| author | wenzelm | 
| Tue, 12 Nov 2024 11:32:07 +0100 | |
| changeset 81432 | 85fc3b482924 | 
| parent 81258 | 74647c464cbd | 
| child 82529 | ff4b062aae57 | 
| permissions | -rw-r--r-- | 
| 68189 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 58881 | 5 | section \<open>Pi and Function Sets\<close> | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 67006 | 8 | imports Main | 
| 64910 | 9 | abbrevs PiE = "Pi\<^sub>E" | 
| 67013 
335a7dce7cb3
more uniform header syntax, in contrast to the former etc/abbrevs file-format (see 73939a9b70a3);
 wenzelm parents: 
67006diff
changeset | 10 | and PIE = "\<Pi>\<^sub>E" | 
| 15131 | 11 | begin | 
| 13586 | 12 | |
| 58783 | 13 | definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 14 |   where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
 | |
| 13586 | 15 | |
| 58783 | 16 | definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 17 |   where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
 | |
| 13586 | 18 | |
| 58783 | 19 | definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 20 | where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)" | |
| 13586 | 21 | |
| 81135 | 22 | abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 23 | where "funcset A B \<equiv> Pi A (\<lambda>_. B)" | |
| 24 | ||
| 25 | open_bundle funcset_syntax | |
| 26 | begin | |
| 27 | notation funcset (infixr \<open>\<rightarrow>\<close> 60) | |
| 28 | end | |
| 19536 | 29 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 30 | syntax | 
| 81142 | 31 |   "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 32 | (\<open>(\<open>indent=3 notation=\<open>binder \<Pi>\<in>\<close>\<close>\<Pi> _\<in>_./ _)\<close> 10) | |
| 33 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | |
| 34 | (\<open>(\<open>indent=3 notation=\<open>binder \<lambda>\<in>\<close>\<close>\<lambda>_\<in>_./ _)\<close> [0, 0, 3] 3) | |
| 80768 | 35 | syntax_consts | 
| 36 | "_Pi" \<rightleftharpoons> Pi and | |
| 37 | "_lam" \<rightleftharpoons> restrict | |
| 13586 | 38 | translations | 
| 58783 | 39 | "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" | 
| 40 | "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A" | |
| 13586 | 41 | |
| 58783 | 42 | definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
 | 
| 43 | where "compose A g f = (\<lambda>x\<in>A. g (f x))" | |
| 13586 | 44 | |
| 45 | ||
| 69593 | 46 | subsection \<open>Basic Properties of \<^term>\<open>Pi\<close>\<close> | 
| 13586 | 47 | |
| 58783 | 48 | lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 14706 | 49 | by (simp add: Pi_def) | 
| 13586 | 50 | |
| 58783 | 51 | lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 52 | by (simp add:Pi_def) | |
| 31731 | 53 | |
| 58783 | 54 | lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 58783 | 57 | lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x" | 
| 14706 | 58 | by (simp add: Pi_def) | 
| 13586 | 59 | |
| 47761 | 60 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 61 | unfolding Pi_def by auto | |
| 62 | ||
| 58783 | 63 | lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 64 | by (auto simp: Pi_def) | |
| 31754 | 65 | |
| 58783 | 66 | lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | 
| 38656 | 67 | by (auto simp: Pi_def) | 
| 68 | ||
| 31769 | 69 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 70 | by auto | 
| 31769 | 71 | |
| 58783 | 72 | lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B" | 
| 14706 | 73 | by (simp add: Pi_def) | 
| 13586 | 74 | |
| 58783 | 75 | lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B" | 
| 50104 | 76 | by auto | 
| 77 | ||
| 78 | lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" | |
| 79 | by auto | |
| 14762 | 80 | |
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 81 | lemma funcset_to_empty_iff: "A \<rightarrow> {} = (if A={} then UNIV else {})"
 | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 82 | by auto | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 83 | |
| 58783 | 84 | lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
 | 
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 85 | proof - | 
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 86 |   have "\<exists>x\<in>A. B x = {}" if "\<And>f. \<exists>y. y \<in> A \<and> f y \<notin> B y"
 | 
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 87 | using that [of "\<lambda>u. SOME y. y \<in> B u"] some_in_eq by blast | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 88 | then show ?thesis | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 89 | by force | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 90 | qed | 
| 13586 | 91 | |
| 13593 | 92 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 58783 | 93 | by (simp add: Pi_def) | 
| 13593 | 94 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 95 | lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 96 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 97 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 98 | lemma Pi_UN: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 99 | fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" | 
| 58783 | 100 | assumes "finite I" | 
| 101 | and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 102 | shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 103 | proof (intro set_eqI iffI) | 
| 58783 | 104 | fix f | 
| 105 | assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" | |
| 106 | then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" | |
| 107 | by auto | |
| 63060 | 108 | from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i | 
| 58783 | 109 | by auto | 
| 63060 | 110 | obtain k where k: "n i \<le> k" if "i \<in> I" for i | 
| 58783 | 111 | using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 112 | have "f \<in> Pi I (A k)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 113 | proof (intro Pi_I) | 
| 58783 | 114 | fix i | 
| 115 | assume "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 116 | from mono[OF this, of "n i" k] k[OF this] n[OF this] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 117 | show "f i \<in> A k i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 118 | qed | 
