfm (rlfm (Eq a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3944
  "rlfm (NOT (Dvd i a)) = simpfm (rlfm (NDvd i a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3945
  "rlfm (NOT (NDvd i a)) = simpfm (rlfm (Dvd i a))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3946
  "rlfm p = p" (hints simp add: fmsize_pos)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3947
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3948
lemma bound0at_l : "\<lbrakk>isatom p ; bound0 p\<rbrakk> \<Longrightarrow> isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3949
  by (induct p rule: isrlfm.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3950
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3951
lemma simpfm_rl: "isrlfm p \<Longrightarrow> isrlfm (simpfm p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3952
proof (induct p)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3953
  case (Lt a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3954
  hence "bound0 (Lt a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3955
    by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3956
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3957
  {assume "bound0 (Lt a)" hence bn:"bound0 (simpfm (Lt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3958
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3959
    have "isatom (simpfm (Lt a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3960
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3961
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3962
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3963
    { assume cn1:"numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3964
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3965
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3966
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3967
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  3968
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  3969
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  3970
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3971
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3972
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3973
    with Lt a have ?case
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3974
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3975
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3976
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3977
  case (Le a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3978
  hence "bound0 (Le a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  3979
    by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3980
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3981
  { assume "bound0 (Le a)" hence bn:"bound0 (simpfm (Le a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3982
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3983
    have "isatom (simpfm (Le a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3984
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3985
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3986
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3987
    { assume cn1:"numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3988
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3989
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  3990
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  3991
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  3992
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  3993
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  3994
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3995
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3996
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  3997
    with Le a have ?case
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  3998
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  3999
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4000
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4001
  case (Gt a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4002
  hence "bound0 (Gt a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  4003
    by (cases a, simp_all, rename_tac nat a b,case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4004
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4005
  {assume "bound0 (Gt a)" hence bn:"bound0 (simpfm (Gt a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4006
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4007
    have "isatom (simpfm (Gt a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4008
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4009
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4010
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4011
    { assume cn1: "numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4012
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4013
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4014
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4015
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4016
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4017
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  4018
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4019
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4020
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4021
    with Gt a have ?case
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4022
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4023
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4024
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4025
  case (Ge a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4026
  hence "bound0 (Ge a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  4027
    by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4028
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4029
  { assume "bound0 (Ge a)" hence bn:"bound0 (simpfm (Ge a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4030
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4031
    have "isatom (simpfm (Ge a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4032
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4033
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4034
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4035
    { assume cn1:"numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4036
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4037
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4038
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4039
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4040
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4041
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  4042
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4043
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4044
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4045
    with Ge a have ?case
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4046
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4047
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4048
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4049
  case (Eq a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4050
  hence "bound0 (Eq a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  4051
    by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4052
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4053
  { assume "bound0 (Eq a)" hence bn:"bound0 (simpfm (Eq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4054
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4055
    have "isatom (simpfm (Eq a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4056
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4057
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4058
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4059
    { assume cn1:"numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4060
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4061
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4062
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4063
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4064
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4065
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  4066
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4067
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4068
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4069
    with Eq a have ?case
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4070
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4071
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4072
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4073
  case (NEq a)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4074
  hence "bound0 (NEq a) \<or> (\<exists> c e. a = CN 0 c e \<and> c > 0 \<and> numbound0 e)"
58259
52c35a59bbf5 ported Decision_Procs to new datatypes
blanchet
parents: 58249
diff changeset
  4075
    by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4076
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4077
  {assume "bound0 (NEq a)" hence bn:"bound0 (simpfm (NEq a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4078
      using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4079
    have "isatom (simpfm (NEq a))" by (cases "simpnum a", auto simp add: Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4080
    with bn bound0at_l have ?case by blast}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4081
  moreover
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4082
  { fix c e assume a: "a = CN 0 c e" and "c>0" and "numbound0 e"
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4083
    { assume cn1:"numgcd (CN 0 c (simpnum e)) \<noteq> 1" and cnz:"numgcd (CN 0 c (simpnum e)) \<noteq> 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4084
      with numgcd_pos[where t="CN 0 c (simpnum e)"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4085
      have th1:"numgcd (CN 0 c (simpnum e)) > 0" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4086
      from \<open>c > 0\<close> have th:"numgcd (CN 0 c (simpnum e)) \<le> c"
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4087
        by (simp add: numgcd_def)
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4088
      from \<open>c > 0\<close> have th': "c\<noteq>0" by auto
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4089
      from \<open>c > 0\<close> have cp: "c \<ge> 0" by simp
47142
d64fa2ca54b8 remove redundant lemmas
huffman
parents: 47108
diff changeset
  4090
      from zdiv_mono2[OF cp th1 th, simplified div_self[OF th']]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4091
      have "0 < c div numgcd (CN 0 c (simpnum e))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4092
    }
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4093
    with NEq a have ?case
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4094
      by (simp add: Let_def reducecoeff_def reducecoeffh_numbound0)}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4095
  ultimately show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4096
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4097
  case (Dvd i a) hence "bound0 (Dvd i a)" by auto hence bn:"bound0 (simpfm (Dvd i a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4098
    using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4099
  have "isatom (simpfm (Dvd i a))" by (cases "simpnum a", auto simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4100
  with bn bound0at_l show ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4101
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4102
  case (NDvd i a)  hence "bound0 (NDvd i a)" by auto hence bn:"bound0 (simpfm (NDvd i a))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4103
    using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4104
  have "isatom (simpfm (NDvd i a))" by (cases "simpnum a", auto simp add: Let_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4105
  with bn bound0at_l show ?case by blast
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4106
qed(auto simp add: conj_def imp_def disj_def iff_def Let_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4107
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4108
lemma rlfm_I:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4109
  assumes qfp: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4110
  and xp: "0 \<le> x" and x1: "x < 1"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4111
  shows "(Ifm (x#bs) (rlfm p) = Ifm (x# bs) p) \<and> isrlfm (rlfm p)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4112
  using qfp
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4113
by (induct p rule: rlfm.induct)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4114
(auto simp add: rsplit[OF xp x1 lt_mono] lt_l rsplit[OF xp x1 le_mono] le_l rsplit[OF xp x1 gt_mono] gt_l
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4115
               rsplit[OF xp x1 ge_mono] ge_l rsplit[OF xp x1 eq_mono] eq_l rsplit[OF xp x1 neq_mono] neq_l
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4116
               rsplit[OF xp x1 DVD_mono[OF xp x1]] DVD_l rsplit[OF xp x1 NDVD_mono[OF xp x1]] NDVD_l simpfm_rl)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4117
lemma rlfm_l:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4118
  assumes qfp: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4119
  shows "isrlfm (rlfm p)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4120
  using qfp lt_l gt_l ge_l le_l eq_l neq_l DVD_l NDVD_l
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  4121
by (induct p rule: rlfm.induct) (auto simp add: simpfm_rl)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4122
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4123
    (* Operations needed for Ferrante and Rackoff *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4124
lemma rminusinf_inf:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4125
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4126
  shows "\<exists> z. \<forall> x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4127
using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4128
proof (induct p rule: minusinf.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4129
  case (1 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4130
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4131
  case (2 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4132
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4133
  case (3 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4134
  from 3 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4135
  from 3 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4136
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4137
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4138
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4139
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4140
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4141
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4142
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4143
    hence "real_of_int c * x + ?e < 0" by arith
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4144
    hence "real_of_int c * x + ?e \<noteq> 0" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4145
    with xz have "?P ?z x (Eq (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4146
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4147
  hence "\<forall> x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4148
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4149
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4150
  case (4 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4151
  from 4 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4152
  from 4 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4153
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4154
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4155
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4156
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4157
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4158
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4159
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4160
    hence "real_of_int c * x + ?e < 0" by arith
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4161
    hence "real_of_int c * x + ?e \<noteq> 0" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4162
    with xz have "?P ?z x (NEq (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4163
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4164
  hence "\<forall> x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4165
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4166
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4167
  case (5 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4168
  from 5 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4169
  from 5 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4170
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4171
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4172
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4173
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4174
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4175
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4176
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4177
    hence "real_of_int c * x + ?e < 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4178
    with xz have "?P ?z x (Lt (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4179
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"]  by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4180
  hence "\<forall> x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4181
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4182
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4183
  case (6 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4184
  from 6 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4185
  from 6 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4186
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4187
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4188
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4189
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4190
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4191
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4192
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4193
    hence "real_of_int c * x + ?e < 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4194
    with xz have "?P ?z x (Le (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4195
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4196
  hence "\<forall> x < ?z. ?P ?z x (Le (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4197
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4198
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4199
  case (7 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4200
  from 7 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4201
  from 7 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4202
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4203
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4204
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4205
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4206
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4207
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4208
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4209
    hence "real_of_int c * x + ?e < 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4210
    with xz have "?P ?z x (Gt (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4211
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4212
  hence "\<forall> x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4213
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4214
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4215
  case (8 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4216
  from 8 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4217
  from 8 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4218
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4219
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4220
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4221
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4222
    assume xz: "x < ?z"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4223
    hence "(real_of_int c * x < - ?e)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4224
      by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4225
    hence "real_of_int c * x + ?e < 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4226
    with xz have "?P ?z x (Ge (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4227
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4228
  hence "\<forall> x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4229
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4230
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4231
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4232
lemma rplusinf_inf:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4233
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4234
  shows "\<exists> z. \<forall> x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4235
using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4236
proof (induct p rule: isrlfm.induct)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4237
  case (1 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4238
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4239
  case (2 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4240
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4241
  case (3 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4242
  from 3 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4243
  from 3 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4244
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4245
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4246
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4247
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4248
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4249
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4250
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4251
    hence "real_of_int c * x + ?e > 0" by arith
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4252
    hence "real_of_int c * x + ?e \<noteq> 0" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4253
    with xz have "?P ?z x (Eq (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4254
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4255
  hence "\<forall> x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4256
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4257
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4258
  case (4 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4259
  from 4 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4260
  from 4 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4261
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4262
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4263
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4264
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4265
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4266
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4267
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4268
    hence "real_of_int c * x + ?e > 0" by arith
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4269
    hence "real_of_int c * x + ?e \<noteq> 0" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4270
    with xz have "?P ?z x (NEq (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4271
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4272
  hence "\<forall> x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4273
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4274
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4275
  case (5 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4276
  from 5 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4277
  from 5 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4278
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4279
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4280
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4281
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4282
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4283
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4284
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4285
    hence "real_of_int c * x + ?e > 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4286
    with xz have "?P ?z x (Lt (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4287
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4288
  hence "\<forall> x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4289
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4290
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4291
  case (6 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4292
  from 6 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4293
  from 6 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4294
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4295
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4296
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4297
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4298
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4299
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4300
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4301
    hence "real_of_int c * x + ?e > 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4302
    with xz have "?P ?z x (Le (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4303
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4304
  hence "\<forall> x > ?z. ?P ?z x (Le (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4305
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4306
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4307
  case (7 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4308
  from 7 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4309
  from 7 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4310
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4311
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4312
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4313
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4314
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4315
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4316
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4317
    hence "real_of_int c * x + ?e > 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4318
    with xz have "?P ?z x (Gt (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4319
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4320
  hence "\<forall> x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4321
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4322
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4323
  case (8 c e)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4324
  from 8 have nb: "numbound0 e" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4325
  from 8 have cp: "real_of_int c > 0" by simp
26932
c398a3866082 avoid undeclared variables within proofs;
