| author | huffman | 
| Thu, 07 Jun 2007 02:34:37 +0200 | |
| changeset 23286 | 85e7e043b980 | 
| parent 22265 | 3c5c6bdf61de | 
| child 23350 | 50c5b0912a0c | 
| permissions | -rw-r--r-- | 
| 14706 | 1 | (* Title: HOL/Algebra/FiniteProduct.thy | 
| 13936 | 2 | ID: $Id$ | 
| 3 | Author: Clemens Ballarin, started 19 November 2002 | |
| 4 | ||
| 5 | This file is largely based on HOL/Finite_Set.thy. | |
| 6 | *) | |
| 7 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 8 | theory FiniteProduct imports Group begin | 
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 9 | |
| 13936 | 10 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 11 | section {* Product Operator for Commutative Monoids *}
 | 
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 12 | |
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 13 | |
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 14 | subsection {* Inductive Definition of a Relation for Products over Sets *}
 | 
| 13936 | 15 | |
| 14750 | 16 | text {* Instantiation of locale @{text LC} of theory @{text Finite_Set} is not
 | 
| 17 | possible, because here we have explicit typing rules like | |
| 18 |   @{text "x \<in> carrier G"}.  We introduce an explicit argument for the domain
 | |
| 14651 | 19 |   @{text D}. *}
 | 
| 13936 | 20 | |
| 21 | consts | |
| 22 |   foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
 | |
| 23 | ||
| 24 | inductive "foldSetD D f e" | |
| 25 | intros | |
| 14750 | 26 |     emptyI [intro]: "e \<in> D ==> ({}, e) \<in> foldSetD D f e"
 | 
| 27 | insertI [intro]: "[| x ~: A; f x y \<in> D; (A, y) \<in> foldSetD D f e |] ==> | |
| 28 | (insert x A, f x y) \<in> foldSetD D f e" | |
| 13936 | 29 | |
| 14750 | 30 | inductive_cases empty_foldSetDE [elim!]: "({}, x) \<in> foldSetD D f e"
 | 
| 13936 | 31 | |
| 32 | constdefs | |
| 33 | foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" | |
| 14750 | 34 | "foldD D f e A == THE x. (A, x) \<in> foldSetD D f e" | 
| 13936 | 35 | |
| 36 | lemma foldSetD_closed: | |
| 14750 | 37 | "[| (A, z) \<in> foldSetD D f e ; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D | 
| 38 | |] ==> z \<in> D"; | |
| 13936 | 39 | by (erule foldSetD.elims) auto | 
| 40 | ||
| 41 | lemma Diff1_foldSetD: | |
| 14750 | 42 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; f x y \<in> D |] ==>
 | 
| 43 | (A, f x y) \<in> foldSetD D f e" | |
| 13936 | 44 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | 
| 45 | apply auto | |
| 46 | done | |
| 47 | ||
| 14750 | 48 | lemma foldSetD_imp_finite [simp]: "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 49 | by (induct set: foldSetD) auto | 
| 50 | ||
| 51 | lemma finite_imp_foldSetD: | |
| 14750 | 52 | "[| finite A; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D |] ==> | 
| 53 | EX x. (A, x) \<in> foldSetD D f e" | |
| 22265 | 54 | proof (induct set: finite) | 
| 13936 | 55 | case empty then show ?case by auto | 
| 56 | next | |
| 15328 | 57 | case (insert x F) | 
| 14750 | 58 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 59 | with insert have "y \<in> D" by (auto dest: foldSetD_closed) | |
| 60 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 61 | by (intro foldSetD.intros) auto | 
| 62 | then show ?case .. | |
| 63 | qed | |