| 58783 | 119 | then show "f \<in> (\<Union>n. Pi I (A n))" | 
| 120 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 121 | qed auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 122 | |
| 58783 | 123 | lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV" | 
| 124 | by (simp add: Pi_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 125 | |
| 58783 | 126 | text \<open>Covariance of Pi-sets in their second argument\<close> | 
| 127 | lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C" | |
| 128 | by auto | |
| 13586 | 129 | |
| 58783 | 130 | text \<open>Contravariance of Pi-sets in their first argument\<close> | 
| 131 | lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B" | |
| 132 | by auto | |
| 13586 | 133 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 134 | lemma prod_final: | 
| 58783 | 135 | assumes 1: "fst \<circ> f \<in> Pi A B" | 
| 136 | and 2: "snd \<circ> f \<in> Pi A C" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 137 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 58783 | 138 | proof (rule Pi_I) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 139 | fix z | 
| 58783 | 140 | assume z: "z \<in> A" | 
| 141 | have "f z = (fst (f z), snd (f z))" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 142 | by simp | 
| 58783 | 143 | also have "\<dots> \<in> B z \<times> C z" | 
| 144 | by (metis SigmaI PiE o_apply 1 2 z) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 145 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 146 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 147 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 149 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 150 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 151 | lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 153 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 154 | lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 155 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 156 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 157 | lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 158 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 159 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 160 | lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
 | 
| 78248 
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
 paulson <lp15@cam.ac.uk> parents: 
75663diff
changeset | 161 | using mk_disjoint_insert by fastforce | 
| 
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
 paulson <lp15@cam.ac.uk> parents: 
75663diff
changeset | 162 | |
| 
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
 paulson <lp15@cam.ac.uk> parents: 
75663diff
changeset | 163 | lemma fst_Pi: "fst \<in> A \<times> B \<rightarrow> A" and snd_Pi: "snd \<in> A \<times> B \<rightarrow> B" | 
| 
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
 paulson <lp15@cam.ac.uk> parents: 
75663diff
changeset | 164 | by auto | 
| 13586 | 165 | |
| 58783 | 166 | |
| 69593 | 167 | subsection \<open>Composition With a Restricted Domain: \<^term>\<open>compose\<close>\<close> | 
| 13586 | 168 | |
| 58783 | 169 | lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C" | 
| 170 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 171 | |
| 172 | lemma compose_assoc: | |
| 58783 | 173 | assumes "f \<in> A \<rightarrow> B" | 
| 174 | shows "compose A h (compose A g f) = compose A (compose B h g) f" | |
| 175 | using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | |
| 13586 | 176 | |
| 58783 | 177 | lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)" | 
| 178 | by (simp add: compose_def restrict_def) | |
| 13586 | 179 | |
| 58783 | 180 | lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C" | 
| 14706 | 181 | by (auto simp add: image_def compose_eq) | 
| 13586 | 182 | |
| 183 | ||
| 69593 | 184 | subsection \<open>Bounded Abstraction: \<^term>\<open>restrict\<close>\<close> | 
| 13586 | 185 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 186 | lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 187 | by (auto simp: restrict_def fun_eq_iff simp_implies_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 188 | |
| 54417 | 189 | lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 190 | by (simp add: Pi_def restrict_def) | 
| 13586 | 191 | |
| 54417 | 192 | lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 193 | by (simp add: restrict_def) | 
| 13586 | 194 | |
| 54417 | 195 | lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" | 
| 196 | by simp | |
| 197 | ||
| 58783 | 198 | lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 199 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 200 | |
| 58606 | 201 | lemma restrict_UNIV: "restrict f UNIV = f" | 
| 202 | by (simp add: restrict_def) | |
| 203 | ||
| 75078 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 204 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A \<longleftrightarrow> inj_on f A" | 
| 14706 | 205 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 206 | |
| 75078 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 207 | lemma inj_on_restrict_iff: "A \<subseteq> B \<Longrightarrow> inj_on (restrict f B) A \<longleftrightarrow> inj_on f A" | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 208 | by (metis inj_on_cong restrict_def subset_iff) | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 209 | |
| 58783 | 210 | lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 211 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 212 | |
| 58783 | 213 | lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 214 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 215 | |
| 14853 | 216 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 217 | by (auto simp add: restrict_def) | 
| 13586 | 218 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 219 | lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 220 | unfolding restrict_def by (simp add: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 221 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 222 | lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 223 | by (auto simp: restrict_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 224 | |