wenzelm
parents: 25765
diff changeset
  4326
  fix a
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4327
  let ?e="Inum (a#bs) e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4328
  let ?z = "(- ?e) / real_of_int c"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4329
  {fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4330
    assume xz: "x > ?z"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4331
    with mult_strict_right_mono [OF xz cp] cp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4332
    have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4333
    hence "real_of_int c * x + ?e > 0" by arith
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4334
    with xz have "?P ?z x (Ge (CN 0 c e))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4335
      using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"]   by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4336
  hence "\<forall> x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4337
  thus ?case by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4338
qed simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4339
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4340
lemma rminusinf_bound0:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4341
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4342
  shows "bound0 (minusinf p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4343
  using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4344
  by (induct p rule: minusinf.induct) simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4345
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4346
lemma rplusinf_bound0:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4347
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4348
  shows "bound0 (plusinf p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4349
  using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4350
  by (induct p rule: plusinf.induct) simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4351
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4352
lemma rminusinf_ex:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4353
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4354
  and ex: "Ifm (a#bs) (minusinf p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4355
  shows "\<exists> x. Ifm (x#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4356
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4357
  from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4358
  have th: "\<forall> x. Ifm (x#bs) (minusinf p)" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4359
  from rminusinf_inf[OF lp, where bs="bs"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4360
  obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4361
  from th have "Ifm ((z - 1)#bs) (minusinf p)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4362
  moreover have "z - 1 < z" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4363
  ultimately show ?thesis using z_def by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4364
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4365
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4366
lemma rplusinf_ex:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4367
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4368
  and ex: "Ifm (a#bs) (plusinf p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4369
  shows "\<exists> x. Ifm (x#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4370
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4371
  from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4372
  have th: "\<forall> x. Ifm (x#bs) (plusinf p)" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4373
  from rplusinf_inf[OF lp, where bs="bs"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4374
  obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4375
  from th have "Ifm ((z + 1)#bs) (plusinf p)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4376
  moreover have "z + 1 > z" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4377
  ultimately show ?thesis using z_def by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4378
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4379
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4380
consts
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4381
  \<Upsilon>:: "fm \<Rightarrow> (num \<times> int) list"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4382
  \<upsilon> :: "fm \<Rightarrow> (num \<times> int) \<Rightarrow> fm "
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4383
recdef \<Upsilon> "measure size"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4384
  "\<Upsilon> (And p q) = (\<Upsilon> p @ \<Upsilon> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4385
  "\<Upsilon> (Or p q) = (\<Upsilon> p @ \<Upsilon> q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4386
  "\<Upsilon> (Eq  (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4387
  "\<Upsilon> (NEq (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4388
  "\<Upsilon> (Lt  (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4389
  "\<Upsilon> (Le  (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4390
  "\<Upsilon> (Gt  (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4391
  "\<Upsilon> (Ge  (CN 0 c e)) = [(Neg e,c)]"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4392
  "\<Upsilon> p = []"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4393
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4394
recdef \<upsilon> "measure size"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4395
  "\<upsilon> (And p q) = (\<lambda> (t,n). And (\<upsilon> p (t,n)) (\<upsilon> q (t,n)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4396
  "\<upsilon> (Or p q) = (\<lambda> (t,n). Or (\<upsilon> p (t,n)) (\<upsilon> q (t,n)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4397
  "\<upsilon> (Eq (CN 0 c e)) = (\<lambda> (t,n). Eq (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4398
  "\<upsilon> (NEq (CN 0 c e)) = (\<lambda> (t,n). NEq (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4399
  "\<upsilon> (Lt (CN 0 c e)) = (\<lambda> (t,n). Lt (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4400
  "\<upsilon> (Le (CN 0 c e)) = (\<lambda> (t,n). Le (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4401
  "\<upsilon> (Gt (CN 0 c e)) = (\<lambda> (t,n). Gt (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4402
  "\<upsilon> (Ge (CN 0 c e)) = (\<lambda> (t,n). Ge (Add (Mul c t) (Mul n e)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4403
  "\<upsilon> p = (\<lambda> (t,n). p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4404
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4405
lemma \<upsilon>_I: assumes lp: "isrlfm p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4406
  and np: "real_of_int n > 0" and nbt: "numbound0 t"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4407
  shows "(Ifm (x#bs) (\<upsilon> p (t,n)) = Ifm (((Inum (x#bs) t)/(real_of_int n))#bs) p) \<and> bound0 (\<upsilon> p (t,n))" (is "(?I x (\<upsilon> p (t,n)) = ?I ?u p) \<and> ?B p" is "(_ = ?I (?t/?n) p) \<and> _" is "(_ = ?I (?N x t /_) p) \<and> _")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4408
  using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4409
proof(induct p rule: \<upsilon>.induct)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4410
  case (5 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4411
  from 5 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4412
  have "?I ?u (Lt (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) < 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4413
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4414
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) < 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4415
    by (simp only: pos_less_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4416
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4417
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) < 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4418
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4419
  finally show ?case using nbt nb by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4420
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4421
  case (6 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4422
  from 6 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4423
  have "?I ?u (Le (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) \<le> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4424
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4425
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) \<le> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4426
    by (simp only: pos_le_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4427
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4428
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) \<le> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4429
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4430
  finally show ?case using nbt nb by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4431
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4432
  case (7 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4433
  from 7 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4434
  have "?I ?u (Gt (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) > 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4435
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4436
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) > 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4437
    by (simp only: pos_divide_less_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4438
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4439
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) > 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4440
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4441
  finally show ?case using nbt nb by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4442
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4443
  case (8 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4444
  from 8 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4445
  have "?I ?u (Ge (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) \<ge> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4446
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4447
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) \<ge> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4448
    by (simp only: pos_divide_le_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4449
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4450
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) \<ge> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4451
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4452
  finally show ?case using nbt nb by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4453
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4454
  case (3 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4455
  from 3 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4456
  from np have np: "real_of_int n \<noteq> 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4457
  have "?I ?u (Eq (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) = 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4458
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4459
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) = 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4460
    by (simp only: nonzero_eq_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4461
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4462
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) = 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4463
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4464
  finally show ?case using nbt nb by (simp add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4465
next
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4466
  case (4 c e)
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4467
  from 4 have cp: "c >0" and nb: "numbound0 e" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4468
  from np have np: "real_of_int n \<noteq> 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4469
  have "?I ?u (NEq (CN 0 c e)) = (real_of_int c *(?t/?n) + (?N x e) \<noteq> 0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4470
    using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4471
  also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) \<noteq> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4472
    by (simp only: nonzero_eq_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
64240
eabf80376aab more standardized names
haftmann
parents: 63600
diff changeset
  4473
      and b="0", simplified div_0]) (simp only: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4474
  also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) \<noteq> 0)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4475
    using np by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4476
  finally show ?case using nbt nb by (simp add: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4477
qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real_of_int n" and b'="x"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4478
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4479
lemma \<Upsilon>_l:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4480
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4481
  shows "\<forall> (t,k) \<in> set (\<Upsilon> p). numbound0 t \<and> k >0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4482
using lp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4483
by(induct p rule: \<Upsilon>.induct)  auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4484
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4485
lemma rminusinf_\<Upsilon>:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4486
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4487
  and nmi: "\<not> (Ifm (a#bs) (minusinf p))" (is "\<not> (Ifm (a#bs) (?M p))")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4488
  and ex: "Ifm (x#bs) p" (is "?I x p")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4489
  shows "\<exists> (s,m) \<in> set (\<Upsilon> p). x \<ge> Inum (a#bs) s / real_of_int m" (is "\<exists> (s,m) \<in> ?U p. x \<ge> ?N a s / real_of_int m")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4490
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4491
  have "\<exists> (s,m) \<in> set (\<Upsilon> p). real_of_int m * x \<ge> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real_of_int m *x \<ge> ?N a s")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4492
    using lp nmi ex
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4493
    by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4494
  then obtain s m where smU: "(s,m) \<in> set (\<Upsilon> p)" and mx: "real_of_int m * x \<ge> ?N a s" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4495
  from \<Upsilon>_l[OF lp] smU have mp: "real_of_int m > 0" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4496
  from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real_of_int m"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4497
    by (auto simp add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4498
  thus ?thesis using smU by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4499
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4500
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4501
lemma rplusinf_\<Upsilon>:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4502
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4503
  and nmi: "\<not> (Ifm (a#bs) (plusinf p))" (is "\<not> (Ifm (a#bs) (?M p))")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4504
  and ex: "Ifm (x#bs) p" (is "?I x p")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4505
  shows "\<exists> (s,m) \<in> set (\<Upsilon> p). x \<le> Inum (a#bs) s / real_of_int m" (is "\<exists> (s,m) \<in> ?U p. x \<le> ?N a s / real_of_int m")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4506
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4507
  have "\<exists> (s,m) \<in> set (\<Upsilon> p). real_of_int m * x \<le> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real_of_int m *x \<le> ?N a s")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4508
    using lp nmi ex
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4509
    by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4510
  then obtain s m where smU: "(s,m) \<in> set (\<Upsilon> p)" and mx: "real_of_int m * x \<le> ?N a s" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4511
  from \<Upsilon>_l[OF lp] smU have mp: "real_of_int m > 0" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4512
  from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real_of_int m"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4513
    by (auto simp add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4514
  thus ?thesis using smU by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4515
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4516
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4517
lemma lin_dense:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4518
  assumes lp: "isrlfm p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4519
  and noS: "\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda> (t,n). Inum (x#bs) t / real_of_int n) ` set (\<Upsilon> p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4520
  (is "\<forall> t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda> (t,n). ?N x t / real_of_int n ) ` (?U p)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4521
  and lx: "l < x" and xu:"x < u" and px:" Ifm (x#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4522
  and ly: "l < y" and yu: "y < u"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4523
  shows "Ifm (y#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4524
using lp px noS
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4525
proof (induct p rule: isrlfm.induct)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4526
  case (5 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4527
  from 5 have "x * real_of_int c + ?N x e < 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4528
  hence pxc: "x < (- ?N x e) / real_of_int c"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4529
    by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4530
  from 5 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4531
  with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4532
  hence "y < (- ?N x e) / real_of_int c \<or> y > (-?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4533
  moreover {assume y: "y < (-?N x e)/ real_of_int c"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4534
    hence "y * real_of_int c < - ?N x e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4535
      by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4536
    hence "real_of_int c * y + ?N x e < 0" by (simp add: algebra_simps)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4537
    hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4538
  moreover {assume y: "y > (- ?N x e) / real_of_int c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4539
    with yu have eu: "u > (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4540
    with noSc ly yu have "(- ?N x e) / real_of_int c \<le> l" by (cases "(- ?N x e) / real_of_int c > l", auto)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4541
    with lx pxc have "False" by auto
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4542
    hence ?case by simp }
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4543
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4544
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4545
  case (6 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4546
  from 6 have "x * real_of_int c + ?N x e \<le> 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4547
  hence pxc: "x \<le> (- ?N x e) / real_of_int c"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4548
    by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4549
  from 6 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4550
  with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4551
  hence "y < (- ?N x e) / real_of_int c \<or> y > (-?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4552
  moreover {assume y: "y < (-?N x e)/ real_of_int c"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4553
    hence "y * real_of_int c < - ?N x e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4554
      by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4555
    hence "real_of_int c * y + ?N x e < 0" by (simp add: algebra_simps)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4556
    hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4557
  moreover {assume y: "y > (- ?N x e) / real_of_int c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4558
    with yu have eu: "u > (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4559
    with noSc ly yu have "(- ?N x e) / real_of_int c \<le> l" by (cases "(- ?N x e) / real_of_int c > l", auto)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4560
    with lx pxc have "False" by auto
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4561
    hence ?case by simp }
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4562
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4563
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4564
  case (7 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4565
  from 7 have "x * real_of_int c + ?N x e > 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4566
  hence pxc: "x > (- ?N x e) / real_of_int c"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4567
    by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4568
  from 7 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4569
  with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4570
  hence "y < (- ?N x e) / real_of_int c \<or> y > (-?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4571
  moreover {assume y: "y > (-?N x e)/ real_of_int c"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4572
    hence "y * real_of_int c > - ?N x e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4573
      by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4574
    hence "real_of_int c * y + ?N x e > 0" by (simp add: algebra_simps)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4575
    hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4576
  moreover {assume y: "y < (- ?N x e) / real_of_int c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4577
    with ly have eu: "l < (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4578
    with noSc ly yu have "(- ?N x e) / real_of_int c \<ge> u" by (cases "(- ?N x e) / real_of_int c > l", auto)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4579
    with xu pxc have "False" by auto
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4580
    hence ?case by simp }
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4581
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4582
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4583
  case (8 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4584
  from 8 have "x * real_of_int c + ?N x e \<ge> 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4585
  hence pxc: "x \<ge> (- ?N x e) / real_of_int c"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4586
    by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4587
  from 8 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4588
  with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4589
  hence "y < (- ?N x e) / real_of_int c \<or> y > (-?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4590
  moreover {assume y: "y > (-?N x e)/ real_of_int c"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4591
    hence "y * real_of_int c > - ?N x e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4592
      by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4593
    hence "real_of_int c * y + ?N x e > 0" by (simp add: algebra_simps)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4594
    hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4595
  moreover {assume y: "y < (- ?N x e) / real_of_int c"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4596
    with ly have eu: "l < (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4597
    with noSc ly yu have "(- ?N x e) / real_of_int c \<ge> u" by (cases "(- ?N x e) / real_of_int c > l", auto)
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4598
    with xu pxc have "False" by auto
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4599
    hence ?case by simp }
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4600
  ultimately show ?case by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4601
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4602
  case (3 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4603
  from cp have cnz: "real_of_int c \<noteq> 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4604
  from 3 have "x * real_of_int c + ?N x e = 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4605
  hence pxc: "x = (- ?N x e) / real_of_int c"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4606
    by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4607
  from 3 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4608
  with lx xu have yne: "x \<noteq> - ?N x e / real_of_int c" by auto
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4609
  with pxc show ?case by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4610
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4611
  case (4 c e) hence cp: "real_of_int c > 0" and nb: "numbound0 e" by simp_all
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4612
  from cp have cnz: "real_of_int c \<noteq> 0" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4613
  from 4 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4614
  with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4615
  hence "y* real_of_int c \<noteq> -?N x e"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4616
    by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4617
  hence "y* real_of_int c + ?N x e \<noteq> 0" by (simp add: algebra_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4618
  thus ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"]
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4619
    by (simp add: algebra_simps)
41849
1a65b780bd56 Some cleaning up
nipkow
parents: 41839
diff changeset
  4620
qed (auto simp add: numbound0_I[where bs="bs" and b="y" and b'="x"])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4621
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4622
lemma rinf_\<Upsilon>:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4623
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4624
  and nmi: "\<not> (Ifm (x#bs) (minusinf p))" (is "\<not> (Ifm (x#bs) (?M p))")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4625
  and npi: "\<not> (Ifm (x#bs) (plusinf p))" (is "\<not> (Ifm (x#bs) (?P p))")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4626
  and ex: "\<exists> x.  Ifm (x#bs) p" (is "\<exists> x. ?I x p")
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  4627
  shows "\<exists> (l,n) \<in> set (\<Upsilon> p). \<exists> (s,m) \<in> set (\<Upsilon> p).