| 64 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 65 | |
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 66 | subsection {* Left-Commutative Operations *}
 | 
| 13936 | 67 | |
| 68 | locale LCD = | |
| 69 | fixes B :: "'b set" | |
| 70 | and D :: "'a set" | |
| 71 | and f :: "'b => 'a => 'a" (infixl "\<cdot>" 70) | |
| 72 | assumes left_commute: | |
| 14750 | 73 | "[| x \<in> B; y \<in> B; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 74 | and f_closed [simp, intro!]: "!!x y. [| x \<in> B; y \<in> D |] ==> f x y \<in> D" | |
| 13936 | 75 | |
| 76 | lemma (in LCD) foldSetD_closed [dest]: | |
| 14750 | 77 | "(A, z) \<in> foldSetD D f e ==> z \<in> D"; | 
| 13936 | 78 | by (erule foldSetD.elims) auto | 
| 79 | ||
| 80 | lemma (in LCD) Diff1_foldSetD: | |
| 14750 | 81 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; A \<subseteq> B |] ==>
 | 
| 82 | (A, f x y) \<in> foldSetD D f e" | |
| 83 | apply (subgoal_tac "x \<in> B") | |
| 13936 | 84 | prefer 2 apply fast | 
| 85 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | |
| 86 | apply auto | |
| 87 | done | |
| 88 | ||
| 89 | lemma (in LCD) foldSetD_imp_finite [simp]: | |
| 14750 | 90 | "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 91 | by (induct set: foldSetD) auto | 
| 92 | ||
| 93 | lemma (in LCD) finite_imp_foldSetD: | |
| 14750 | 94 | "[| finite A; A \<subseteq> B; e \<in> D |] ==> EX x. (A, x) \<in> foldSetD D f e" | 
| 22265 | 95 | proof (induct set: finite) | 
| 13936 | 96 | case empty then show ?case by auto | 
| 97 | next | |
| 15328 | 98 | case (insert x F) | 
| 14750 | 99 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 100 | with insert have "y \<in> D" by auto | |
| 101 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 102 | by (intro foldSetD.intros) auto | 
| 103 | then show ?case .. | |
| 104 | qed | |
| 105 | ||
| 106 | lemma (in LCD) foldSetD_determ_aux: | |
| 14750 | 107 | "e \<in> D ==> \<forall>A x. A \<subseteq> B & card A < n --> (A, x) \<in> foldSetD D f e --> | 
| 108 | (\<forall>y. (A, y) \<in> foldSetD D f e --> y = x)" | |
| 13936 | 109 | apply (induct n) | 
| 110 | apply (auto simp add: less_Suc_eq) (* slow *) | |
| 111 | apply (erule foldSetD.cases) | |
| 112 | apply blast | |
| 113 | apply (erule foldSetD.cases) | |
| 114 | apply blast | |
| 115 | apply clarify | |
| 116 |   txt {* force simplification of @{text "card A < card (insert ...)"}. *}
 | |
| 117 | apply (erule rev_mp) | |
| 118 | apply (simp add: less_Suc_eq_le) | |
| 119 | apply (rule impI) | |
| 120 | apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb") | |
| 121 | apply (subgoal_tac "Aa = Ab") | |
| 122 | prefer 2 apply (blast elim!: equalityE) | |
| 123 | apply blast | |
| 124 |   txt {* case @{prop "xa \<notin> xb"}. *}
 | |
| 14750 | 125 |   apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb \<in> Aa & xa \<in> Ab")
 | 
| 13936 | 126 | prefer 2 apply (blast elim!: equalityE) | 
| 127 | apply clarify | |
| 128 |   apply (subgoal_tac "Aa = insert xb Ab - {xa}")
 | |
| 129 | prefer 2 apply blast | |
| 14750 | 130 | apply (subgoal_tac "card Aa \<le> card Ab") | 
| 13936 | 131 | prefer 2 | 
| 132 | apply (rule Suc_le_mono [THEN subst]) | |
| 133 | apply (simp add: card_Suc_Diff1) | |
| 134 |   apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
 | |