| 58783 | 225 | lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 226 | by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 227 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 228 | lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 229 | by (auto simp: restrict_def Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 230 | |
| 70063 | 231 | lemma sum_restrict' [simp]: "sum' (\<lambda>i\<in>I. g i) I = sum' (\<lambda>i. g i) I" | 
| 232 | by (simp add: sum.G_def conj_commute cong: conj_cong) | |
| 233 | ||
| 234 | lemma prod_restrict' [simp]: "prod' (\<lambda>i\<in>I. g i) I = prod' (\<lambda>i. g i) I" | |
| 235 | by (simp add: prod.G_def conj_commute cong: conj_cong) | |
| 236 | ||
| 14745 | 237 | |
| 58783 | 238 | subsection \<open>Bijections Between Sets\<close> | 
| 14762 | 239 | |
| 69593 | 240 | text \<open>The definition of \<^const>\<open>bij_betw\<close> is in \<open>Fun.thy\<close>, but most of | 
| 241 | the theorems belong here, or need at least \<^term>\<open>Hilbert_Choice\<close>.\<close> | |
| 14762 | 242 | |
| 39595 | 243 | lemma bij_betwI: | 
| 58783 | 244 | assumes "f \<in> A \<rightarrow> B" | 
| 245 | and "g \<in> B \<rightarrow> A" | |
| 246 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" | |
| 247 | and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 248 | shows "bij_betw f A B" | |
| 249 | unfolding bij_betw_def | |
| 39595 | 250 | proof | 
| 58783 | 251 | show "inj_on f A" | 
| 252 | by (metis g_f inj_on_def) | |
| 253 | have "f ` A \<subseteq> B" | |
| 254 | using \<open>f \<in> A \<rightarrow> B\<close> by auto | |
| 39595 | 255 | moreover | 
| 58783 | 256 | have "B \<subseteq> f ` A" | 
| 257 | by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff) | |
| 258 | ultimately show "f ` A = B" | |
| 259 | by blast | |
| 39595 | 260 | qed | 
| 261 | ||
| 14762 | 262 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 58783 | 263 | by (auto simp add: bij_betw_def) | 
| 14762 | 264 | |
| 58783 | 265 | lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A" | 
| 266 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 267 | |
| 58783 | 268 | lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C" | 
| 80790 | 269 | by (simp add: bij_betw_def inj_on_compose surj_compose) | 
| 14762 | 270 | |
| 58783 | 271 | lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 272 | by (simp add: bij_betw_def) | |
| 14853 | 273 | |
| 274 | ||
| 58783 | 275 | subsection \<open>Extensionality\<close> | 
| 14853 | 276 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 277 | lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 278 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 279 | |
| 58783 | 280 | lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" | 
| 281 | by (simp add: extensional_def) | |
| 14853 | 282 | |
| 283 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 58783 | 284 | by (simp add: restrict_def extensional_def) | 
| 14853 | 285 | |
| 286 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 58783 | 287 | by (simp add: compose_def) | 
| 14853 | 288 | |
| 289 | lemma extensionalityI: | |
| 58783 | 290 | assumes "f \<in> extensional A" | 
| 291 | and "g \<in> extensional A" | |
| 292 | and "\<And>x. x \<in> A \<Longrightarrow> f x = g x" | |
| 293 | shows "f = g" | |
| 294 | using assms by (force simp add: fun_eq_iff extensional_def) | |
| 14853 | 295 | |
| 39595 | 296 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 58783 | 297 | by (rule extensionalityI[OF restrict_extensional]) auto | 
| 39595 | 298 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 299 | lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 300 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 301 | |
| 58783 | 302 | lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A" | 
| 303 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 304 | |
| 58783 | 305 | lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | 
| 80790 | 306 | by (smt (verit, best) bij_betwE bij_betw_inv_into_left compose_def restrict_apply' restrict_ext) | 
| 14853 | 307 | |
| 58783 | 308 | lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | 
| 80790 | 309 | by (smt (verit, best) compose_def f_inv_into_f restrict_apply' restrict_ext) | 
| 14853 | 310 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 311 | lemma extensional_insert[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 312 | assumes "a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 313 | shows "a(i := b) \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 314 | using assms unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 315 | |
| 58783 | 316 | lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 317 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 318 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 319 | lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 320 | by (auto simp: extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 321 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 322 | lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 323 | unfolding restrict_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 324 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 325 | lemma extensional_insert_undefined[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 326 | "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 327 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 328 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 329 | lemma extensional_insert_cancel[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 330 | "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 331 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 332 | |
| 14762 | 333 | |
| 58783 | 334 | subsection \<open>Cardinality\<close> | 
| 14745 | 335 | |
| 58783 | 336 | lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B" | 
| 337 | by (rule card_inj_on_le) auto | |
| 14745 | 338 | |
| 339 | lemma card_bij: | |
| 58783 | 340 | assumes "f \<in> A \<rightarrow> B" "inj_on f A" | 
| 341 | and "g \<in> B \<rightarrow> A" "inj_on g B" | |
| 342 | and "finite A" "finite B" | |
| 343 | shows "card A = card B" | |
| 344 | using assms by (blast intro: card_inj order_antisym) | |