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4628
    ?I ((Inum (x#bs) l / real_of_int n + Inum (x#bs) s / real_of_int m) / 2) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4629
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4630
  let ?N = "\<lambda> x t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4631
  let ?U = "set (\<Upsilon> p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4632
  from ex obtain a where pa: "?I a p" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4633
  from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4634
  have nmi': "\<not> (?I a (?M p))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4635
  from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4636
  have npi': "\<not> (?I a (?P p))" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4637
  have "\<exists> (l,n) \<in> set (\<Upsilon> p). \<exists> (s,m) \<in> set (\<Upsilon> p). ?I ((?N a l/real_of_int n + ?N a s /real_of_int m) / 2) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4638
  proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4639
    let ?M = "(\<lambda> (t,c). ?N a t / real_of_int c) ` ?U"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4640
    have fM: "finite ?M" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4641
    from rminusinf_\<Upsilon>[OF lp nmi pa] rplusinf_\<Upsilon>[OF lp npi pa]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4642
    have "\<exists> (l,n) \<in> set (\<Upsilon> p). \<exists> (s,m) \<in> set (\<Upsilon> p). a \<le> ?N x l / real_of_int n \<and> a \<ge> ?N x s / real_of_int m" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4643
    then obtain "t" "n" "s" "m" where
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4644
      tnU: "(t,n) \<in> ?U" and smU: "(s,m) \<in> ?U"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4645
      and xs1: "a \<le> ?N x s / real_of_int m" and tx1: "a \<ge> ?N x t / real_of_int n" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4646
    from \<Upsilon>_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 have xs: "a \<le> ?N a s / real_of_int m" and tx: "a \<ge> ?N a t / real_of_int n" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4647
    from tnU have Mne: "?M \<noteq> {}" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4648
    hence Une: "?U \<noteq> {}" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4649
    let ?l = "Min ?M"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4650
    let ?u = "Max ?M"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4651
    have linM: "?l \<in> ?M" using fM Mne by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4652
    have uinM: "?u \<in> ?M" using fM Mne by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4653
    have tnM: "?N a t / real_of_int n \<in> ?M" using tnU by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4654
    have smM: "?N a s / real_of_int m \<in> ?M" using smU by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4655
    have lM: "\<forall> t\<in> ?M. ?l \<le> t" using Mne fM by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4656
    have Mu: "\<forall> t\<in> ?M. t \<le> ?u" using Mne fM by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4657
    have "?l \<le> ?N a t / real_of_int n" using tnM Mne by simp hence lx: "?l \<le> a" using tx by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4658
    have "?N a s / real_of_int m \<le> ?u" using smM Mne by simp hence xu: "a \<le> ?u" using xs by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4659
    from finite_set_intervals2[where P="\<lambda> x. ?I x p",OF pa lx xu linM uinM fM lM Mu]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4660
    have "(\<exists> s\<in> ?M. ?I s p) \<or>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4661
      (\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p)" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4662
    moreover { fix u assume um: "u\<in> ?M" and pu: "?I u p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4663
      hence "\<exists> (tu,nu) \<in> ?U. u = ?N a tu / real_of_int nu" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4664
      then obtain "tu" "nu" where tuU: "(tu,nu) \<in> ?U" and tuu:"u= ?N a tu / real_of_int nu" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4665
      have "(u + u) / 2 = u" by auto with pu tuu
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4666
      have "?I (((?N a tu / real_of_int nu) + (?N a tu / real_of_int nu)) / 2) p" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4667
      with tuU have ?thesis by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4668
    moreover{
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4669
      assume "\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4670
      then obtain t1 and t2 where t1M: "t1 \<in> ?M" and t2M: "t2\<in> ?M"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  4671
        and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" and t1x: "t1 < a" and xt2: "a < t2" and px: "?I a p"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  4672
        by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4673
      from t1M have "\<exists> (t1u,t1n) \<in> ?U. t1 = ?N a t1u / real_of_int t1n" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4674
      then obtain "t1u" "t1n" where t1uU: "(t1u,t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real_of_int t1n" by blast
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4675
      from t2M have "\<exists> (t2u,t2n) \<in> ?U. t2 = ?N a t2u / real_of_int t2n" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4676
      then obtain "t2u" "t2n" where t2uU: "(t2u,t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real_of_int t2n" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4677
      from t1x xt2 have t1t2: "t1 < t2" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4678
      let ?u = "(t1 + t2) / 2"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4679
      from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4680
      from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4681
      with t1uU t2uU t1u t2u have ?thesis by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4682
    ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4683
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4684
  then obtain "l" "n" "s"  "m" where lnU: "(l,n) \<in> ?U" and smU:"(s,m) \<in> ?U"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4685
    and pu: "?I ((?N a l / real_of_int n + ?N a s / real_of_int m) / 2) p" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4686
  from lnU smU \<Upsilon>_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4687
  from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4688
    numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4689
  have "?I ((?N x l / real_of_int n + ?N x s / real_of_int m) / 2) p" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4690
  with lnU smU
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4691
  show ?thesis by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4692
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4693
    (* The Ferrante - Rackoff Theorem *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4694
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4695
theorem fr_eq:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4696
  assumes lp: "isrlfm p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4697
  shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,n) \<in> set (\<Upsilon> p). \<exists> (s,m) \<in> set (\<Upsilon> p). Ifm ((((Inum (x#bs) t)/  real_of_int n + (Inum (x#bs) s) / real_of_int m) /2)#bs) p))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4698
  (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4699
proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4700
  assume px: "\<exists> x. ?I x p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4701
  have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4702
  moreover {assume "?M \<or> ?P" hence "?D" by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4703
  moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4704
    from rinf_\<Upsilon>[OF lp nmi npi] have "?F" using px by blast hence "?D" by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4705
  ultimately show "?D" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4706
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4707
  assume "?D"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4708
  moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4709
  moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4710
  moreover {assume f:"?F" hence "?E" by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4711
  ultimately show "?E" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4712
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4713
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4714
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4715
lemma fr_eq_\<upsilon>:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4716
  assumes lp: "isrlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4717
  shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,k) \<in> set (\<Upsilon> p). \<exists> (s,l) \<in> set (\<Upsilon> p). Ifm (x#bs) (\<upsilon> p (Add(Mul l t) (Mul k s) , 2*k*l))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4718
  (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4719
proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4720
  assume px: "\<exists> x. ?I x p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4721
  have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4722
  moreover {assume "?M \<or> ?P" hence "?D" by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4723
  moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4724
    let ?f ="\<lambda> (t,n). Inum (x#bs) t / real_of_int n"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4725
    let ?N = "\<lambda> t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4726
    {fix t n s m assume "(t,n)\<in> set (\<Upsilon> p)" and "(s,m) \<in> set (\<Upsilon> p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4727
      with \<Upsilon>_l[OF lp] have tnb: "numbound0 t" and np:"real_of_int n > 0" and snb: "numbound0 s" and mp:"real_of_int m > 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  4728
        by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4729
      let ?st = "Add (Mul m t) (Mul n s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4730
      from np mp have mnp: "real_of_int (2*n*m) > 0" by (simp add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4731
      from tnb snb have st_nb: "numbound0 ?st" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4732
      have st: "(?N t / real_of_int n + ?N s / real_of_int m)/2 = ?N ?st / real_of_int (2*n*m)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 31952
diff changeset
  4733
        using mnp mp np by (simp add: algebra_simps add_divide_distrib)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4734
      from \<upsilon>_I[OF lp mnp st_nb, where x="x" and bs="bs"]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4735
      have "?I x (\<upsilon> p (?st,2*n*m)) = ?I ((?N t / real_of_int n + ?N s / real_of_int m) /2) p" by (simp only: st[symmetric])}
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4736
    with rinf_\<Upsilon>[OF lp nmi npi px] have "?F" by blast hence "?D" by blast}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4737
  ultimately show "?D" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4738
next
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4739
  assume "?D"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4740
  moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4741
  moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4742
  moreover {fix t k s l assume "(t,k) \<in> set (\<Upsilon> p)" and "(s,l) \<in> set (\<Upsilon> p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4743
    and px:"?I x (\<upsilon> p (Add (Mul l t) (Mul k s), 2*k*l))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4744
    with \<Upsilon>_l[OF lp] have tnb: "numbound0 t" and np:"real_of_int k > 0" and snb: "numbound0 s" and mp:"real_of_int l > 0" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4745
    let ?st = "Add (Mul l t) (Mul k s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4746
    from np mp have mnp: "real_of_int (2*k*l) > 0" by (simp add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4747
    from tnb snb have st_nb: "numbound0 ?st" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4748
    from \<upsilon>_I[OF lp mnp st_nb, where bs="bs"] px have "?E" by auto}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4749
  ultimately show "?E" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4750
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4751
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  4752
text\<open>The overall Part\<close>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4753
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4754
lemma real_ex_int_real01:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4755
  shows "(\<exists> (x::real). P x) = (\<exists> (i::int) (u::real). 0\<le> u \<and> u< 1 \<and> P (real_of_int i + u))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4756
proof(auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4757
  fix x
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4758
  assume Px: "P x"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61762
diff changeset
  4759
  let ?i = "\<lfloor>x\<rfloor>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4760
  let ?u = "x - real_of_int ?i"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4761
  have "x = real_of_int ?i + ?u" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4762
  hence "P (real_of_int ?i + ?u)" using Px by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4763
  moreover have "real_of_int ?i \<le> x" using of_int_floor_le by simp hence "0 \<le> ?u" by arith
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4764
  moreover have "?u < 1" using real_of_int_floor_add_one_gt[where r="x"] by arith
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4765
  ultimately show "(\<exists> (i::int) (u::real). 0\<le> u \<and> u< 1 \<and> P (real_of_int i + u))" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4766
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4767
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4768
fun exsplitnum :: "num \<Rightarrow> num" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4769
  "exsplitnum (C c) = (C c)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4770
| "exsplitnum (Bound 0) = Add (Bound 0) (Bound 1)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4771
| "exsplitnum (Bound n) = Bound (n+1)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4772
| "exsplitnum (Neg a) = Neg (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4773
| "exsplitnum (Add a b) = Add (exsplitnum a) (exsplitnum b) "
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4774
| "exsplitnum (Sub a b) = Sub (exsplitnum a) (exsplitnum b) "
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4775
| "exsplitnum (Mul c a) = Mul c (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4776
| "exsplitnum (Floor a) = Floor (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4777
| "exsplitnum (CN 0 c a) = CN 0 c (Add (Mul c (Bound 1)) (exsplitnum a))"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4778
| "exsplitnum (CN n c a) = CN (n+1) c (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4779
| "exsplitnum (CF c s t) = CF c (exsplitnum s) (exsplitnum t)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4780
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4781
fun exsplit :: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4782
  "exsplit (Lt a) = Lt (exsplitnum a)"
41839
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4783
| "exsplit (Le a) = Le (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4784
| "exsplit (Gt a) = Gt (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4785
| "exsplit (Ge a) = Ge (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4786
| "exsplit (Eq a) = Eq (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4787
| "exsplit (NEq a) = NEq (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4788
| "exsplit (Dvd i a) = Dvd i (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4789
| "exsplit (NDvd i a) = NDvd i (exsplitnum a)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4790
| "exsplit (And p q) = And (exsplit p) (exsplit q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4791
| "exsplit (Or p q) = Or (exsplit p) (exsplit q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4792
| "exsplit (Imp p q) = Imp (exsplit p) (exsplit q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4793
| "exsplit (Iff p q) = Iff (exsplit p) (exsplit q)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4794
| "exsplit (NOT p) = NOT (exsplit p)"
421a795cee05 recdef -> fun(ction)
krauss
parents: 41836
diff changeset
  4795
| "exsplit p = p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4796
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4797
lemma exsplitnum:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4798
  "Inum (x#y#bs) (exsplitnum t) = Inum ((x+y) #bs) t"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4799
  by(induct t rule: exsplitnum.induct) (simp_all add: algebra_simps)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4800
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4801
lemma exsplit:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4802
  assumes qfp: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4803
  shows "Ifm (x#y#bs) (exsplit p) = Ifm ((x+y)#bs) p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4804
using qfp exsplitnum[where x="x" and y="y" and bs="bs"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4805
by(induct p rule: exsplit.induct) simp_all
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4806
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4807
lemma splitex:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4808
  assumes qf: "qfree p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4809
  shows "(Ifm bs (E p)) = (\<exists> (i::int). Ifm (real_of_int i#bs) (E (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) (exsplit p))))" (is "?lhs = ?rhs")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4810
proof-
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4811
  have "?rhs = (\<exists> (i::int). \<exists> x. 0\<le> x \<and> x < 1 \<and> Ifm (x#(real_of_int i)#bs) (exsplit p))"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  4812
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4813
  also have "\<dots> = (\<exists> (i::int). \<exists> x. 0\<le> x \<and> x < 1 \<and> Ifm ((real_of_int i + x) #bs) p)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  4814
    by (simp only: exsplit[OF qf] ac_simps)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4815
  also have "\<dots> = (\<exists> x. Ifm (x#bs) p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4816
    by (simp only: real_ex_int_real01[where P="\<lambda> x. Ifm (x#bs) p"])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4817
  finally show ?thesis by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4818
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4819
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4820
    (* Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff. *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4821
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  4822
definition ferrack01 :: "fm \<Rightarrow> fm" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4823
  "ferrack01 p \<equiv> (let p' = rlfm(And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p);
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4824
                    U = remdups(map simp_num_pair
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4825