| 135 | apply (blast intro: foldSetD_imp_finite finite_Diff) | |
| 136 | apply best | |
| 137 | apply assumption | |
| 138 | apply (frule (1) Diff1_foldSetD) | |
| 139 | apply best | |
| 140 | apply (subgoal_tac "ya = f xb x") | |
| 141 | prefer 2 | |
| 14750 | 142 | apply (subgoal_tac "Aa \<subseteq> B") | 
| 13936 | 143 | prefer 2 apply best (* slow *) | 
| 144 | apply (blast del: equalityCE) | |
| 14750 | 145 |   apply (subgoal_tac "(Ab - {xa}, x) \<in> foldSetD D f e")
 | 
| 13936 | 146 | prefer 2 apply simp | 
| 147 | apply (subgoal_tac "yb = f xa x") | |
| 148 | prefer 2 | |
| 149 | apply (blast del: equalityCE dest: Diff1_foldSetD) | |
| 150 | apply (simp (no_asm_simp)) | |
| 151 | apply (rule left_commute) | |
| 152 | apply assumption | |
| 153 | apply best (* slow *) | |
| 154 | apply best | |
| 155 | done | |
| 156 | ||
| 157 | lemma (in LCD) foldSetD_determ: | |
| 14750 | 158 | "[| (A, x) \<in> foldSetD D f e; (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] | 
| 13936 | 159 | ==> y = x" | 
| 160 | by (blast intro: foldSetD_determ_aux [rule_format]) | |
| 161 | ||
| 162 | lemma (in LCD) foldD_equality: | |
| 14750 | 163 | "[| (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] ==> foldD D f e A = y" | 
| 13936 | 164 | by (unfold foldD_def) (blast intro: foldSetD_determ) | 
| 165 | ||
| 166 | lemma foldD_empty [simp]: | |
| 14750 | 167 |   "e \<in> D ==> foldD D f e {} = e"
 | 
| 13936 | 168 | by (unfold foldD_def) blast | 
| 169 | ||
| 170 | lemma (in LCD) foldD_insert_aux: | |
| 14750 | 171 | "[| x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 172 | ((insert x A, v) \<in> foldSetD D f e) = | |
| 173 | (EX y. (A, y) \<in> foldSetD D f e & v = f x y)" | |
| 13936 | 174 | apply auto | 
| 175 | apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) | |
| 176 | apply (fastsimp dest: foldSetD_imp_finite) | |
| 177 | apply assumption | |
| 178 | apply assumption | |
| 179 | apply (blast intro: foldSetD_determ) | |
| 180 | done | |
| 181 | ||
| 182 | lemma (in LCD) foldD_insert: | |
| 14750 | 183 | "[| finite A; x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 184 | foldD D f e (insert x A) = f x (foldD D f e A)" | 
| 185 | apply (unfold foldD_def) | |
| 186 | apply (simp add: foldD_insert_aux) | |
| 187 | apply (rule the_equality) | |
| 188 | apply (auto intro: finite_imp_foldSetD | |
| 189 | cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) | |
| 190 | done | |
| 191 | ||
| 192 | lemma (in LCD) foldD_closed [simp]: | |
| 14750 | 193 | "[| finite A; e \<in> D; A \<subseteq> B |] ==> foldD D f e A \<in> D" | 
| 22265 | 194 | proof (induct set: finite) | 
| 13936 | 195 | case empty then show ?case by (simp add: foldD_empty) | 
| 196 | next | |
| 197 | case insert then show ?case by (simp add: foldD_insert) | |
| 198 | qed | |
| 199 | ||
| 200 | lemma (in LCD) foldD_commute: | |
| 14750 | 201 | "[| finite A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 202 | f x (foldD D f e A) = foldD D f (f x e) A" | 
| 22265 | 203 | apply (induct set: finite) | 
| 13936 | 204 | apply simp | 
| 205 | apply (auto simp add: left_commute foldD_insert) | |
| 206 | done | |
| 207 | ||
| 208 | lemma Int_mono2: | |
| 14750 | 209 | "[| A \<subseteq> C; B \<subseteq> C |] ==> A Int B \<subseteq> C" | 
| 13936 | 210 | by blast | 