| 14745 | 345 | |
| 58783 | 346 | |
| 347 | subsection \<open>Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 348 | |
| 58783 | 349 | definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 350 | where "PiE S T = Pi S T \<inter> extensional S" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 351 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 352 | abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 353 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 354 | syntax | 
| 81142 | 355 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 356 | (\<open>(\<open>indent=3 notation=\<open>binder \<Pi>\<^sub>E\<in>\<close>\<close>\<Pi>\<^sub>E _\<in>_./ _)\<close> 10) | |
| 80768 | 357 | syntax_consts | 
| 358 | "_PiE" \<rightleftharpoons> Pi\<^sub>E | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 359 | translations | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 360 | "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 361 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
80790diff
changeset | 362 | abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr \<open>\<rightarrow>\<^sub>E\<close> 60)
 | 
| 61384 | 363 | where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 364 | |
| 58783 | 365 | lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 366 | by (simp add: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 367 | |
| 64910 | 368 | lemma PiE_empty_domain[simp]: "Pi\<^sub>E {} T = {\<lambda>x. undefined}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 369 | unfolding PiE_def by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 370 | |
| 64910 | 371 | lemma PiE_UNIV_domain: "Pi\<^sub>E UNIV T = Pi UNIV T" | 
| 54417 | 372 | unfolding PiE_def by simp | 
| 373 | ||
| 58783 | 374 | lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 376 | |
| 58783 | 377 | lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 378 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 379 |   assume "Pi\<^sub>E I F = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 380 |   show "\<exists>i\<in>I. F i = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 381 | proof (rule ccontr) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 382 | assume "\<not> ?thesis" | 
| 58783 | 383 | then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" | 
| 384 | by auto | |
| 53381 | 385 | from choice[OF this] | 
| 386 | obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. | |
| 58783 | 387 | then have "f \<in> Pi\<^sub>E I F" | 
| 388 | by (auto simp: extensional_def PiE_def) | |
| 389 |     with \<open>Pi\<^sub>E I F = {}\<close> show False
 | |
| 390 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 391 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 392 | qed (auto simp: PiE_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 393 | |
| 64910 | 394 | lemma PiE_arb: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 395 | unfolding PiE_def by auto (auto dest!: extensional_arb) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 396 | |
| 64910 | 397 | lemma PiE_mem: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 398 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 399 | |
| 64910 | 400 | lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> Pi\<^sub>E S T \<Longrightarrow> f(x := y) \<in> Pi\<^sub>E (insert x S) T" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 401 | unfolding PiE_def extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 402 | |
| 64910 | 403 | lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> Pi\<^sub>E (insert x S) T \<Longrightarrow> f(x := undefined) \<in> Pi\<^sub>E S T" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 404 | unfolding PiE_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 405 | |
| 64910 | 406 | lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 407 | proof - | 
| 81258 | 408 | have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" if "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S" for f | 
| 409 | using that | |
| 410 | by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) | |
| 59425 | 411 | moreover | 
| 81258 | 412 | have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" if "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S" for f | 
| 413 | using that | |
| 414 | by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) | |
| 59425 | 415 | ultimately show ?thesis | 
| 63092 | 416 | by (auto intro: PiE_fun_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 417 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 418 | |
| 58783 | 419 | lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 420 | by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 421 | |
| 58783 | 422 | lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 423 | unfolding PiE_def by (auto simp: Pi_cong) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 424 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 425 | lemma PiE_E [elim]: | 
| 64910 | 426 | assumes "f \<in> Pi\<^sub>E A B" | 
| 58783 | 427 | obtains "x \<in> A" and "f x \<in> B x" | 
| 428 | | "x \<notin> A" and "f x = undefined" | |
| 429 | using assms by (auto simp: Pi_def PiE_def extensional_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 430 | |
| 58783 | 431 | lemma PiE_I[intro!]: | 
| 64910 | 432 | "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> Pi\<^sub>E A B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 433 | by (simp add: PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 434 | |
| 64910 | 435 | lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi\<^sub>E A B \<subseteq> Pi\<^sub>E A C" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 436 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 437 | |
| 64910 | 438 | lemma PiE_iff: "f \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 439 | by (simp add: PiE_def Pi_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 440 | |
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 441 | lemma restrict_PiE_iff: "restrict f I \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i \<in> I. f i \<in> X i)" | 
| 73346 | 442 | by (simp add: PiE_iff) | 
| 443 | ||