                     (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m))
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4826
                           (alluopairs (\<Upsilon> p'))))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4827
  in decr (evaldjf (\<upsilon> p') U ))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4828
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4829
lemma fr_eq_01:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4830
  assumes qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4831
  shows "(\<exists> x. Ifm (x#bs) (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p)) = (\<exists> (t,n) \<in> set (\<Upsilon> (rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p))). \<exists> (s,m) \<in> set (\<Upsilon> (rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p))). Ifm (x#bs) (\<upsilon> (rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p)) (Add (Mul m t) (Mul n s), 2*n*m)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4832
  (is "(\<exists> x. ?I x ?q) = ?F")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4833
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4834
  let ?rq = "rlfm ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4835
  let ?M = "?I x (minusinf ?rq)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4836
  let ?P = "?I x (plusinf ?rq)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4837
  have MF: "?M = False"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  4838
    apply (simp add: Let_def reducecoeff_def numgcd_def rsplit_def ge_def lt_def conj_def disj_def)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  4839
    by (cases "rlfm p = And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))", simp_all)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  4840
  have PF: "?P = False" apply (simp add: Let_def reducecoeff_def numgcd_def rsplit_def ge_def lt_def conj_def disj_def)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 58310
diff changeset
  4841
    by (cases "rlfm p = And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))", simp_all)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4842
  have "(\<exists> x. ?I x ?q ) =
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4843
    ((?I x (minusinf ?rq)) \<or> (?I x (plusinf ?rq )) \<or> (\<exists> (t,n) \<in> set (\<Upsilon> ?rq). \<exists> (s,m) \<in> set (\<Upsilon> ?rq ). ?I x (\<upsilon> ?rq (Add (Mul m t) (Mul n s), 2*n*m))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4844
    (is "(\<exists> x. ?I x ?q) = (?M \<or> ?P \<or> ?F)" is "?E = ?D")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4845
  proof
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4846
    assume "\<exists> x. ?I x ?q"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4847
    then obtain x where qx: "?I x ?q" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4848
    hence xp: "0\<le> x" and x1: "x< 1" and px: "?I x p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4849
      by (auto simp add: rsplit_def lt_def ge_def rlfm_I[OF qf])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4850
    from qx have "?I x ?rq "
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4851
      by (simp add: rsplit_def lt_def ge_def rlfm_I[OF qf xp x1])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4852
    hence lqx: "?I x ?rq " using simpfm[where p="?rq" and bs="x#bs"] by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4853
    from qf have qfq:"isrlfm ?rq"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4854
      by (auto simp add: rsplit_def lt_def ge_def rlfm_I[OF qf xp x1])
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  4855
    with lqx fr_eq_\<upsilon>[OF qfq] show "?M \<or> ?P \<or> ?F" by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4856
  next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4857
    assume D: "?D"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4858
    let ?U = "set (\<Upsilon> ?rq )"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4859
    from MF PF D have "?F" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4860
    then obtain t n s m where aU:"(t,n) \<in> ?U" and bU:"(s,m)\<in> ?U" and rqx: "?I x (\<upsilon> ?rq (Add (Mul m t) (Mul n s), 2*n*m))" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4861
    from qf have lrq:"isrlfm ?rq"using rlfm_l[OF qf]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4862
      by (auto simp add: rsplit_def lt_def ge_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4863
    from aU bU \<Upsilon>_l[OF lrq] have tnb: "numbound0 t" and np:"real_of_int n > 0" and snb: "numbound0 s" and mp:"real_of_int m > 0" by (auto simp add: split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4864
    let ?st = "Add (Mul m t) (Mul n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4865
    from tnb snb have stnb: "numbound0 ?st" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4866
    from np mp have mnp: "real_of_int (2*n*m) > 0" by (simp add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4867
    from conjunct1[OF \<upsilon>_I[OF lrq mnp stnb, where bs="bs" and x="x"], symmetric] rqx
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4868
    have "\<exists> x. ?I x ?rq" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4869
    thus "?E"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4870
      using rlfm_I[OF qf] by (auto simp add: rsplit_def lt_def ge_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4871
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4872
  with MF PF show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4873
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4874
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4875
lemma \<Upsilon>_cong_aux:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4876
  assumes Ul: "\<forall> (t,n) \<in> set U. numbound0 t \<and> n >0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4877
  shows "((\<lambda> (t,n). Inum (x#bs) t /real_of_int n) ` (set (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) (alluopairs U)))) = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real_of_int n + Inum (x#bs) s /real_of_int m)/2) ` (set U \<times> set U))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4878
  (is "?lhs = ?rhs")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4879
proof(auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4880
  fix t n s m
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4881
  assume "((t,n),(s,m)) \<in> set (alluopairs U)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4882
  hence th: "((t,n),(s,m)) \<in> (set U \<times> set U)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4883
    using alluopairs_set1[where xs="U"] by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4884
  let ?N = "\<lambda> t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4885
  let ?st= "Add (Mul m t) (Mul n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4886
  from Ul th have mnz: "m \<noteq> 0" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4887
  from Ul th have  nnz: "n \<noteq> 0" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4888
  have st: "(?N t / real_of_int n + ?N s / real_of_int m)/2 = ?N ?st / real_of_int (2*n*m)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4889
   using mnz nnz by (simp add: algebra_simps add_divide_distrib)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4890
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4891
  thus "(real_of_int m *  Inum (x # bs) t + real_of_int n * Inum (x # bs) s) /
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4892
       (2 * real_of_int n * real_of_int m)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4893
       \<in> (\<lambda>((t, n), s, m).
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4894
             (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2) `
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4895
         (set U \<times> set U)"using mnz nnz th
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4896
    apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4897
    by (rule_tac x="(s,m)" in bexI,simp_all)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4898
  (rule_tac x="(t,n)" in bexI,simp_all add: mult.commute)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4899
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4900
  fix t n s m
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4901
  assume tnU: "(t,n) \<in> set U" and smU:"(s,m) \<in> set U"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4902
  let ?N = "\<lambda> t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4903
  let ?st= "Add (Mul m t) (Mul n s)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4904
  from Ul smU have mnz: "m \<noteq> 0" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4905
  from Ul tnU have  nnz: "n \<noteq> 0" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4906
  have st: "(?N t / real_of_int n + ?N s / real_of_int m)/2 = ?N ?st / real_of_int (2*n*m)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4907
   using mnz nnz by (simp add: algebra_simps add_divide_distrib)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4908
 let ?P = "\<lambda> (t',n') (s',m'). (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m)/2 = (Inum (x # bs) t' / real_of_int n' + Inum (x # bs) s' / real_of_int m')/2"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4909
 have Pc:"\<forall> a b. ?P a b = ?P b a"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4910
   by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4911
 from Ul alluopairs_set1 have Up:"\<forall> ((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4912
 from alluopairs_ex[OF Pc, where xs="U"] tnU smU
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4913
 have th':"\<exists> ((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4914
   by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4915
 then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4916
   and Pts': "?P (t',n') (s',m')" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4917
 from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4918
 let ?st' = "Add (Mul m' t') (Mul n' s')"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4919
   have st': "(?N t' / real_of_int n' + ?N s' / real_of_int m')/2 = ?N ?st' / real_of_int (2*n'*m')"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4920
   using mnz' nnz' by (simp add: algebra_simps add_divide_distrib)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4921
 from Pts' have
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4922
   "(Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m)/2 = (Inum (x # bs) t' / real_of_int n' + Inum (x # bs) s' / real_of_int m')/2" by simp
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4923
 also have "\<dots> = ((\<lambda>(t, n). Inum (x # bs) t / real_of_int n) ((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t',n'),(s',m'))))" by (simp add: st')
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4924
 finally show "(Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4925
          \<in> (\<lambda>(t, n). Inum (x # bs) t / real_of_int n) `
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4926
            (\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) `
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4927
            set (alluopairs U)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4928
   using ts'_U by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4929
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4930
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4931
lemma \<Upsilon>_cong:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4932
  assumes lp: "isrlfm p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4933
  and UU': "((\<lambda> (t,n). Inum (x#bs) t /real_of_int n) ` U') = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real_of_int n + Inum (x#bs) s /real_of_int m)/2) ` (U \<times> U))" (is "?f ` U' = ?g ` (U\<times>U)")
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4934
  and U: "\<forall> (t,n) \<in> U. numbound0 t \<and> n > 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4935
  and U': "\<forall> (t,n) \<in> U'. numbound0 t \<and> n > 0"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4936
  shows "(\<exists> (t,n) \<in> U. \<exists> (s,m) \<in> U. Ifm (x#bs) (\<upsilon> p (Add (Mul m t) (Mul n s),2*n*m))) = (\<exists> (t,n) \<in> U'. Ifm (x#bs) (\<upsilon> p (t,n)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4937
  (is "?lhs = ?rhs")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4938
proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4939
  assume ?lhs
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4940
  then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4941
    Pst: "Ifm (x#bs) (\<upsilon> p (Add (Mul m t) (Mul n s),2*n*m))" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4942
  let ?N = "\<lambda> t. Inum (x#bs) t"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4943
  from tnU smU U have tnb: "numbound0 t" and np: "n > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4944
    and snb: "numbound0 s" and mp:"m > 0"  by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4945
  let ?st= "Add (Mul m t) (Mul n s)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4946
  from np mp have mnp: "real_of_int (2*n*m) > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4947
      by (simp add: mult.commute of_int_mult[symmetric] del: of_int_mult)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4948
    from tnb snb have stnb: "numbound0 ?st" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4949
  have st: "(?N t / real_of_int n + ?N s / real_of_int m)/2 = ?N ?st / real_of_int (2*n*m)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4950
   using mp np by (simp add: algebra_simps add_divide_distrib)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4951
  from tnU smU UU' have "?g ((t,n),(s,m)) \<in> ?f ` U'" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4952
  hence "\<exists> (t',n') \<in> U'. ?g ((t,n),(s,m)) = ?f (t',n')"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4953
    by auto (rule_tac x="(a,b)" in bexI, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4954
  then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t,n),(s,m)) = ?f (t',n')" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4955
  from U' tnU' have tnb': "numbound0 t'" and np': "real_of_int n' > 0" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4956
  from \<upsilon>_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4957
  have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real_of_int (2 * n * m) # bs) p" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4958
  from conjunct1[OF \<upsilon>_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric] th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4959
  have "Ifm (x # bs) (\<upsilon> p (t', n')) " by (simp only: st)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4960
  then show ?rhs using tnU' by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4961
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4962
  assume ?rhs
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4963
  then obtain t' n' where tnU': "(t',n') \<in> U'" and Pt': "Ifm (x # bs) (\<upsilon> p (t', n'))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4964
    by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4965
  from tnU' UU' have "?f (t',n') \<in> ?g ` (U\<times>U)" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4966
  hence "\<exists> ((t,n),(s,m)) \<in> (U\<times>U). ?f (t',n') = ?g ((t,n),(s,m))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4967
    by auto (rule_tac x="(a,b)" in bexI, auto)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4968
  then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4969
    th: "?f (t',n') = ?g((t,n),(s,m)) "by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4970
    let ?N = "\<lambda> t. Inum (x#bs) t"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4971
  from tnU smU U have tnb: "numbound0 t" and np: "n > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4972
    and snb: "numbound0 s" and mp:"m > 0"  by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4973
  let ?st= "Add (Mul m t) (Mul n s)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4974
  from np mp have mnp: "real_of_int (2*n*m) > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4975
      by (simp add: mult.commute of_int_mult[symmetric] del: of_int_mult)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4976
    from tnb snb have stnb: "numbound0 ?st" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4977
  have st: "(?N t / real_of_int n + ?N s / real_of_int m)/2 = ?N ?st / real_of_int (2*n*m)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29265
diff changeset
  4978
   using mp np by (simp add: algebra_simps add_divide_distrib)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4979
  from U' tnU' have tnb': "numbound0 t'" and np': "real_of_int n' > 0" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4980
  from \<upsilon>_I[OF lp np' tnb', where bs="bs" and x="x",simplified th[simplified split_def fst_conv snd_conv] st] Pt'
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4981
  have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real_of_int (2 * n * m) # bs) p" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4982
  with \<upsilon>_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4983
qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4984
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  4985
lemma ferrack01:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4986
  assumes qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4987
  shows "((\<exists> x. Ifm (x#bs) (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p)) = (Ifm bs (ferrack01 p))) \<and> qfree (ferrack01 p)" (is "(?lhs = ?rhs) \<and> _")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4988
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4989
  let ?I = "\<lambda> x p. Ifm (x#bs) p"
26935
ee6bcb1b8953 avoid undeclared variables within proofs;
wenzelm
parents: 26932
diff changeset
  4990
  fix x
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4991
  let ?N = "\<lambda> t. Inum (x#bs) t"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4992
  let ?q = "rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4993
  let ?U = "\<Upsilon> ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4994
  let ?Up = "alluopairs ?U"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4995
  let ?g = "\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4996
  let ?S = "map ?g ?Up"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4997
  let ?SS = "map simp_num_pair ?S"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  4998
  let ?Y = "remdups ?SS"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  4999
  let ?f= "(\<lambda> (t,n). ?N t / real_of_int n)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5000
  let ?h = "\<lambda> ((t,n),(s,m)). (?N t/real_of_int n + ?N s/ real_of_int m) /2"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5001
  let ?F = "\<lambda> p. \<exists> a \<in> set (\<Upsilon> p). \<exists> b \<in> set (\<Upsilon> p). ?I x (\<upsilon> p (?g(a,b)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5002
  let ?ep = "evaldjf (\<upsilon> ?q) ?Y"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5003
  from rlfm_l[OF qf] have lq: "isrlfm ?q"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30649
diff changeset
  5004
    by (simp add: rsplit_def lt_def ge_def conj_def disj_def Let_def reducecoeff_def numgcd_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5005
  from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<le> (set ?U \<times> set ?U)" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5006
  from \<Upsilon>_l[OF lq] have U_l: "\<forall> (t,n) \<in> set ?U. numbound0 t \<and> n > 0" .