| 211 | ||
| 212 | lemma (in LCD) foldD_nest_Un_Int: | |
| 14750 | 213 | "[| finite A; finite C; e \<in> D; A \<subseteq> B; C \<subseteq> B |] ==> | 
| 13936 | 214 | foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" | 
| 22265 | 215 | apply (induct set: finite) | 
| 13936 | 216 | apply simp | 
| 217 | apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb | |
| 218 | Int_mono2 Un_subset_iff) | |
| 219 | done | |
| 220 | ||
| 221 | lemma (in LCD) foldD_nest_Un_disjoint: | |
| 14750 | 222 |   "[| finite A; finite B; A Int B = {}; e \<in> D; A \<subseteq> B; C \<subseteq> B |]
 | 
| 13936 | 223 | ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" | 
| 224 | by (simp add: foldD_nest_Un_Int) | |
| 225 | ||
| 226 | -- {* Delete rules to do with @{text foldSetD} relation. *}
 | |
| 227 | ||
| 228 | declare foldSetD_imp_finite [simp del] | |
| 229 | empty_foldSetDE [rule del] | |
| 230 | foldSetD.intros [rule del] | |
| 231 | declare (in LCD) | |
| 232 | foldSetD_closed [rule del] | |
| 233 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 234 | |
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 235 | subsection {* Commutative Monoids *}
 | 
| 13936 | 236 | |
| 237 | text {*
 | |
| 238 |   We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
 | |
| 239 |   instead of @{text "'b => 'a => 'a"}.
 | |
| 240 | *} | |
| 241 | ||
| 242 | locale ACeD = | |
| 243 | fixes D :: "'a set" | |
| 244 | and f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 245 | and e :: 'a | |
| 14750 | 246 | assumes ident [simp]: "x \<in> D ==> x \<cdot> e = x" | 
| 247 | and commute: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y = y \<cdot> x" | |
| 248 | and assoc: "[| x \<in> D; y \<in> D; z \<in> D |] ==> (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 249 | and e_closed [simp]: "e \<in> D" | |
| 250 | and f_closed [simp]: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y \<in> D" | |
| 13936 | 251 | |
| 252 | lemma (in ACeD) left_commute: | |
| 14750 | 253 | "[| x \<in> D; y \<in> D; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 13936 | 254 | proof - | 
| 14750 | 255 | assume D: "x \<in> D" "y \<in> D" "z \<in> D" | 
| 13936 | 256 | then have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp add: commute) | 
| 257 | also from D have "... = y \<cdot> (z \<cdot> x)" by (simp add: assoc) | |
| 258 | also from D have "z \<cdot> x = x \<cdot> z" by (simp add: commute) | |
| 259 | finally show ?thesis . | |
| 260 | qed | |
| 261 | ||
| 262 | lemmas (in ACeD) AC = assoc commute left_commute | |
| 263 | ||
| 14750 | 264 | lemma (in ACeD) left_ident [simp]: "x \<in> D ==> e \<cdot> x = x" | 
| 13936 | 265 | proof - | 
| 14750 | 266 | assume D: "x \<in> D" | 
| 13936 | 267 | have "x \<cdot> e = x" by (rule ident) | 
| 268 | with D show ?thesis by (simp add: commute) | |
| 269 | qed | |
| 270 | ||
| 271 | lemma (in ACeD) foldD_Un_Int: | |
| 14750 | 272 | "[| finite A; finite B; A \<subseteq> D; B \<subseteq> D |] ==> | 
| 13936 | 273 | foldD D f e A \<cdot> foldD D f e B = | 
| 274 | foldD D f e (A Un B) \<cdot> foldD D f e (A Int B)" | |
| 22265 | 275 | apply (induct set: finite) | 
| 13936 | 276 | apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) | 
| 277 | apply (simp add: AC insert_absorb Int_insert_left | |
