author | wenzelm |
Wed, 05 Dec 2001 03:13:57 +0100 | |
changeset 12378 | 86c58273f8c0 |
parent 12018 | ec054019c910 |
child 12486 | 0ed8bdd883e0 |
permissions | -rw-r--r-- |
10751 | 1 |
(* Title : STAR.ML |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
4 |
Description : *-transforms |
|
5 |
*) |
|
6 |
||
7 |
(*-------------------------------------------------------- |
|
8 |
Preamble - Pulling "EX" over "ALL" |
|
9 |
---------------------------------------------------------*) |
|
10 |
||
11 |
(* This proof does not need AC and was suggested by the |
|
12 |
referee for the JCM Paper: let f(x) be least y such |
|
13 |
that Q(x,y) |
|
14 |
*) |
|
15 |
Goal "ALL x. EX y. Q x y ==> EX (f :: nat => nat). ALL x. Q x (f x)"; |
|
16 |
by (res_inst_tac [("x","%x. LEAST y. Q x y")] exI 1); |
|
17 |
by (blast_tac (claset() addIs [LeastI]) 1); |
|
18 |
qed "no_choice"; |
|
19 |
||
20 |
(*------------------------------------------------------------ |
|
21 |
Properties of the *-transform applied to sets of reals |
|
22 |
------------------------------------------------------------*) |
|
23 |
||
24 |
Goalw [starset_def] "*s*(UNIV::real set) = (UNIV::hypreal set)"; |
|
25 |
by (Auto_tac); |
|
26 |
qed "STAR_real_set"; |
|
27 |
Addsimps [STAR_real_set]; |
|
28 |
||
29 |
Goalw [starset_def] "*s* {} = {}"; |
|
30 |
by (Step_tac 1); |
|
31 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
32 |
by (dres_inst_tac [("x","%n. xa n")] bspec 1); |
|
33 |
by (Auto_tac); |
|
34 |
qed "STAR_empty_set"; |
|
35 |
Addsimps [STAR_empty_set]; |
|
36 |
||
37 |
Goalw [starset_def] "*s* (A Un B) = *s* A Un *s* B"; |
|
38 |
by (Auto_tac); |
|
39 |
by (REPEAT(blast_tac (claset() addIs [FreeUltrafilterNat_subset]) 2)); |
|
40 |
by (dtac FreeUltrafilterNat_Compl_mem 1); |
|
41 |
by (dtac bspec 1 THEN assume_tac 1); |
|
42 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
43 |
by (Auto_tac); |
|
44 |
by (Fuf_tac 1); |
|
45 |
qed "STAR_Un"; |
|
46 |
||
47 |
Goalw [starset_def] "*s* (A Int B) = *s* A Int *s* B"; |
|
48 |
by (Auto_tac); |
|
49 |
by (blast_tac (claset() addIs [FreeUltrafilterNat_Int, |
|
50 |
FreeUltrafilterNat_subset]) 3); |
|
51 |
by (REPEAT(blast_tac (claset() addIs [FreeUltrafilterNat_subset]) 1)); |
|
52 |
qed "STAR_Int"; |
|
53 |
||
54 |
Goalw [starset_def] "*s* -A = -(*s* A)"; |
|
55 |
by (Auto_tac); |
|
56 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
57 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 2); |
|
58 |
by (REPEAT(Step_tac 1) THEN Auto_tac); |
|
59 |
by (Fuf_empty_tac 1); |
|
60 |
by (dtac FreeUltrafilterNat_Compl_mem 1); |
|
61 |
by (Fuf_tac 1); |
|
62 |
qed "STAR_Compl"; |
|
63 |
||
64 |
goal Set.thy "(A - B) = (A Int (- B))"; |
|
65 |
by (Step_tac 1); |
|
66 |
qed "set_diff_iff2"; |