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5007
  from U_l UpU
50241
8b0fdeeefef7 eliminated some improper identifiers;
wenzelm
parents: 49962
diff changeset
  5008
  have "\<forall> ((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5009
  hence Snb: "\<forall> (t,n) \<in> set ?S. numbound0 t \<and> n > 0 "
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56479
diff changeset
  5010
    by (auto)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5011
  have Y_l: "\<forall> (t,n) \<in> set ?Y. numbound0 t \<and> n > 0"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5012
  proof-
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5013
    { fix t n assume tnY: "(t,n) \<in> set ?Y"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5014
      hence "(t,n) \<in> set ?SS" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5015
      hence "\<exists> (t',n') \<in> set ?S. simp_num_pair (t',n') = (t,n)"
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33063
diff changeset
  5016
        by (auto simp add: split_def simp del: map_map)
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33063
diff changeset
  5017
           (rule_tac x="((aa,ba),(ab,bb))" in bexI, simp_all)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5018
      then obtain t' n' where tn'S: "(t',n') \<in> set ?S" and tns: "simp_num_pair (t',n') = (t,n)" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5019
      from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5020
      from simp_num_pair_l[OF tnb np tns]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5021
      have "numbound0 t \<and> n > 0" . }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5022
    thus ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5023
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5024
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5025
  have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5026
  proof-
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5027
     from simp_num_pair_ci[where bs="x#bs"] have
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5028
    "\<forall>x. (?f o simp_num_pair) x = ?f x" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5029
     hence th: "?f o simp_num_pair = ?f" using ext by blast
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 55584
diff changeset
  5030
    have "(?f ` set ?Y) = ((?f o simp_num_pair) ` set ?S)" by (simp add: image_comp comp_assoc)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5031
    also have "\<dots> = (?f ` set ?S)" by (simp add: th)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5032
    also have "\<dots> = ((?f o ?g) ` set ?Up)"
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 55584
diff changeset
  5033
      by (simp only: set_map o_def image_comp)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5034
    also have "\<dots> = (?h ` (set ?U \<times> set ?U))"
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 55584
diff changeset
  5035
      using \<Upsilon>_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_comp] by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5036
    finally show ?thesis .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5037
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5038
  have "\<forall> (t,n) \<in> set ?Y. bound0 (\<upsilon> ?q (t,n))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5039
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5040
    { fix t n assume tnY: "(t,n) \<in> set ?Y"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5041
      with Y_l have tnb: "numbound0 t" and np: "real_of_int n > 0" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5042
      from \<upsilon>_I[OF lq np tnb]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5043
    have "bound0 (\<upsilon> ?q (t,n))"  by simp}
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5044
    thus ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5045
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5046
  hence ep_nb: "bound0 ?ep"  using evaldjf_bound0[where xs="?Y" and f="\<upsilon> ?q"]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5047
    by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5048
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5049
  from fr_eq_01[OF qf, where bs="bs" and x="x"] have "?lhs = ?F ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5050
    by (simp only: split_def fst_conv snd_conv)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5051
  also have "\<dots> = (\<exists> (t,n) \<in> set ?Y. ?I x (\<upsilon> ?q (t,n)))" using \<Upsilon>_cong[OF lq YU U_l Y_l]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5052
    by (simp only: split_def fst_conv snd_conv)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5053
  also have "\<dots> = (Ifm (x#bs) ?ep)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5054
    using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="\<upsilon> ?q",symmetric]
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61076
diff changeset
  5055
    by (simp only: split_def prod.collapse)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5056
  also have "\<dots> = (Ifm bs (decr ?ep))" using decr[OF ep_nb] by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5057
  finally have lr: "?lhs = ?rhs" by (simp only: ferrack01_def Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5058
  from decr_qf[OF ep_nb] have "qfree (ferrack01 p)" by (simp only: Let_def ferrack01_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5059
  with lr show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5060
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5061
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5062
lemma cp_thm':
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5063
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5064
  and up: "d_\<beta> p 1" and dd: "d_\<delta> p d" and dp: "d > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5065
  shows "(\<exists> (x::int). Ifm (real_of_int x#bs) p) = ((\<exists> j\<in> {1 .. d}. Ifm (real_of_int j#bs) (minusinf p)) \<or> (\<exists> j\<in> {1.. d}. \<exists> b\<in> (Inum (real_of_int i#bs)) ` set (\<beta> p). Ifm ((b+real_of_int j)#bs) p))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5066
  using cp_thm[OF lp up dd dp] by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5067
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  5068
definition unit :: "fm \<Rightarrow> fm \<times> num list \<times> int" where
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5069
  "unit p \<equiv> (let p' = zlfm p ; l = \<zeta> p' ; q = And (Dvd l (CN 0 1 (C 0))) (a_\<beta> p' l); d = \<delta> q;
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5070
             B = remdups (map simpnum (\<beta> q)) ; a = remdups (map simpnum (\<alpha> q))
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5071
             in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5072
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5073
lemma unit: assumes qf: "qfree p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5074
  shows "\<And> q B d. unit p = (q,B,d) \<Longrightarrow>
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5075
      ((\<exists> (x::int). Ifm (real_of_int x#bs) p) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5076
       (\<exists> (x::int). Ifm (real_of_int x#bs) q)) \<and>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5077
       (Inum (real_of_int i#bs)) ` set B = (Inum (real_of_int i#bs)) ` set (\<beta> q) \<and>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5078
       d_\<beta> q 1 \<and> d_\<delta> q d \<and> d >0 \<and> iszlfm q (real_of_int (i::int)#bs) \<and> (\<forall> b\<in> set B. numbound0 b)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5079
proof-
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5080
  fix q B d
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5081
  assume qBd: "unit p = (q,B,d)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5082
  let ?thes = "((\<exists> (x::int). Ifm (real_of_int x#bs) p) = (\<exists> (x::int). Ifm (real_of_int x#bs) q)) \<and>
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5083
    Inum (real_of_int i#bs) ` set B = Inum (real_of_int i#bs) ` set (\<beta> q) \<and>
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5084
    d_\<beta> q 1 \<and> d_\<delta> q d \<and> 0 < d \<and> iszlfm q (real_of_int i # bs) \<and> (\<forall> b\<in> set B. numbound0 b)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5085
  let ?I = "\<lambda> (x::int) p. Ifm (real_of_int x#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5086
  let ?p' = "zlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5087
  let ?l = "\<zeta> ?p'"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5088
  let ?q = "And (Dvd ?l (CN 0 1 (C 0))) (a_\<beta> ?p' ?l)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5089
  let ?d = "\<delta> ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5090
  let ?B = "set (\<beta> ?q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5091
  let ?B'= "remdups (map simpnum (\<beta> ?q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5092
  let ?A = "set (\<alpha> ?q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5093
  let ?A'= "remdups (map simpnum (\<alpha> ?q))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5094
  from conjunct1[OF zlfm_I[OF qf, where bs="bs"]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5095
  have pp': "\<forall> i. ?I i ?p' = ?I i p" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5096
  from iszlfm_gen[OF conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]]]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5097
  have lp': "\<forall> (i::int). iszlfm ?p' (real_of_int i#bs)" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5098
  hence lp'': "iszlfm ?p' (real_of_int (i::int)#bs)" by simp
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5099
  from lp' \<zeta>[where p="?p'" and bs="bs"] have lp: "?l >0" and dl: "d_\<beta> ?p' ?l" by auto
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5100
  from a_\<beta>_ex[where p="?p'" and l="?l" and bs="bs", OF lp'' dl lp] pp'
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5101
  have pq_ex:"(\<exists> (x::int). ?I x p) = (\<exists> x. ?I x ?q)" by (simp add: int_rdvd_iff)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5102
  from lp'' lp a_\<beta>[OF lp'' dl lp] have lq:"iszlfm ?q (real_of_int i#bs)" and uq: "d_\<beta> ?q 1"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5103
    by (auto simp add: isint_def)
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5104
  from \<delta>[OF lq] have dp:"?d >0" and dd: "d_\<delta> ?q ?d" by blast+
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5105
  let ?N = "\<lambda> t. Inum (real_of_int (i::int)#bs) t"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5106
  have "?N ` set ?B' = ((?N o simpnum) ` ?B)" by (simp add:image_comp)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5107
  also have "\<dots> = ?N ` ?B" using simpnum_ci[where bs="real_of_int i #bs"] by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5108
  finally have BB': "?N ` set ?B' = ?N ` ?B" .
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5109
  have "?N ` set ?A' = ((?N o simpnum) ` ?A)" by (simp add:image_comp)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5110
  also have "\<dots> = ?N ` ?A" using simpnum_ci[where bs="real_of_int i #bs"] by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5111
  finally have AA': "?N ` set ?A' = ?N ` ?A" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5112
  from \<beta>_numbound0[OF lq] have B_nb:"\<forall> b\<in> set ?B'. numbound0 b"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5113
    by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5114
  from \<alpha>_l[OF lq] have A_nb: "\<forall> b\<in> set ?A'. numbound0 b"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5115
    by simp
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5116
  { assume "length ?B' \<le> length ?A'"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5117
    hence q:"q=?q" and "B = ?B'" and d:"d = ?d"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5118
      using qBd by (auto simp add: Let_def unit_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5119
    with BB' B_nb have b: "?N ` (set B) = ?N ` set (\<beta> q)"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5120
      and bn: "\<forall>b\<in> set B. numbound0 b" by simp+
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5121
    with pq_ex dp uq dd lq q d have ?thes by simp }
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5122
  moreover
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5123
  { assume "\<not> (length ?B' \<le> length ?A')"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5124
    hence q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5125
      using qBd by (auto simp add: Let_def unit_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5126
    with AA' mirror_\<alpha>_\<beta>[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (\<beta> q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5127
      and bn: "\<forall>b\<in> set B. numbound0 b" by simp+
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5128
    from mirror_ex[OF lq] pq_ex q
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5129
    have pqm_eq:"(\<exists> (x::int). ?I x p) = (\<exists> (x::int). ?I x q)" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5130
    from lq uq q mirror_d_\<beta> [where p="?q" and bs="bs" and a="real_of_int i"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5131
    have lq': "iszlfm q (real_of_int i#bs)" and uq: "d_\<beta> q 1" by auto
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5132
    from \<delta>[OF lq'] mirror_\<delta>[OF lq] q d have dq:"d_\<delta> q d " by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5133
    from pqm_eq b bn uq lq' dp dq q dp d have ?thes by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5134
  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5135
  ultimately show ?thes by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5136
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5137
    (* Cooper's Algorithm *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5138
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  5139
definition cooper :: "fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5140
  "cooper p \<equiv>
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5141
  (let (q,B,d) = unit p; js = [1..d];
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5142
       mq = simpfm (minusinf q);
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5143
       md = evaldjf (\<lambda> j. simpfm (subst0 (C j) mq)) js
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5144
   in if md = T then T else
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5145
    (let qd = evaldjf (\<lambda> t. simpfm (subst0 t q))
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5146
                               (remdups (map (\<lambda> (b,j). simpnum (Add b (C j)))
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5147
                                            [(b,j). b\<leftarrow>B,j\<leftarrow>js]))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5148
     in decr (disj md qd)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5149
lemma cooper: assumes qf: "qfree p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5150
  shows "((\<exists> (x::int). Ifm (real_of_int x#bs) p) = (Ifm bs (cooper p))) \<and> qfree (cooper p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5151
  (is "(?lhs = ?rhs) \<and> _")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5152
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5153
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5154
  let ?I = "\<lambda> (x::int) p. Ifm (real_of_int x#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5155
  let ?q = "fst (unit p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5156
  let ?B = "fst (snd(unit p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5157
  let ?d = "snd (snd (unit p))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5158
  let ?js = "[1..?d]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5159
  let ?mq = "minusinf ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5160
  let ?smq = "simpfm ?mq"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5161
  let ?md = "evaldjf (\<lambda> j. simpfm (subst0 (C j) ?smq)) ?js"
26935
ee6bcb1b8953 avoid undeclared variables within proofs;
wenzelm
parents: 26932
diff changeset
  5162
  fix i
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5163
  let ?N = "\<lambda> t. Inum (real_of_int (i::int)#bs) t"
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5164
  let ?bjs = "[(b,j). b\<leftarrow>?B,j\<leftarrow>?js]"
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5165
  let ?sbjs = "map (\<lambda> (b,j). simpnum (Add b (C j))) ?bjs"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5166
  let ?qd = "evaldjf (\<lambda> t. simpfm (subst0 t ?q)) (remdups ?sbjs)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5167
  have qbf:"unit p = (?q,?B,?d)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5168
  from unit[OF qf qbf] have pq_ex: "(\<exists>(x::int). ?I x p) = (\<exists> (x::int). ?I x ?q)" and
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5169
    B:"?N ` set ?B = ?N ` set (\<beta> ?q)" and
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5170
    uq:"d_\<beta> ?q 1" and dd: "d_\<delta> ?q ?d" and dp: "?d > 0" and
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5171
    lq: "iszlfm ?q (real_of_int i#bs)" and
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5172
    Bn: "\<forall> b\<in> set ?B. numbound0 b" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5173
  from zlin_qfree[OF lq] have qfq: "qfree ?q" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5174
  from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq".