| 278 | LCD.foldD_insert [OF LCD.intro [of D]] | |
| 279 | LCD.foldD_closed [OF LCD.intro [of D]] | |
| 280 | Int_mono2 Un_subset_iff) | |
| 281 | done | |
| 282 | ||
| 283 | lemma (in ACeD) foldD_Un_disjoint: | |
| 14750 | 284 |   "[| finite A; finite B; A Int B = {}; A \<subseteq> D; B \<subseteq> D |] ==>
 | 
| 13936 | 285 | foldD D f e (A Un B) = foldD D f e A \<cdot> foldD D f e B" | 
| 286 | by (simp add: foldD_Un_Int | |
| 287 | left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff) | |
| 288 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 289 | |
| 13936 | 290 | subsection {* Products over Finite Sets *}
 | 
| 291 | ||
| 14651 | 292 | constdefs (structure G) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 293 |   finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
 | 
| 13936 | 294 | "finprod G f A == if finite A | 
| 14651 | 295 | then foldD (carrier G) (mult G o f) \<one> A | 
| 13936 | 296 | else arbitrary" | 
| 297 | ||
| 14651 | 298 | syntax | 
| 299 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 300 |       ("(3\<Otimes>__:_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 301 | syntax (xsymbols) | 
| 302 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 303 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 304 | syntax (HTML output) | 
| 305 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 306 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 307 | translations | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 308 | "\<Otimes>\<index>i:A. b" == "finprod \<struct>\<index> (%i. b) A" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 309 |   -- {* Beware of argument permutation! *}
 | 
| 13936 | 310 | |
| 311 | lemma (in comm_monoid) finprod_empty [simp]: | |
| 312 |   "finprod G f {} = \<one>"
 | |
| 313 | by (simp add: finprod_def) | |
| 314 | ||
| 315 | declare funcsetI [intro] | |
| 316 | funcset_mem [dest] | |
| 317 | ||
| 318 | lemma (in comm_monoid) finprod_insert [simp]: | |
| 319 | "[| finite F; a \<notin> F; f \<in> F -> carrier G; f a \<in> carrier G |] ==> | |
| 320 | finprod G f (insert a F) = f a \<otimes> finprod G f F" | |
| 321 | apply (rule trans) | |
| 322 | apply (simp add: finprod_def) | |
| 323 | apply (rule trans) | |
| 324 | apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) | |
| 325 | apply simp | |
| 326 | apply (rule m_lcomm) | |
| 327 | apply fast | |
| 328 | apply fast | |
| 329 | apply assumption | |
| 330 | apply (fastsimp intro: m_closed) | |
| 331 | apply simp+ | |
| 332 | apply fast | |
| 333 | apply (auto simp add: finprod_def) | |
| 334 | done | |
| 335 | ||
| 336 | lemma (in comm_monoid) finprod_one [simp]: | |
| 14651 | 337 | "finite A ==> (\<Otimes>i:A. \<one>) = \<one>" | 
| 22265 | 338 | proof (induct set: finite) | 
| 13936 | 339 | case empty show ?case by simp | 
| 340 | next | |
| 15328 | 341 | case (insert a A) | 
| 13936 | 342 | have "(%i. \<one>) \<in> A -> carrier G" by auto | 
| 343 | with insert show ?case by simp | |
| 344 | qed | |
| 345 | ||
| 346 | lemma (in comm_monoid) finprod_closed [simp]: | |
| 347 | fixes A | |
| 348 | assumes fin: "finite A" and f: "f \<in> A -> carrier G" | |
| 349 | shows "finprod G f A \<in> carrier G" | |
| 350 | using fin f | |
| 351 | proof induct | |
