| 
0
 | 
     1  | 
(*  Title: 	FOL/ex/nat.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Examples for the manual "Introduction to Isabelle"
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Proofs about the natural numbers
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
INCOMPATIBLE with nat2.ML, Nipkow's examples
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
To generate similar output to manual, execute these commands:
  | 
| 
 | 
    13  | 
    Pretty.setmargin 72; print_depth 0;
  | 
| 
 | 
    14  | 
*)
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
open Nat;
  | 
| 
 | 
    17  | 
  | 
| 
36
 | 
    18  | 
goal Nat.thy "Suc(k) ~= k";
  | 
| 
0
 | 
    19  | 
by (res_inst_tac [("n","k")] induct 1);
 | 
| 
 | 
    20  | 
by (resolve_tac [notI] 1);
  | 
| 
 | 
    21  | 
by (eresolve_tac [Suc_neq_0] 1);
  | 
| 
 | 
    22  | 
by (resolve_tac [notI] 1);
  | 
| 
 | 
    23  | 
by (eresolve_tac [notE] 1);
  | 
| 
 | 
    24  | 
by (eresolve_tac [Suc_inject] 1);
  | 
| 
 | 
    25  | 
val Suc_n_not_n = result();
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
goal Nat.thy "(k+m)+n = k+(m+n)";
  | 
| 
 | 
    29  | 
prths ([induct] RL [topthm()]);  (*prints all 14 next states!*)
  | 
| 
 | 
    30  | 
by (resolve_tac [induct] 1);
  | 
| 
 | 
    31  | 
back();
  | 
| 
 | 
    32  | 
back();
  | 
| 
 | 
    33  | 
back();
  | 
| 
 | 
    34  | 
back();
  | 
| 
 | 
    35  | 
back();
  | 
| 
 | 
    36  | 
back();
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
goalw Nat.thy [add_def] "0+n = n";
  | 
| 
 | 
    39  | 
by (resolve_tac [rec_0] 1);
  | 
| 
 | 
    40  | 
val add_0 = result();
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
goalw Nat.thy [add_def] "Suc(m)+n = Suc(m+n)";
  | 
| 
 | 
    43  | 
by (resolve_tac [rec_Suc] 1);
  | 
| 
 | 
    44  | 
val add_Suc = result();
  | 
| 
 | 
    45  | 
  | 
| 
132
 | 
    46  | 
val add_ss = FOL_ss addsimps [add_0, add_Suc];
  | 
| 
0
 | 
    47  | 
  | 
| 
 | 
    48  | 
goal Nat.thy "(k+m)+n = k+(m+n)";
  | 
| 
 | 
    49  | 
by (res_inst_tac [("n","k")] induct 1);
 | 
| 
 | 
    50  | 
by (simp_tac add_ss 1);
  | 
| 
 | 
    51  | 
by (asm_simp_tac add_ss 1);
  | 
| 
 | 
    52  | 
val add_assoc = result();
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
goal Nat.thy "m+0 = m";
  | 
| 
 | 
    55  | 
by (res_inst_tac [("n","m")] induct 1);
 | 
| 
 | 
    56  | 
by (simp_tac add_ss 1);
  | 
| 
 | 
    57  | 
by (asm_simp_tac add_ss 1);
  | 
| 
 | 
    58  | 
val add_0_right = result();
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
goal Nat.thy "m+Suc(n) = Suc(m+n)";
  | 
| 
 | 
    61  | 
by (res_inst_tac [("n","m")] induct 1);
 | 
| 
 | 
    62  | 
by (ALLGOALS (asm_simp_tac add_ss));
  | 
| 
 | 
    63  | 
val add_Suc_right = result();
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
val [prem] = goal Nat.thy "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i+j) = i+f(j)";
  | 
| 
 | 
    66  | 
by (res_inst_tac [("n","i")] induct 1);
 | 
| 
 | 
    67  | 
by (simp_tac add_ss 1);
  | 
| 
 | 
    68  | 
by (asm_simp_tac (add_ss addsimps [prem]) 1);
  | 
| 
 | 
    69  | 
result();
  |