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 444 | lemma ext_funcset_to_sing_iff [simp]: "A \<rightarrow>\<^sub>E {a} = {\<lambda>x\<in>A. a}"
 | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 445 | by (auto simp: PiE_def Pi_iff extensionalityI) | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 446 | |
| 64910 | 447 | lemma PiE_restrict[simp]: "f \<in> Pi\<^sub>E A B \<Longrightarrow> restrict f A = f" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 448 | by (simp add: extensional_restrict PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 449 | |
| 64910 | 450 | lemma restrict_PiE[simp]: "restrict f I \<in> Pi\<^sub>E I S \<longleftrightarrow> f \<in> Pi I S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 451 | by (auto simp: PiE_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 452 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 453 | lemma PiE_eq_subset: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 454 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 58783 | 455 | and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 456 | and "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 457 | shows "F i \<subseteq> F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 458 | proof | 
| 58783 | 459 | fix x | 
| 460 | assume "x \<in> F i" | |
| 461 | with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)" | |
| 53381 | 462 | by auto | 
| 463 | from choice[OF this] obtain f | |
| 464 | where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. | |
| 58783 | 465 | then have "f \<in> Pi\<^sub>E I F" | 
| 466 | by (auto simp: extensional_def PiE_def) | |
| 467 | then have "f \<in> Pi\<^sub>E I F'" | |
| 468 | using assms by simp | |
| 469 | then show "x \<in> F' i" | |
| 470 | using f \<open>i \<in> I\<close> by (auto simp: PiE_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 471 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 472 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 473 | lemma PiE_eq_iff_not_empty: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 474 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 475 | shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 476 | proof (intro iffI ballI) | 
| 58783 | 477 | fix i | 
| 478 | assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | |
| 479 | assume i: "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 480 | show "F i = F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 481 | using PiE_eq_subset[of I F F', OF ne eq i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 482 | using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 483 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 484 | qed (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 485 | |
| 81258 | 486 | lemma PiE_eq_iff: "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 487 | proof (intro iffI disjCI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 488 | assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 489 |   assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 490 |   then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 491 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto | 
| 58783 | 492 | with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" | 
| 493 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 494 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 495 |   assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 496 | then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 497 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 498 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 499 | |
| 58783 | 500 | lemma extensional_funcset_fun_upd_restricts_rangeI: | 
| 501 |   "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 502 | unfolding extensional_funcset_def extensional_def | 
| 73346 | 503 | by (auto split: if_split_asm) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 504 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 505 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 506 |   assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 58783 | 507 | shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E T" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 508 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 509 | |
| 69000 | 510 | lemma subset_PiE: | 
| 511 |    "PiE I S \<subseteq> PiE I T \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. S i \<subseteq> T i)" (is "?lhs \<longleftrightarrow> _ \<or> ?rhs")
 | |
| 512 | proof (cases "PiE I S = {}")
 | |
| 513 | case False | |
| 514 | moreover have "?lhs = ?rhs" | |
| 515 | proof | |
| 516 | assume L: ?lhs | |
| 517 |     have "\<And>i. i\<in>I \<Longrightarrow> S i \<noteq> {}"
 | |
| 518 | using False PiE_eq_empty_iff by blast | |
| 519 | with L show ?rhs | |
| 520 | by (simp add: PiE_Int PiE_eq_iff inf.absorb_iff2) | |
| 521 | qed auto | |
| 522 | ultimately show ?thesis | |
| 523 | by simp | |
| 524 | qed simp | |
| 525 | ||
| 81258 | 526 | lemma PiE_eq: "PiE I S = PiE I T \<longleftrightarrow> PiE I S = {} \<and> PiE I T = {} \<or> (\<forall>i \<in> I. S i = T i)"
 | 
| 69000 | 527 | by (auto simp: PiE_eq_iff PiE_eq_empty_iff) | 
| 528 | ||
| 529 | lemma PiE_UNIV [simp]: "PiE UNIV (\<lambda>i. UNIV) = UNIV" | |
| 530 | by blast | |
| 531 | ||
| 532 | lemma image_projection_PiE: | |
| 533 |   "(\<lambda>f. f i) ` (PiE I S) = (if PiE I S = {} then {} else if i \<in> I then S i else {undefined})"
 | |
| 534 | proof - | |
| 535 | have "(\<lambda>f. f i) ` Pi\<^sub>E I S = S i" if "i \<in> I" "f \<in> PiE I S" for f | |
| 80790 | 536 | proof - | 
| 537 | have "x \<in> S i \<Longrightarrow> \<exists>f\<in>Pi\<^sub>E I S. x = f i" for x | |
| 538 | using that | |
| 81258 | 539 | by (force intro: bexI [where x="\<lambda>k. if k=i then x else f k"]) | 
| 80790 | 540 | then show ?thesis | 
| 541 | using that by force | |
| 542 | qed | |
| 543 | then show ?thesis | |
| 544 | by (smt (verit) PiE_arb equals0I image_cong image_constant image_empty) | |
| 69000 | 545 | qed | 
| 546 | ||
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 547 | lemma PiE_singleton: | 
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 548 | assumes "f \<in> extensional A" | 