| 352 | case empty show ?case by simp | |
| 353 | next | |
| 15328 | 354 | case (insert a A) | 
| 13936 | 355 | then have a: "f a \<in> carrier G" by fast | 
| 356 | from insert have A: "f \<in> A -> carrier G" by fast | |
| 357 | from insert A a show ?case by simp | |
| 358 | qed | |
| 359 | ||
| 360 | lemma funcset_Int_left [simp, intro]: | |
| 361 | "[| f \<in> A -> C; f \<in> B -> C |] ==> f \<in> A Int B -> C" | |
| 362 | by fast | |
| 363 | ||
| 364 | lemma funcset_Un_left [iff]: | |
| 365 | "(f \<in> A Un B -> C) = (f \<in> A -> C & f \<in> B -> C)" | |
| 366 | by fast | |
| 367 | ||
| 368 | lemma (in comm_monoid) finprod_Un_Int: | |
| 369 | "[| finite A; finite B; g \<in> A -> carrier G; g \<in> B -> carrier G |] ==> | |
| 370 | finprod G g (A Un B) \<otimes> finprod G g (A Int B) = | |
| 371 | finprod G g A \<otimes> finprod G g B" | |
| 372 | -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 22265 | 373 | proof (induct set: finite) | 
| 13936 | 374 | case empty then show ?case by (simp add: finprod_closed) | 
| 375 | next | |
| 15328 | 376 | case (insert a A) | 
| 13936 | 377 | then have a: "g a \<in> carrier G" by fast | 
| 378 | from insert have A: "g \<in> A -> carrier G" by fast | |
| 379 | from insert A a show ?case | |
| 380 | by (simp add: m_ac Int_insert_left insert_absorb finprod_closed | |
| 381 | Int_mono2 Un_subset_iff) | |
| 382 | qed | |
| 383 | ||
| 384 | lemma (in comm_monoid) finprod_Un_disjoint: | |
| 385 |   "[| finite A; finite B; A Int B = {};
 | |
| 386 | g \<in> A -> carrier G; g \<in> B -> carrier G |] | |
| 387 | ==> finprod G g (A Un B) = finprod G g A \<otimes> finprod G g B" | |
| 388 | apply (subst finprod_Un_Int [symmetric]) | |
| 389 | apply (auto simp add: finprod_closed) | |
| 390 | done | |
| 391 | ||
| 392 | lemma (in comm_monoid) finprod_multf: | |
| 393 | "[| finite A; f \<in> A -> carrier G; g \<in> A -> carrier G |] ==> | |
| 394 | finprod G (%x. f x \<otimes> g x) A = (finprod G f A \<otimes> finprod G g A)" | |
| 22265 | 395 | proof (induct set: finite) | 
| 13936 | 396 | case empty show ?case by simp | 
| 397 | next | |
| 15328 | 398 | case (insert a A) then | 
| 14750 | 399 | have fA: "f \<in> A -> carrier G" by fast | 
| 400 | from insert have fa: "f a \<in> carrier G" by fast | |
| 401 | from insert have gA: "g \<in> A -> carrier G" by fast | |
| 402 | from insert have ga: "g a \<in> carrier G" by fast | |
| 403 | from insert have fgA: "(%x. f x \<otimes> g x) \<in> A -> carrier G" | |
| 13936 | 404 | by (simp add: Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 405 | show ?case | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 406 | by (simp add: insert fA fa gA ga fgA m_ac) | 
| 13936 | 407 | qed | 
| 408 | ||
| 409 | lemma (in comm_monoid) finprod_cong': | |
| 14750 | 410 | "[| A = B; g \<in> B -> carrier G; | 
| 411 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 412 | proof - | 
| 14750 | 413 | assume prems: "A = B" "g \<in> B -> carrier G" | 
| 414 | "!!i. i \<in> B ==> f i = g i" | |
| 13936 | 415 | show ?thesis | 
| 416 | proof (cases "finite B") | |
| 417 | case True | |
| 14750 | 418 | then have "!!A. [| A = B; g \<in> B -> carrier G; | 
| 419 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 420 | proof induct | 
| 421 | case empty thus ?case by simp | |