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5175
  have jsnb: "\<forall> j \<in> set ?js. numbound0 (C j)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5176
  hence "\<forall> j\<in> set ?js. bound0 (subst0 (C j) ?smq)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5177
    by (auto simp only: subst0_bound0[OF qfmq])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5178
  hence th: "\<forall> j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53168
diff changeset
  5179
    by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5180
  from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5181
  from Bn jsnb have "\<forall> (b,j) \<in> set ?bjs. numbound0 (Add b (C j))"
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5182
    by simp
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5183
  hence "\<forall> (b,j) \<in> set ?bjs. numbound0 (simpnum (Add b (C j)))"
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5184
    using simpnum_numbound0 by blast
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5185
  hence "\<forall> t \<in> set ?sbjs. numbound0 t" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5186
  hence "\<forall> t \<in> set (remdups ?sbjs). bound0 (subst0 t ?q)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5187
    using subst0_bound0[OF qfq] by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5188
  hence th': "\<forall> t \<in> set (remdups ?sbjs). bound0 (simpfm (subst0 t ?q))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5189
    using simpfm_bound0 by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5190
  from evaldjf_bound0 [OF th'] have qdb: "bound0 ?qd" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5191
  from mdb qdb
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5192
  have mdqdb: "bound0 (disj ?md ?qd)" by (simp only: disj_def, cases "?md=T \<or> ?qd=T", simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5193
  from trans [OF pq_ex cp_thm'[OF lq uq dd dp]] B
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5194
  have "?lhs = (\<exists> j\<in> {1.. ?d}. ?I j ?mq \<or> (\<exists> b\<in> ?N ` set ?B. Ifm ((b+ real_of_int j)#bs) ?q))" by auto
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5195
  also have "\<dots> = ((\<exists> j\<in> set ?js. ?I j ?smq) \<or> (\<exists> (b,j) \<in> (?N ` set ?B \<times> set ?js). Ifm ((b+ real_of_int j)#bs) ?q))" by auto
24336
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5196
  also have "\<dots>= ((\<exists> j\<in> set ?js. ?I j ?smq) \<or> (\<exists> t \<in> (\<lambda> (b,j). ?N (Add b (C j))) ` set ?bjs. Ifm (t #bs) ?q))" by simp
fff40259f336 removed allpairs
nipkow
parents: 24249
diff changeset
  5197
  also have "\<dots>= ((\<exists> j\<in> set ?js. ?I j ?smq) \<or> (\<exists> t \<in> (\<lambda> (b,j). ?N (simpnum (Add b (C j)))) ` set ?bjs. Ifm (t #bs) ?q))" by (simp only: simpnum_ci)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5198
  also  have "\<dots>= ((\<exists> j\<in> set ?js. ?I j ?smq) \<or> (\<exists> t \<in> set ?sbjs. Ifm (?N t #bs) ?q))"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5199
    by (auto simp add: split_def)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5200
  also have "\<dots> = ((\<exists> j\<in> set ?js. (\<lambda> j. ?I i (simpfm (subst0 (C j) ?smq))) j) \<or> (\<exists> t \<in> set (remdups ?sbjs). (\<lambda> t. ?I i (simpfm (subst0 t ?q))) t))"
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5201
    by (simp only: simpfm subst0_I[OF qfq] Inum.simps subst0_I[OF qfmq] set_remdups)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5202
  also have "\<dots> = ((?I i (evaldjf (\<lambda> j. simpfm (subst0 (C j) ?smq)) ?js)) \<or> (?I i (evaldjf (\<lambda> t. simpfm (subst0 t ?q)) (remdups ?sbjs))))" by (simp only: evaldjf_ex)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5203
  finally have mdqd: "?lhs = (?I i (disj ?md ?qd))" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5204
  hence mdqd2: "?lhs = (Ifm bs (decr (disj ?md ?qd)))" using decr [OF mdqdb] by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5205
  {assume mdT: "?md = T"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5206
    hence cT:"cooper p = T"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5207
      by (simp only: cooper_def unit_def split_def Let_def if_True) simp
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5208
    from mdT mdqd have lhs:"?lhs" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5209
    from mdT have "?rhs" by (simp add: cooper_def unit_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5210
    with lhs cT have ?thesis by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5211
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5212
  {assume mdT: "?md \<noteq> T" hence "cooper p = decr (disj ?md ?qd)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5213
      by (simp only: cooper_def unit_def split_def Let_def if_False)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5214
    with mdqd2 decr_qf[OF mdqdb] have ?thesis by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5215
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5216
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5217
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5218
lemma DJcooper:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5219
  assumes qf: "qfree p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5220
  shows "((\<exists> (x::int). Ifm (real_of_int x#bs) p) = (Ifm bs (DJ cooper p))) \<and> qfree (DJ cooper p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5221
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5222
  from cooper have cqf: "\<forall> p. qfree p \<longrightarrow> qfree (cooper p)" by  blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5223
  from DJ_qf[OF cqf] qf have thqf:"qfree (DJ cooper p)" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5224
  have "Ifm bs (DJ cooper p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (cooper q))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5225
     by (simp add: DJ_def evaldjf_ex)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5226
  also have "\<dots> = (\<exists> q \<in> set(disjuncts p). \<exists> (x::int). Ifm (real_of_int x#bs)  q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5227
    using cooper disjuncts_qf[OF qf] by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5228
  also have "\<dots> = (\<exists> (x::int). Ifm (real_of_int x#bs) p)" by (induct p rule: disjuncts.induct, auto)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5229
  finally show ?thesis using thqf by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5230
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5231
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5232
    (* Redy and Loveland *)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5233
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5234
lemma \<sigma>_\<rho>_cong: assumes lp: "iszlfm p (a#bs)" and tt': "Inum (a#bs) t = Inum (a#bs) t'"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5235
  shows "Ifm (a#bs) (\<sigma>_\<rho> p (t,c)) = Ifm (a#bs) (\<sigma>_\<rho> p (t',c))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5236
  using lp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5237
  by (induct p rule: iszlfm.induct, auto simp add: tt')
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5238
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5239
lemma \<sigma>_cong: assumes lp: "iszlfm p (a#bs)" and tt': "Inum (a#bs) t = Inum (a#bs) t'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5240
  shows "Ifm (a#bs) (\<sigma> p c t) = Ifm (a#bs) (\<sigma> p c t')"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5241
  by (simp add: \<sigma>_def tt' \<sigma>_\<rho>_cong[OF lp tt'])
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5242
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5243
lemma \<rho>_cong: assumes lp: "iszlfm p (a#bs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5244
  and RR: "(\<lambda>(b,k). (Inum (a#bs) b,k)) ` R =  (\<lambda>(b,k). (Inum (a#bs) b,k)) ` set (\<rho> p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5245
  shows "(\<exists> (e,c) \<in> R. \<exists> j\<in> {1.. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j)))) = (\<exists> (e,c) \<in> set (\<rho> p). \<exists> j\<in> {1.. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j))))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5246
  (is "?lhs = ?rhs")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5247
proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5248
  let ?d = "\<delta> p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5249
  assume ?lhs then obtain e c j where ecR: "(e,c) \<in> R" and jD:"j \<in> {1 .. c*?d}"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5250
    and px: "Ifm (a#bs) (\<sigma> p c (Add e (C j)))" (is "?sp c e j") by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5251
  from ecR have "(Inum (a#bs) e,c) \<in> (\<lambda>(b,k). (Inum (a#bs) b,k)) ` R" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5252
  hence "(Inum (a#bs) e,c) \<in> (\<lambda>(b,k). (Inum (a#bs) b,k)) ` set (\<rho> p)" using RR by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5253
  hence "\<exists> (e',c') \<in> set (\<rho> p). Inum (a#bs) e = Inum (a#bs) e' \<and> c = c'" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5254
  then obtain e' c' where ecRo:"(e',c') \<in> set (\<rho> p)" and ee':"Inum (a#bs) e = Inum (a#bs) e'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5255
    and cc':"c = c'" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5256
  from ee' have tt': "Inum (a#bs) (Add e (C j)) = Inum (a#bs) (Add e' (C j))" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5257
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5258
  from \<sigma>_cong[OF lp tt', where c="c"] px have px':"?sp c e' j" by simp
57492
74bf65a1910a Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents: 56544
diff changeset
  5259
  from ecRo jD px' show ?rhs apply (auto simp: cc')
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5260
    by (rule_tac x="(e', c')" in bexI,simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5261
  (rule_tac x="j" in bexI, simp_all add: cc'[symmetric])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5262
next
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5263
  let ?d = "\<delta> p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5264
  assume ?rhs then obtain e c j where ecR: "(e,c) \<in> set (\<rho> p)" and jD:"j \<in> {1 .. c*?d}"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5265
    and px: "Ifm (a#bs) (\<sigma> p c (Add e (C j)))" (is "?sp c e j") by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5266
  from ecR have "(Inum (a#bs) e,c) \<in> (\<lambda>(b,k). (Inum (a#bs) b,k)) ` set (\<rho> p)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5267
  hence "(Inum (a#bs) e,c) \<in> (\<lambda>(b,k). (Inum (a#bs) b,k)) ` R" using RR by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5268
  hence "\<exists> (e',c') \<in> R. Inum (a#bs) e = Inum (a#bs) e' \<and> c = c'" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5269
  then obtain e' c' where ecRo:"(e',c') \<in> R" and ee':"Inum (a#bs) e = Inum (a#bs) e'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5270
    and cc':"c = c'" by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5271
  from ee' have tt': "Inum (a#bs) (Add e (C j)) = Inum (a#bs) (Add e' (C j))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5272
  from \<sigma>_cong[OF lp tt', where c="c"] px have px':"?sp c e' j" by simp
57492
74bf65a1910a Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents: 56544
diff changeset
  5273
  from ecRo jD px' show ?lhs apply (auto simp: cc')
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5274
    by (rule_tac x="(e', c')" in bexI,simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5275
  (rule_tac x="j" in bexI, simp_all add: cc'[symmetric])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5276
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5277
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5278
lemma rl_thm':
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5279
  assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5280
  and R: "(\<lambda>(b,k). (Inum (a#bs) b,k)) ` R =  (\<lambda>(b,k). (Inum (a#bs) b,k)) ` set (\<rho> p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5281
  shows "(\<exists> (x::int). Ifm (real_of_int x#bs) p) = ((\<exists> j\<in> {1 .. \<delta> p}. Ifm (real_of_int j#bs) (minusinf p)) \<or> (\<exists> (e,c) \<in> R. \<exists> j\<in> {1.. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j)))))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5282
  using rl_thm[OF lp] \<rho>_cong[OF iszlfm_gen[OF lp, rule_format, where y="a"] R] by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5283
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  5284
definition chooset :: "fm \<Rightarrow> fm \<times> ((num\<times>int) list) \<times> int" where
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5285
  "chooset p \<equiv> (let q = zlfm p ; d = \<delta> q;
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5286
             B = remdups (map (\<lambda> (t,k). (simpnum t,k)) (\<rho> q)) ;
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5287
             a = remdups (map (\<lambda> (t,k). (simpnum t,k)) (\<alpha>_\<rho> q))
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5288
             in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5289
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5290
lemma chooset: assumes qf: "qfree p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5291
  shows "\<And> q B d. chooset p = (q,B,d) \<Longrightarrow>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5292
     ((\<exists> (x::int). Ifm (real_of_int x#bs) p) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5293
      (\<exists> (x::int). Ifm (real_of_int x#bs) q)) \<and>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5294
      ((\<lambda>(t,k). (Inum (real_of_int i#bs) t,k)) ` set B = (\<lambda>(t,k). (Inum (real_of_int i#bs) t,k)) ` set (\<rho> q)) \<and>
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5295
      (\<delta> q = d) \<and> d >0 \<and> iszlfm q (real_of_int (i::int)#bs) \<and> (\<forall> (e,c)\<in> set B. numbound0 e \<and> c>0)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5296
proof-
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5297
  fix q B d
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5298
  assume qBd: "chooset p = (q,B,d)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5299
  let ?thes = "((\<exists> (x::int). Ifm (real_of_int x#bs) p) =
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5300
             (\<exists> (x::int). Ifm (real_of_int x#bs) q)) \<and> ((\<lambda>(t,k). (Inum (real_of_int i#bs) t,k)) ` set B = (\<lambda>(t,k). (Inum (real_of_int i#bs) t,k)) ` set (\<rho> q)) \<and>
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5301
             (\<delta> q = d) \<and> d >0 \<and> iszlfm q (real_of_int (i::int)#bs) \<and> (\<forall> (e,c)\<in> set B. numbound0 e \<and> c>0)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5302
  let ?I = "\<lambda> (x::int) p. Ifm (real_of_int x#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5303
  let ?q = "zlfm p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5304
  let ?d = "\<delta> ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5305
  let ?B = "set (\<rho> ?q)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5306
  let ?f = "\<lambda> (t,k). (simpnum t,k)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5307
  let ?B'= "remdups (map ?f (\<rho> ?q))"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5308
  let ?A = "set (\<alpha>_\<rho> ?q)"
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5309
  let ?A'= "remdups (map ?f (\<alpha>_\<rho> ?q))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5310
  from conjunct1[OF zlfm_I[OF qf, where bs="bs"]]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5311
  have pp': "\<forall> i. ?I i ?q = ?I i p" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5312
  hence pq_ex:"(\<exists> (x::int). ?I x p) = (\<exists> x. ?I x ?q)" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5313
  from iszlfm_gen[OF conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]], rule_format, where y="real_of_int i"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5314
  have lq: "iszlfm ?q (real_of_int (i::int)#bs)" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5315
  from \<delta>[OF lq] have dp:"?d >0" by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5316
  let ?N = "\<lambda> (t,c). (Inum (real_of_int (i::int)#bs) t,c)"
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 55584
diff changeset
  5317
  have "?N ` set ?B' = ((?N o ?f) ` ?B)" by (simp add: split_def image_comp)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5318
  also have "\<dots> = ?N ` ?B"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5319
    by(simp add: split_def image_comp simpnum_ci[where bs="real_of_int i #bs"] image_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5320
  finally have BB': "?N ` set ?B' = ?N ` ?B" .