| 81258 | 549 |   shows "PiE A (\<lambda>x. {f x}) = {f}"
 | 
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 550 | proof - | 
| 81258 | 551 |   have "g = f" if "g \<in> PiE A (\<lambda>x. {f x})" for g
 | 
| 552 | proof - | |
| 553 | from that have "g x = f x" for x | |
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 554 | using assms by (cases "x \<in> A") (auto simp: extensional_def) | 
| 81258 | 555 | then show ?thesis by (simp add: fun_eq_iff) | 
| 556 | qed | |
| 557 | with assms show ?thesis | |
| 558 | by (auto simp: extensional_def) | |
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 559 | qed | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 560 | |
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 561 | lemma PiE_eq_singleton: "(\<Pi>\<^sub>E i\<in>I. S i) = {\<lambda>i\<in>I. f i} \<longleftrightarrow> (\<forall>i\<in>I. S i = {f i})"
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 562 | by (metis (mono_tags, lifting) PiE_eq PiE_singleton insert_not_empty restrict_apply' restrict_extensional) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 563 | |
| 69939 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 564 | lemma PiE_over_singleton_iff: "(\<Pi>\<^sub>E x\<in>{a}. B x) = (\<Union>b \<in> B a. {\<lambda>x \<in> {a}. b})"
 | 
| 80790 | 565 | proof - | 
| 81258 | 566 |   have "\<exists>xa\<in>B a. x = (\<lambda>x\<in>{a}. xa)" if "x a \<in> B a" and "x \<in> extensional {a}" for x
 | 
| 567 | using that PiE_singleton by fastforce | |
| 80790 | 568 | then show ?thesis | 
| 569 | by (auto simp: PiE_iff split: if_split_asm) | |
| 570 | qed | |
| 69939 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 571 | |
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 572 | lemma all_PiE_elements: | 
| 81258 | 573 |   "(\<forall>z \<in> PiE I S. \<forall>i \<in> I. P i (z i)) \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. \<forall>x \<in> S i. P i x)"
 | 
| 574 | (is "?lhs = ?rhs") | |
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 575 | proof (cases "PiE I S = {}")
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 576 | case False | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 577 | then obtain f where f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> S i" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 578 | by fastforce | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 579 | show ?thesis | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 580 | proof | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 581 | assume L: ?lhs | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 582 | have "P i x" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 583 | if "i \<in> I" "x \<in> S i" for i x | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 584 | proof - | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 585 | have "(\<lambda>j \<in> I. if j=i then x else f j) \<in> PiE I S" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 586 | by (simp add: f that(2)) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 587 | then have "P i ((\<lambda>j \<in> I. if j=i then x else f j) i)" | 
| 80790 | 588 | using L that by blast | 
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 589 | with that show ?thesis | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 590 | by simp | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 591 | qed | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 592 | then show ?rhs | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 593 | by (simp add: False) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 594 | qed fastforce | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 595 | qed simp | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 596 | |
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 597 | lemma PiE_ext: "\<lbrakk>x \<in> PiE k s; y \<in> PiE k s; \<And>i. i \<in> k \<Longrightarrow> x i = y i\<rbrakk> \<Longrightarrow> x = y" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 598 | by (metis ext PiE_E) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 599 | |
| 58783 | 600 | |
| 601 | subsubsection \<open>Injective Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 602 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 603 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 58783 | 604 |   assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 605 | and "inj_on f S" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 606 | shows "inj_on (f(x := a)) S" | 
| 58783 | 607 | using assms | 
| 608 | unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 609 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 610 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 611 | assumes "x \<notin> S" | 
| 58783 | 612 |   shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
 | 
| 613 |     (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | |
| 80790 | 614 | proof - | 
| 81258 | 615 |   have False if "f \<in> S \<rightarrow>\<^sub>E T - {a}" and "a = (if y = x then a else f y)" and "y \<in> S" for a f y
 | 
| 616 | using assms that by (auto dest!: PiE_mem split: if_split_asm) | |
| 80790 | 617 | moreover | 
| 81258 | 618 |   have "\<exists>b. b \<in> S \<rightarrow>\<^sub>E T - {f x} \<and> inj_on b S \<and> f = b(x := f x)"
 | 
| 619 | if "f \<in> insert x S \<rightarrow>\<^sub>E T" and "inj_on f S" and "\<forall>xb\<in>S. f x \<noteq> f xb" for f | |
| 620 | using that | |
| 80790 | 621 | unfolding inj_on_def | 
| 622 | by (smt (verit, ccfv_threshold) PiE_restrict fun_upd_apply fun_upd_triv insert_Diff insert_iff | |
| 623 | restrict_PiE_iff restrict_upd) | |
| 624 | ultimately show ?thesis | |
| 625 | using assms | |
| 626 | apply (auto simp: image_iff intro: extensional_funcset_fun_upd_inj_onI | |
| 627 | extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) | |
| 628 | apply (smt (verit, best) PiE_cong PiE_mem inj_on_def insertCI) | |
| 81258 | 629 | apply blast | 
| 630 | done | |
| 80790 | 631 | qed | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 632 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 633 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 634 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 635 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 58783 | 636 | using assms | 