| 422 | next | |
| 15328 | 423 | case (insert x B) | 
| 13936 | 424 | then have "finprod G f A = finprod G f (insert x B)" by simp | 
| 425 | also from insert have "... = f x \<otimes> finprod G f B" | |
| 426 | proof (intro finprod_insert) | |
| 427 | show "finite B" . | |
| 428 | next | |
| 429 | show "x ~: B" . | |
| 430 | next | |
| 431 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | |
| 432 | "g \<in> insert x B \<rightarrow> carrier G" | |
| 14750 | 433 | thus "f \<in> B -> carrier G" by fastsimp | 
| 13936 | 434 | next | 
| 435 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | |
| 436 | "g \<in> insert x B \<rightarrow> carrier G" | |
| 437 | thus "f x \<in> carrier G" by fastsimp | |
| 438 | qed | |
| 439 | also from insert have "... = g x \<otimes> finprod G g B" by fastsimp | |
| 440 | also from insert have "... = finprod G g (insert x B)" | |
| 441 | by (intro finprod_insert [THEN sym]) auto | |
| 442 | finally show ?case . | |
| 443 | qed | |
| 444 | with prems show ?thesis by simp | |
| 445 | next | |
| 446 | case False with prems show ?thesis by (simp add: finprod_def) | |
| 447 | qed | |
| 448 | qed | |
| 449 | ||
| 450 | lemma (in comm_monoid) finprod_cong: | |
| 14750 | 451 | "[| A = B; f \<in> B -> carrier G = True; | 
| 452 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 14213 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 453 | (* This order of prems is slightly faster (3%) than the last two swapped. *) | 
| 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 454 | by (rule finprod_cong') force+ | 
| 13936 | 455 | |
| 456 | text {*Usually, if this rule causes a failed congruence proof error,
 | |
| 14750 | 457 |   the reason is that the premise @{text "g \<in> B -> carrier G"} cannot be shown.
 | 
| 13936 | 458 |   Adding @{thm [source] Pi_def} to the simpset is often useful.
 | 
| 459 |   For this reason, @{thm [source] comm_monoid.finprod_cong}
 | |
| 460 | is not added to the simpset by default. | |
| 461 | *} | |
| 462 | ||
| 463 | declare funcsetI [rule del] | |
| 464 | funcset_mem [rule del] | |
| 465 | ||
| 466 | lemma (in comm_monoid) finprod_0 [simp]: | |
| 14750 | 467 |   "f \<in> {0::nat} -> carrier G ==> finprod G f {..0} = f 0"
 | 
| 13936 | 468 | by (simp add: Pi_def) | 
| 469 | ||
| 470 | lemma (in comm_monoid) finprod_Suc [simp]: | |
| 14750 | 471 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 472 |    finprod G f {..Suc n} = (f (Suc n) \<otimes> finprod G f {..n})"
 | 
| 473 | by (simp add: Pi_def atMost_Suc) | |
| 474 | ||
| 475 | lemma (in comm_monoid) finprod_Suc2: | |
| 14750 | 476 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 477 |    finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \<otimes> f 0)"
 | 
| 478 | proof (induct n) | |
| 479 | case 0 thus ?case by (simp add: Pi_def) | |
| 480 | next | |
| 481 | case Suc thus ?case by (simp add: m_assoc Pi_def) | |
| 482 | qed | |
| 483 | ||
| 484 | lemma (in comm_monoid) finprod_mult [simp]: | |
| 14750 | 485 |   "[| f \<in> {..n} -> carrier G; g \<in> {..n} -> carrier G |] ==>
 | 
| 13936 | 486 |      finprod G (%i. f i \<otimes> g i) {..n::nat} =
 | 
| 487 |      finprod G f {..n} \<otimes> finprod G g {..n}"
 | |
| 488 | by (induct n) (simp_all add: m_ac Pi_def) | |
| 489 | ||
| 490 | end | |
| 491 |