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5321
  have "?N ` set ?A' = ((?N o ?f) ` ?A)" by (simp add: split_def image_comp)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5322
  also have "\<dots> = ?N ` ?A" using simpnum_ci[where bs="real_of_int i #bs"]
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5323
    by(simp add: split_def image_comp simpnum_ci[where bs="real_of_int i #bs"] image_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5324
  finally have AA': "?N ` set ?A' = ?N ` ?A" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5325
  from \<rho>_l[OF lq] have B_nb:"\<forall> (e,c)\<in> set ?B'. numbound0 e \<and> c > 0"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5326
    by (simp add: split_def)
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50241
diff changeset
  5327
  from \<alpha>_\<rho>_l[OF lq] have A_nb: "\<forall> (e,c)\<in> set ?A'. numbound0 e \<and> c > 0"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5328
    by (simp add: split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5329
    {assume "length ?B' \<le> length ?A'"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5330
    hence q:"q=?q" and "B = ?B'" and d:"d = ?d"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5331
      using qBd by (auto simp add: Let_def chooset_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5332
    with BB' B_nb have b: "?N ` (set B) = ?N ` set (\<rho> q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5333
      and bn: "\<forall>(e,c)\<in> set B. numbound0 e \<and> c > 0" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5334
  with pq_ex dp lq q d have ?thes by simp}
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5335
  moreover
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5336
  {assume "\<not> (length ?B' \<le> length ?A')"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5337
    hence q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5338
      using qBd by (auto simp add: Let_def chooset_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5339
    with AA' mirror_\<alpha>_\<rho>[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (\<rho> q)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5340
      and bn: "\<forall>(e,c)\<in> set B. numbound0 e \<and> c > 0" by auto
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5341
    from mirror_ex[OF lq] pq_ex q
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5342
    have pqm_eq:"(\<exists> (x::int). ?I x p) = (\<exists> (x::int). ?I x q)" by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5343
    from lq q mirror_l [where p="?q" and bs="bs" and a="real_of_int i"]
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5344
    have lq': "iszlfm q (real_of_int i#bs)" by auto
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5345
    from mirror_\<delta>[OF lq] pqm_eq b bn lq' dp q dp d have ?thes by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5346
  }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5347
  ultimately show ?thes by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5348
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5349
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  5350
definition stage :: "fm \<Rightarrow> int \<Rightarrow> (num \<times> int) \<Rightarrow> fm" where
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5351
  "stage p d \<equiv> (\<lambda> (e,c). evaldjf (\<lambda> j. simpfm (\<sigma> p c (Add e (C j)))) [1..c*d])"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5352
lemma stage:
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5353
  shows "Ifm bs (stage p d (e,c)) = (\<exists> j\<in>{1 .. c*d}. Ifm bs (\<sigma> p c (Add e (C j))))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5354
  by (unfold stage_def split_def ,simp only: evaldjf_ex simpfm) simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5355
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5356
lemma stage_nb: assumes lp: "iszlfm p (a#bs)" and cp: "c >0" and nb:"numbound0 e"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5357
  shows "bound0 (stage p d (e,c))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5358
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5359
  let ?f = "\<lambda> j. simpfm (\<sigma> p c (Add e (C j)))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5360
  have th: "\<forall> j\<in> set [1..c*d]. bound0 (?f j)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5361
  proof
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5362
    fix j
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5363
    from nb have nb':"numbound0 (Add e (C j))" by simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5364
    from simpfm_bound0[OF \<sigma>_nb[OF lp nb', where k="c"]]
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5365
    show "bound0 (simpfm (\<sigma> p c (Add e (C j))))" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5366
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5367
  from evaldjf_bound0[OF th] show ?thesis by (unfold stage_def split_def) simp
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5368
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5369
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35028
diff changeset
  5370
definition redlove :: "fm \<Rightarrow> fm" where
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5371
  "redlove p \<equiv>
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5372
  (let (q,B,d) = chooset p;
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5373
       mq = simpfm (minusinf q);
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5374
       md = evaldjf (\<lambda> j. simpfm (subst0 (C j) mq)) [1..d]
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5375
   in if md = T then T else
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5376
    (let qd = evaldjf (stage q d) B
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5377
     in decr (disj md qd)))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5378
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5379
lemma redlove: assumes qf: "qfree p"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5380
  shows "((\<exists> (x::int). Ifm (real_of_int x#bs) p) = (Ifm bs (redlove p))) \<and> qfree (redlove p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5381
  (is "(?lhs = ?rhs) \<and> _")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5382
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5383
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5384
  let ?I = "\<lambda> (x::int) p. Ifm (real_of_int x#bs) p"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5385
  let ?q = "fst (chooset p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5386
  let ?B = "fst (snd(chooset p))"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5387
  let ?d = "snd (snd (chooset p))"
41836
c9d788ff7940 eliminated clones of List.upto
krauss
parents: 41807
diff changeset
  5388
  let ?js = "[1..?d]"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5389
  let ?mq = "minusinf ?q"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5390
  let ?smq = "simpfm ?mq"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5391
  let ?md = "evaldjf (\<lambda> j. simpfm (subst0 (C j) ?smq)) ?js"
26935
ee6bcb1b8953 avoid undeclared variables within proofs;
wenzelm
parents: 26932
diff changeset
  5392
  fix i
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5393
  let ?N = "\<lambda> (t,k). (Inum (real_of_int (i::int)#bs) t,k)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5394
  let ?qd = "evaldjf (stage ?q ?d) ?B"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5395
  have qbf:"chooset p = (?q,?B,?d)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5396
  from chooset[OF qf qbf] have pq_ex: "(\<exists>(x::int). ?I x p) = (\<exists> (x::int). ?I x ?q)" and
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5397
    B:"?N ` set ?B = ?N ` set (\<rho> ?q)" and dd: "\<delta> ?q = ?d" and dp: "?d > 0" and
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5398
    lq: "iszlfm ?q (real_of_int i#bs)" and
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5399
    Bn: "\<forall> (e,c)\<in> set ?B. numbound0 e \<and> c > 0" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5400
  from zlin_qfree[OF lq] have qfq: "qfree ?q" .
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5401
  from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq".
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5402
  have jsnb: "\<forall> j \<in> set ?js. numbound0 (C j)" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5403
  hence "\<forall> j\<in> set ?js. bound0 (subst0 (C j) ?smq)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5404
    by (auto simp only: subst0_bound0[OF qfmq])
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5405
  hence th: "\<forall> j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5406
    by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5407
  from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5408
  from Bn stage_nb[OF lq] have th:"\<forall> x \<in> set ?B. bound0 (stage ?q ?d x)" by auto
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5409
  from evaldjf_bound0[OF th]  have qdb: "bound0 ?qd" .
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5410
  from mdb qdb
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5411
  have mdqdb: "bound0 (disj ?md ?qd)" by (simp only: disj_def, cases "?md=T \<or> ?qd=T", simp_all)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5412
  from trans [OF pq_ex rl_thm'[OF lq B]] dd
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5413
  have "?lhs = ((\<exists> j\<in> {1.. ?d}. ?I j ?mq) \<or> (\<exists> (e,c)\<in> set ?B. \<exists> j\<in> {1 .. c*?d}. Ifm (real_of_int i#bs) (\<sigma> ?q c (Add e (C j)))))" by auto
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5414
  also have "\<dots> = ((\<exists> j\<in> {1.. ?d}. ?I j ?smq) \<or> (\<exists> (e,c)\<in> set ?B. ?I i (stage ?q ?d (e,c) )))"
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5415
    by (simp add: stage split_def)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5416
  also have "\<dots> = ((\<exists> j\<in> {1 .. ?d}. ?I i (subst0 (C j) ?smq))  \<or> ?I i ?qd)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5417
    by (simp add: evaldjf_ex subst0_I[OF qfmq])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5418
  finally have mdqd:"?lhs = (?I i ?md \<or> ?I i ?qd)" by (simp only: evaldjf_ex set_upto simpfm)
51369
960b0ca9ae5d tuned proofs -- more structure, less warnings;
wenzelm
parents: 51272
diff changeset
  5419
  also have "\<dots> = (?I i (disj ?md ?qd))" by simp
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5420
  also have "\<dots> = (Ifm bs (decr (disj ?md ?qd)))" by (simp only: decr [OF mdqdb])
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5421
  finally have mdqd2: "?lhs = (Ifm bs (decr (disj ?md ?qd)))" .
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5422
  {assume mdT: "?md = T"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5423
    hence cT:"redlove p = T" by (simp add: redlove_def Let_def chooset_def split_def)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5424
    from mdT have lhs:"?lhs" using mdqd by simp
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5425
    from mdT have "?rhs" by (simp add: redlove_def chooset_def split_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5426
    with lhs cT have ?thesis by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5427
  moreover
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5428
  {assume mdT: "?md \<noteq> T" hence "redlove p = decr (disj ?md ?qd)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5429
      by (simp add: redlove_def chooset_def split_def Let_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5430
    with mdqd2 decr_qf[OF mdqdb] have ?thesis by simp }
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5431
  ultimately show ?thesis by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5432
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5433
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5434
lemma DJredlove:
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5435
  assumes qf: "qfree p"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5436
  shows "((\<exists> (x::int). Ifm (real_of_int x#bs) p) = (Ifm bs (DJ redlove p))) \<and> qfree (DJ redlove p)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5437
proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5438
  from redlove have cqf: "\<forall> p. qfree p \<longrightarrow> qfree (redlove p)" by  blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5439
  from DJ_qf[OF cqf] qf have thqf:"qfree (DJ redlove p)" by blast
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5440
  have "Ifm bs (DJ redlove p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (redlove q))"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5441
     by (simp add: DJ_def evaldjf_ex)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5442
  also have "\<dots> = (\<exists> q \<in> set(disjuncts p). \<exists> (x::int). Ifm (real_of_int x#bs)  q)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5443
    using redlove disjuncts_qf[OF qf] by blast
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5444
  also have "\<dots> = (\<exists> (x::int). Ifm (real_of_int x#bs) p)" by (induct p rule: disjuncts.induct, auto)
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5445
  finally show ?thesis using thqf by blast
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5446
qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5447
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5448
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5449
lemma exsplit_qf: assumes qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5450
  shows "qfree (exsplit p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5451
using qf by (induct p rule: exsplit.induct, auto)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5452
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5453
definition mircfr :: "fm \<Rightarrow> fm" where
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5454
  "mircfr = DJ cooper o ferrack01 o simpfm o exsplit"
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5455
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5456
definition mirlfr :: "fm \<Rightarrow> fm" where
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5457
  "mirlfr = DJ redlove o ferrack01 o simpfm o exsplit"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5458
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5459
lemma mircfr: "\<forall> bs p. qfree p \<longrightarrow> qfree (mircfr p) \<and> Ifm bs (mircfr p) = Ifm bs (E p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5460
proof(clarsimp simp del: Ifm.simps)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5461
  fix bs p
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5462
  assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5463
  show "qfree (mircfr p)\<and>(Ifm bs (mircfr p) = Ifm bs (E p))" (is "_ \<and> (?lhs = ?rhs)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5464
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5465
    let ?es = "(And (And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) (simpfm (exsplit p)))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5466
    have "?rhs = (\<exists> (i::int). \<exists> x. Ifm (x#real_of_int i#bs) ?es)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5467
      using splitex[OF qf] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5468
    with ferrack01[OF simpfm_qf[OF exsplit_qf[OF qf]]] have th1: "?rhs = (\<exists> (i::int). Ifm (real_of_int i#bs) (ferrack01 (simpfm (exsplit p))))" and qf':"qfree (ferrack01 (simpfm (exsplit p)))" by simp+
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5469
    with DJcooper[OF qf'] show ?thesis by (simp add: mircfr_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5470
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5471
qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5472
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5473
lemma mirlfr: "\<forall> bs p. qfree p \<longrightarrow> qfree(mirlfr p) \<and> Ifm bs (mirlfr p) = Ifm bs (E p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5474
proof(clarsimp simp del: Ifm.simps)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5475
  fix bs p
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5476
  assume qf: "qfree p"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5477
  show "qfree (mirlfr p)\<and>(Ifm bs (mirlfr p) = Ifm bs (E p))" (is "_ \<and> (?lhs = ?rhs)")
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5478
  proof-
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5479
    let ?es = "(And (And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) (simpfm (exsplit p)))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5480
    have "?rhs = (\<exists> (i::int). \<exists> x. Ifm (x#real_of_int i#bs) ?es)"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5481
      using splitex[OF qf] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5482
    with ferrack01[OF simpfm_qf[OF exsplit_qf[OF qf]]] have th1: "?rhs = (\<exists> (i::int). Ifm (real_of_int i#bs) (ferrack01 (simpfm (exsplit p))))" and qf':"qfree (ferrack01 (simpfm (exsplit p)))" by simp+
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5483
    with DJredlove[OF qf'] show ?thesis by (simp add: mirlfr_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5484
  qed
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5485
qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5486
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5487
definition mircfrqe:: "fm \<Rightarrow> fm" where
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5488
  "mircfrqe p = qelim (prep p) mircfr"
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5489
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5490
definition mirlfrqe:: "fm \<Rightarrow> fm" where
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5491
  "mirlfrqe p = qelim (prep p) mirlfr"
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5492
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5493
theorem mircfrqe: "(Ifm bs (mircfrqe p) = Ifm bs p) \<and> qfree (mircfrqe p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5494
  using qelim_ci[OF mircfr] prep by (auto simp add: mircfrqe_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5495
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5496
theorem mirlfrqe: "(Ifm bs (mirlfrqe p) = Ifm bs p) \<and> qfree (mirlfrqe p)"
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5497
  using qelim_ci[OF mirlfr] prep by (auto simp add: mirlfrqe_def)
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5498
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5499
definition
36870
b897bd9ca71b tuned test problems
haftmann
parents: 36778
diff changeset
  5500
  "problem1 = A (And (Le (Sub (Floor (Bound 0)) (Bound 0))) (Le (Add (Bound 0) (Floor (Neg (Bound 0))))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5501
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5502
definition
36870
b897bd9ca71b tuned test problems
haftmann
parents: 36778
diff changeset
  5503
  "problem2 = A (Iff (Eq (Add (Floor (Bound 0)) (Floor (Neg (Bound 0))))) (Eq (Sub (Floor (Bound 0)) (Bound 0))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5504
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5505
definition
36870
b897bd9ca71b tuned test problems
haftmann
parents: 36778
diff changeset
  5506
  "problem3 = A (And (Le (Sub (Floor (Bound 0)) (Bound 0))) (Le (Add (Bound 0) (Floor (Neg (Bound 0))))))"
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5507
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5508
definition
36870
b897bd9ca71b tuned test problems
haftmann
parents: 36778
diff changeset
  5509
  "problem4 = E (And (Ge (Sub (Bound 1) (Bound 0))) (Eq (Add (Floor (Bound 1)) (Floor (Neg (Bound 0))))))"
b897bd9ca71b tuned test problems
haftmann
parents: 36778
diff changeset
  5510
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5511
ML_val \<open>@{code mircfrqe} @{code problem1}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5512
ML_val \<open>@{code mirlfrqe} @{code problem1}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5513
ML_val \<open>@{code mircfrqe} @{code problem2}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5514
ML_val \<open>@{code mirlfrqe} @{code problem2}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5515
ML_val \<open>@{code mircfrqe} @{code problem3}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5516
ML_val \<open>@{code mirlfrqe} @{code problem3}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5517
ML_val \<open>@{code mircfrqe} @{code problem4}\<close>
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5518
ML_val \<open>@{code mirlfrqe} @{code problem4}\<close>
51272
9c8d63b4b6be prefer stateless 'ML_val' for tests;
wenzelm
parents: 51143
diff changeset
  5519
24249
1f60b45c5f97 renamed keyword "to" to "module_name"
haftmann
parents: 23997
diff changeset
  5520
36531
19f6e3b0d9b6 code_reflect: specify module name directly after keyword
haftmann
parents: 36526
diff changeset
  5521
(*code_reflect Mir
36526
353041483b9b use code_reflect
haftmann
parents: 35416
diff changeset
  5522
  functions mircfrqe mirlfrqe
353041483b9b use code_reflect
haftmann
parents: 35416
diff changeset
  5523
  file "mir.ML"*)
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5524
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5525
oracle mirfr_oracle = \<open>
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5526
let
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5527
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5528
val mk_C = @{code C} o @{code int_of_integer};
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5529
val mk_Dvd = @{code Dvd} o apfst @{code int_of_integer};
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5530
val mk_Bound = @{code Bound} o @{code nat_of_integer};
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5531
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5532
fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5533
     of NONE => error "Variable not found in the list!"