| 81258 | 637 | by (simp add: inj_on_def) (metis PiE_restrict fun_upd_apply restrict_fupd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 638 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 639 | |
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 640 | subsubsection \<open>Misc properties of functions, composition and restriction from HOL Light\<close> | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 641 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 642 | lemma function_factors_left_gen: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 643 | "(\<forall>x y. P x \<and> P y \<and> g x = g y \<longrightarrow> f x = f y) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = h(g x))" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 644 | (is "?lhs = ?rhs") | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 645 | proof | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 646 | assume L: ?lhs | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 647 | then show ?rhs | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 648 | apply (rule_tac x="f \<circ> inv_into (Collect P) g" in exI) | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 649 | unfolding o_def | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
73348diff
changeset | 650 | by (metis (mono_tags, opaque_lifting) f_inv_into_f imageI inv_into_into mem_Collect_eq) | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 651 | qed auto | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 652 | |
| 81258 | 653 | lemma function_factors_left: "(\<forall>x y. (g x = g y) \<longrightarrow> (f x = f y)) \<longleftrightarrow> (\<exists>h. f = h \<circ> g)" | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 654 | using function_factors_left_gen [of "\<lambda>x. True" g f] unfolding o_def by blast | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 655 | |
| 81258 | 656 | lemma function_factors_right_gen: "(\<forall>x. P x \<longrightarrow> (\<exists>y. g y = f x)) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = g(h x))" | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 657 | by metis | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 658 | |
| 81258 | 659 | lemma function_factors_right: "(\<forall>x. \<exists>y. g y = f x) \<longleftrightarrow> (\<exists>h. f = g \<circ> h)" | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 660 | unfolding o_def by metis | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 661 | |
| 81258 | 662 | lemma restrict_compose_right: "restrict (g \<circ> restrict f S) S = restrict (g \<circ> f) S" | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 663 | by auto | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 664 | |
| 81258 | 665 | lemma restrict_compose_left: "f ` S \<subseteq> T \<Longrightarrow> restrict (restrict g T \<circ> f) S = restrict (g \<circ> f) S" | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 666 | by fastforce | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 667 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 668 | |
| 58783 | 669 | subsubsection \<open>Cardinality\<close> | 
| 670 | ||
| 671 | lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 672 | by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 673 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 674 | lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 675 | proof (safe intro!: inj_onI ext) | 
| 58783 | 676 | fix f y g z | 
| 677 | assume "x \<notin> S" | |
| 678 | assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 679 | assume "f(x := y) = g(x := z)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 680 | then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 681 | unfolding fun_eq_iff by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 682 | from this[of x] show "y = z" by simp | 
| 58783 | 683 | fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i" | 
| 62390 | 684 | by (auto split: if_split_asm simp: PiE_def extensional_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 685 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 686 | |
| 58783 | 687 | lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 688 | proof (induct rule: finite_induct) | 
| 58783 | 689 | case empty | 
| 81258 | 690 | then show ?case | 
| 691 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 692 | next | 
| 58783 | 693 | case (insert x S) | 
| 694 | then show ?case | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 695 | by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 696 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 697 | |
| 81258 | 698 | lemma card_funcsetE: "finite A \<Longrightarrow> card (A \<rightarrow>\<^sub>E B) = card B ^ card A" | 
| 699 | by (subst card_PiE) auto | |
| 75663 | 700 | |
| 81258 | 701 | lemma card_inj_on_subset_funcset: | 
| 702 | assumes finB: "finite B" | |
| 703 | and finC: "finite C" | |
| 704 | and AB: "A \<subseteq> B" | |
| 705 |   shows "card {f \<in> B \<rightarrow>\<^sub>E C. inj_on f A} =
 | |
| 706 |     card C^(card B - card A) * prod ((-) (card C)) {0 ..< card A}"
 | |
| 75663 | 707 | proof - | 
| 81258 | 708 | define D where "D = B - A" | 
| 709 |   from AB have B: "B = A \<union> D" and disj: "A \<inter> D = {}"
 | |
| 710 | unfolding D_def by auto | |
| 711 | have sub: "card B - card A = card D" | |
| 712 | unfolding D_def using finB AB | |
| 75663 | 713 | by (metis card_Diff_subset finite_subset) | 
| 81258 | 714 | from finB B have "finite A" "finite D" by auto | 
| 715 | then show ?thesis | |
| 716 | unfolding sub unfolding B using disj | |
| 75663 | 717 | proof (induct A rule: finite_induct) | 
| 718 | case empty | |
| 81258 | 719 | from card_funcsetE[OF this(1), of C] show ?case | 
| 720 | by auto | |
| 75663 | 721 | next | 
| 722 | case (insert a A) | |
| 81258 | 723 |     have "{f. f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f (insert a A)} =
 | 
| 724 |       {f(a := c) | f c. f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A \<and> c \<in> C - f ` A}"
 | |
| 75663 | 725 | (is "?l = ?r") | 
| 726 | proof | |
| 81258 | 727 | show "?r \<subseteq> ?l" | 
| 728 | by (auto intro: inj_on_fun_updI split: if_splits) | |
| 729 | have "f \<in> ?r" if f: "f \<in> ?l" for f | |
| 730 | proof - | |
| 731 | let ?g = "f(a := undefined)" | |
| 732 | let ?h = "?g(a := f a)" | |
| 75663 | 733 | have mem: "f a \<in> C - ?g ` A" using insert(1,2,4,5) f by auto | 
| 734 | from f have f: "f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C" "inj_on f (insert a A)" by auto | |
| 735 |         hence "?g \<in> A \<union> D \<rightarrow>\<^sub>E C" "inj_on ?g A" using \<open>a \<notin> A\<close> \<open>insert a A \<inter> D = {}\<close>
 | |
| 736 | by (auto split: if_splits simp: inj_on_def) | |
| 737 | with mem have "?h \<in> ?r" by blast | |
| 738 | also have "?h = f" by auto | |
| 81258 | 739 | finally show ?thesis . | 
| 740 | qed | |
| 741 | then show "?l \<subseteq> ?r" by auto | |
| 75663 | 742 | qed | 
| 81258 | 743 | also have "\<dots> = (\<lambda> (f, c). f (a := c)) ` | 
| 75663 | 744 |          (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
 | 
| 745 | by auto | |
| 81258 | 746 |     also have "card (...) = card (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
 | 
| 747 | proof (rule card_image, intro inj_onI, clarsimp, goal_cases) | |
| 75663 | 748 | case (1 f c g d) | 
| 81258 | 749 | let ?f = "f(a := c, a := undefined)" | 
| 750 | let ?g = "g(a := d, a := undefined)" | |
| 751 | from 1 have id: "f(a := c) = g(a := d)" | |
| 752 | by auto | |
| 753 | from fun_upd_eqD[OF id] | |
| 754 | have cd: "c = d" | |
| 755 | by auto | |
| 756 | from id have "?f = ?g" | |
| 757 | by auto | |
| 758 | also have "?f = f" using `f \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) | |
| 75663 | 759 | by (intro ext, auto) | 
| 81258 | 760 | also have "?g = g" using `g \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) | 
| 75663 | 761 | by (intro ext, auto) | 
| 81258 | 762 | finally show "f = g \<and> c = d" | 
| 763 | using cd by auto | |
| 75663 | 764 | qed | 
| 81258 | 765 |     also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card (C - f ` A))"
 | 
| 75663 | 766 | by (rule card_SigmaI, rule finite_subset[of _ "A \<union> D \<rightarrow>\<^sub>E C"], | 
| 767 | insert \<open>finite C\<close> \<open>finite D\<close> \<open>finite A\<close>, auto intro!: finite_PiE) | |
| 768 |     also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card C - card A)"
 | |
| 769 | by (rule sum.cong[OF refl], subst card_Diff_subset, insert \<open>finite A\<close>, auto simp: card_image) | |
| 81258 | 770 |     also have "\<dots> = (card C - card A) * card {f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}"
 | 
| 75663 | 771 | by simp | 
| 81258 | 772 |     also have "\<dots> = card C ^ card D * ((card C - card A) * prod ((-) (card C)) {0..<card A})"
 | 
| 75663 | 773 | using insert by (auto simp: ac_simps) | 
| 774 |     also have "(card C - card A) * prod ((-) (card C)) {0..<card A} =
 | |
| 775 |       prod ((-) (card C)) {0..<Suc (card A)}" by simp
 | |
| 776 | also have "Suc (card A) = card (insert a A)" using insert by auto | |
| 777 | finally show ?case . | |
| 778 | qed | |
| 779 | qed | |
| 780 | ||
| 781 | ||
| 71838 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 782 | subsection \<open>The pigeonhole principle\<close> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 783 | |
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 784 | text \<open> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 785 | An alternative formulation of this is that for a function mapping a finite set \<open>A\<close> of | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 786 | cardinality \<open>m\<close> to a finite set \<open>B\<close> of cardinality \<open>n\<close>, there exists an element \<open>y \<in> B\<close> that | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 787 |   is hit at least $\lceil \frac{m}{n}\rceil$ times. However, since we do not have real numbers
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 788 | or rounding yet, we state it in the following equivalent form: | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 789 | \<close> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 790 | lemma pigeonhole_card: | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 791 |   assumes "f \<in> A \<rightarrow> B" "finite A" "finite B" "B \<noteq> {}"
 | 
| 81258 | 792 |   shows "\<exists>y\<in>B. card (f -` {y} \<inter> A) * card B \<ge> card A"
 | 
| 71838 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 793 | proof - | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 794 | from assms have "card B > 0" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 795 | by auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 796 |   define M where "M = Max ((\<lambda>y. card (f -` {y} \<inter> A)) ` B)"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 797 |   have "A = (\<Union>y\<in>B. f -` {y} \<inter> A)"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 798 | using assms by auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 799 |   also have "card \<dots> = (\<Sum>i\<in>B. card (f -` {i} \<inter> A))"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 800 | using assms by (subst card_UN_disjoint) auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 801 | also have "\<dots> \<le> (\<Sum>i\<in>B. M)" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 802 | unfolding M_def using assms by (intro sum_mono Max.coboundedI) auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 803 | also have "\<dots> = card B * M" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 804 | by simp | 
| 81258 | 805 | finally have *: "M * card B \<ge> card A" | 
| 71838 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 806 | by (simp add: mult_ac) | 
| 81258 | 807 |   from assms have "M \<in> (\<lambda>y. card (f -` {y} \<inter> A)) ` B"
 | 
| 808 | unfolding M_def by (intro Max_in) auto | |
| 809 | with * show ?thesis | |
| 71838 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 810 | by blast | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 811 | qed | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 812 | |
| 13586 | 813 | end |