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5534
      | SOME n => mk_Bound n)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5535
  | num_of_term vs @{term "of_int (0::int)"} = mk_C 0
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5536
  | num_of_term vs @{term "of_int (1::int)"} = mk_C 1
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5537
  | num_of_term vs @{term "0::real"} = mk_C 0
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5538
  | num_of_term vs @{term "1::real"} = mk_C 1
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  5539
  | num_of_term vs @{term "- 1::real"} = mk_C (~ 1)
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5540
  | num_of_term vs (Bound i) = mk_Bound i
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5541
  | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t')
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5542
  | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5543
      @{code Add} (num_of_term vs t1, num_of_term vs t2)
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5544
  | num_of_term vs (@{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5545
      @{code Sub} (num_of_term vs t1, num_of_term vs t2)
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5546
  | num_of_term vs (@{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5547
      (case (num_of_term vs t1)
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5548
       of @{code C} i => @{code Mul} (i, num_of_term vs t2)
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5549
        | _ => error "num_of_term: unsupported Multiplication")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5550
  | num_of_term vs (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "numeral :: _ \<Rightarrow> int"} $ t')) =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5551
      mk_C (HOLogic.dest_numeral t')
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5552
  | num_of_term vs (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "- numeral :: _ \<Rightarrow> int"} $ t')) =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5553
      mk_C (~ (HOLogic.dest_numeral t'))
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5554
  | num_of_term vs (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "floor :: real \<Rightarrow> int"} $ t')) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5555
      @{code Floor} (num_of_term vs t')
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5556
  | num_of_term vs (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "ceiling :: real \<Rightarrow> int"} $ t')) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5557
      @{code Neg} (@{code Floor} (@{code Neg} (num_of_term vs t')))
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46670
diff changeset
  5558
  | num_of_term vs (@{term "numeral :: _ \<Rightarrow> real"} $ t') =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5559
      mk_C (HOLogic.dest_numeral t')
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  5560
  | num_of_term vs (@{term "- numeral :: _ \<Rightarrow> real"} $ t') =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5561
      mk_C (~ (HOLogic.dest_numeral t'))
28264
e1dae766c108 local @{context};
wenzelm
parents: 27567
diff changeset
  5562
  | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t);
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5563
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5564
fun fm_of_term vs @{term True} = @{code T}
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5565
  | fm_of_term vs @{term False} = @{code F}
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5566
  | fm_of_term vs (@{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5567
      @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5568
  | fm_of_term vs (@{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5569
      @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5570
  | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5571
      @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5572
  | fm_of_term vs (@{term "op rdvd"} $ (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "numeral :: _ \<Rightarrow> int"} $ t1)) $ t2) =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5573
      mk_Dvd (HOLogic.dest_numeral t1, num_of_term vs t2)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5574
  | fm_of_term vs (@{term "op rdvd"} $ (@{term "of_int :: int \<Rightarrow> real"} $ (@{term "- numeral :: _ \<Rightarrow> int"} $ t1)) $ t2) =
62342
1cf129590be8 consolidated name
haftmann
parents: 61945
diff changeset
  5575
      mk_Dvd (~ (HOLogic.dest_numeral t1), num_of_term vs t2)
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5576
  | fm_of_term vs (@{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5577
      @{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
  5578
  | fm_of_term vs (@{term HOL.conj} $ t1 $ t2) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5579
      @{code And} (fm_of_term vs t1, fm_of_term vs t2)
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
  5580
  | fm_of_term vs (@{term HOL.disj} $ t1 $ t2) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5581
      @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
38786
e46e7a9cb622 formerly unnamed infix impliciation now named HOL.implies
haftmann
parents: 38558
diff changeset
  5582
  | fm_of_term vs (@{term HOL.implies} $ t1 $ t2) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5583
      @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5584
  | fm_of_term vs (@{term "Not"} $ t') =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5585
      @{code NOT} (fm_of_term vs t')
38558
32ad17fe2b9c tuned quotes
haftmann
parents: 38549
diff changeset
  5586
  | fm_of_term vs (Const (@{const_name Ex}, _) $ Abs (xn, xT, p)) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5587
      @{code E} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
38558
32ad17fe2b9c tuned quotes
haftmann
parents: 38549
diff changeset
  5588
  | fm_of_term vs (Const (@{const_name All}, _) $ Abs (xn, xT, p)) =
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5589
      @{code A} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
28264
e1dae766c108 local @{context};
wenzelm
parents: 27567
diff changeset
  5590
  | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5591
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5592
fun term_of_num vs (@{code C} i) = @{term "of_int :: int \<Rightarrow> real"} $
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5593
      HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i)
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5594
  | term_of_num vs (@{code Bound} n) =
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5595
      let
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5596
        val m = @{code integer_of_nat} n;
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5597
      in fst (the (find_first (fn (_, q) => m = q) vs)) end
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5598
  | term_of_num vs (@{code Neg} (@{code Floor} (@{code Neg} t'))) =
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5599
      @{term "of_int :: int \<Rightarrow> real"} $ (@{term "ceiling :: real \<Rightarrow> int"} $ term_of_num vs t')
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5600
  | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t'
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5601
  | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5602
      term_of_num vs t1 $ term_of_num vs t2
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5603
  | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5604
      term_of_num vs t1 $ term_of_num vs t2
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5605
  | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5606
      term_of_num vs (@{code C} i) $ term_of_num vs t2
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5607
  | term_of_num vs (@{code Floor} t) = @{term "of_int :: int \<Rightarrow> real"} $ (@{term "floor :: real \<Rightarrow> int"} $ term_of_num vs t)
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5608
  | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t))
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5609
  | term_of_num vs (@{code CF} (c, t, s)) = term_of_num vs (@{code Add} (@{code Mul} (c, @{code Floor} t), s));
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5610
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5611
fun term_of_fm vs @{code T} = @{term True}
45740
132a3e1c0fe5 more antiquotations;
wenzelm
parents: 44890
diff changeset
  5612
  | term_of_fm vs @{code F} = @{term False}
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5613
  | term_of_fm vs (@{code Lt} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5614
      @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::real"}
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5615
  | term_of_fm vs (@{code Le} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5616
      @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::real"}
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5617
  | term_of_fm vs (@{code Gt} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5618
      @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ @{term "0::real"} $ term_of_num vs t
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5619
  | term_of_fm vs (@{code Ge} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5620
      @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ @{term "0::real"} $ term_of_num vs t
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5621
  | term_of_fm vs (@{code Eq} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5622
      @{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::real"}
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5623
  | term_of_fm vs (@{code NEq} t) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5624
      term_of_fm vs (@{code NOT} (@{code Eq} t))
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5625
  | term_of_fm vs (@{code Dvd} (i, t)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5626
      @{term "op rdvd"} $ term_of_num vs (@{code C} i) $ term_of_num vs t
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5627
  | term_of_fm vs (@{code NDvd} (i, t)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5628
      term_of_fm vs (@{code NOT} (@{code Dvd} (i, t)))
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5629
  | term_of_fm vs (@{code NOT} t') =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5630
      HOLogic.Not $ term_of_fm vs t'
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5631
  | term_of_fm vs (@{code And} (t1, t2)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5632
      HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5633
  | term_of_fm vs (@{code Or} (t1, t2)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5634
      HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5635
  | term_of_fm vs (@{code Imp}  (t1, t2)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5636
      HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5637
  | term_of_fm vs (@{code Iff} (t1, t2)) =
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5638
      @{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ term_of_fm vs t1 $ term_of_fm vs t2;
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5639
28290
4cc2b6046258 simplified oracle interface;
wenzelm
parents: 28264
diff changeset
  5640
in
60325
6fc771cb42eb clarified context;
wenzelm
parents: 59621
diff changeset
  5641
  fn (ctxt, t) =>
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5642
  let
44121
44adaa6db327 old term operations are legacy;
wenzelm
parents: 44013
diff changeset
  5643
    val fs = Misc_Legacy.term_frees t;
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32960
diff changeset
  5644
    val vs = map_index swap fs;
60325
6fc771cb42eb clarified context;
wenzelm
parents: 59621
diff changeset
  5645
    (*If quick_and_dirty then run without proof generation as oracle*)
6fc771cb42eb clarified context;
wenzelm
parents: 59621
diff changeset
  5646
    val qe = if Config.get ctxt quick_and_dirty then @{code mircfrqe} else @{code mirlfrqe};
6fc771cb42eb clarified context;
wenzelm
parents: 59621
diff changeset
  5647
    val t' = term_of_fm vs (qe (fm_of_term vs t));
6fc771cb42eb clarified context;
wenzelm
parents: 59621
diff changeset
  5648
  in Thm.cterm_of ctxt (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t'))) end
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5649
end;
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5650
\<close>
27456
52c7c42e7e27 code antiquotation roaring ahead
haftmann
parents: 27368
diff changeset
  5651
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5652
lemmas iff_real_of_int = of_int_eq_iff [where 'a = real, symmetric]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5653
                         of_int_less_iff [where 'a = real, symmetric]
61652
90c65a811257 MIR decision procedure again working
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5654
                         of_int_le_iff [where 'a = real, symmetric]
90c65a811257 MIR decision procedure again working
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5655
48891
c0eafbd55de3 prefer ML_file over old uses;
wenzelm
parents: 47432
diff changeset
  5656
ML_file "mir_tac.ML"
47432
e1576d13e933 more standard method setup;
wenzelm
parents: 47142
diff changeset
  5657
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5658
method_setup mir = \<open>
53168
d998de7f0efc tuned signature;
wenzelm
parents: 51369
diff changeset
  5659
  Scan.lift (Args.mode "no_quantify") >>
47432
e1576d13e933 more standard method setup;
wenzelm
parents: 47142
diff changeset
  5660
    (fn q => fn ctxt => SIMPLE_METHOD' (Mir_Tac.mir_tac ctxt (not q)))
60533
1e7ccd864b62 isabelle update_cartouches;
wenzelm
parents: 60325
diff changeset
  5661
\<close> "decision procedure for MIR arithmetic"
61652
90c65a811257 MIR decision procedure again working
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5662
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5663
lemma "\<forall>x::real. (\<lfloor>x\<rfloor> = \<lceil>x\<rceil> \<longleftrightarrow> (x = real_of_int \<lfloor>x\<rfloor>))"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  5664
  by mir
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5665
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  5666
lemma "\<forall>x::real. real_of_int (2::int)*x - (real_of_int (1::int)) < real_of_int \<lfloor>x\<rfloor> + real_of_int \<lceil>x\<rceil> \<and> real_of_int \<lfloor>x\<rfloor> + real_of_int \<lceil>x\<rceil>  \<le> real_of_int (2::int)*x + (real_of_int (1::int))"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  5667
  by mir
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5668
58909
f323497583d1 more symbols;
wenzelm
parents: 58410
diff changeset
  5669
lemma "\<forall>x::real. 2*\<lfloor>x\<rfloor> \<le> \<lfloor>2*x\<rfloor> \<and> \<lfloor>2*x\<rfloor> \<le> 2*\<lfloor>x+1\<rfloor>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61652
diff changeset
  5670
  by mir
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5671
58909
f323497583d1 more symbols;
wenzelm
parents: 58410
diff changeset
  5672
lemma "\<forall>x::real. \<exists>y \<le> x. (\<lfloor>x\<rfloor> = \<lceil>y\<rceil>)"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  5673
  by mir
23858
5500610fe1e5 adapted to new code generator framework
haftmann
parents: 23477
diff changeset
  5674
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  5675
lemma "\<forall>(x::real) (y::real). \<lfloor>x\<rfloor> = \<lfloor>y\<rfloor> \<longrightarrow> 0 \<le> \<bar>y - x\<bar> \<and> \<bar>y - x\<bar> \<le> 1"
41891
d37babdf5cae tuned proofs -- eliminated prems;
wenzelm
parents: 41882
diff changeset
  5676
  by mir
61652
90c65a811257 MIR decision procedure again working
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5677
23264
324622260d29 Added twe Examples for Quantifier elimination ofer linear real arithmetic and over the mixed theory of linear real artihmetic with integers
chaieb
parents:
diff changeset
  5678
end
51143
0a2371e7ced3 two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents: 50252
diff changeset
  5679