|
67 |
||
68 |
Goal "x ~: *s* F ==> x : *s* (- F)"; |
|
69 |
by (auto_tac (claset(),simpset() addsimps [STAR_Compl])); |
|
70 |
qed "STAR_mem_Compl"; |
|
71 |
||
72 |
Goal "*s* (A - B) = *s* A - *s* B"; |
|
73 |
by (auto_tac (claset(),simpset() addsimps |
|
74 |
[set_diff_iff2,STAR_Int,STAR_Compl])); |
|
75 |
qed "STAR_diff"; |
|
76 |
||
77 |
Goalw [starset_def] "A <= B ==> *s* A <= *s* B"; |
|
78 |
by (REPEAT(blast_tac (claset() addIs [FreeUltrafilterNat_subset]) 1)); |
|
79 |
qed "STAR_subset"; |
|
80 |
||
81 |
Goalw [starset_def,hypreal_of_real_def] |
|
82 |
"a : A ==> hypreal_of_real a : *s* A"; |
|
83 |
by (auto_tac (claset() addIs [FreeUltrafilterNat_subset],simpset())); |
|
84 |
qed "STAR_mem"; |
|
85 |
||
10834 | 86 |
Goalw [starset_def] "hypreal_of_real ` A <= *s* A"; |
10751 | 87 |
by (auto_tac (claset(),simpset() addsimps [hypreal_of_real_def])); |
88 |
by (blast_tac (claset() addIs [FreeUltrafilterNat_subset]) 1); |
|
89 |
qed "STAR_hypreal_of_real_image_subset"; |
|
90 |
||
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
91 |
Goalw [starset_def] "*s* X Int Reals = hypreal_of_real ` X"; |
10751 | 92 |
by (auto_tac (claset(),simpset() addsimps [hypreal_of_real_def,SReal_def])); |
93 |
by (fold_tac [hypreal_of_real_def]); |
|
94 |
by (rtac imageI 1 THEN rtac ccontr 1); |
|
95 |
by (dtac bspec 1); |
|
96 |
by (rtac lemma_hyprel_refl 1); |
|
97 |
by (blast_tac (claset() addIs [FreeUltrafilterNat_subset]) 2); |
|
98 |
by (Auto_tac); |
|
99 |
qed "STAR_hypreal_of_real_Int"; |
|
100 |
||
10834 | 101 |
Goal "x ~: hypreal_of_real ` A ==> ALL y: A. x ~= hypreal_of_real y"; |
10751 | 102 |
by (Auto_tac); |
103 |
qed "lemma_not_hyprealA"; |
|
104 |
||
105 |
Goal "- {n. X n = xa} = {n. X n ~= xa}"; |
|
106 |
by (Auto_tac); |
|
107 |
qed "lemma_Compl_eq"; |
|
108 |
||
109 |
Goalw [starset_def] |
|
110 |
"ALL n. (X n) ~: M \ |
|
10834 | 111 |
\ ==> Abs_hypreal(hyprel``{X}) ~: *s* M"; |
10751 | 112 |
by (Auto_tac THEN rtac bexI 1 THEN rtac lemma_hyprel_refl 2); |
113 |
by (Auto_tac); |
|
114 |
qed "STAR_real_seq_to_hypreal"; |
|
115 |
||
116 |
Goalw [starset_def] "*s* {x} = {hypreal_of_real x}"; |
|
117 |
by (auto_tac (claset(),simpset() addsimps [hypreal_of_real_def])); |
|
118 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
119 |
by (auto_tac (claset() addIs [FreeUltrafilterNat_subset],simpset())); |
|
120 |
qed "STAR_singleton"; |
|
121 |
Addsimps [STAR_singleton]; |
|
122 |
||
123 |
Goal "x ~: F ==> hypreal_of_real x ~: *s* F"; |
|
124 |
by (auto_tac (claset(),simpset() addsimps |
|
125 |
[starset_def,hypreal_of_real_def])); |
|
126 |
by (rtac bexI 1 THEN rtac lemma_hyprel_refl 2); |
|
127 |
by (Auto_tac); |
|
128 |
qed "STAR_not_mem"; |
|
129 |
||
130 |
Goal "[| x : *s* A; A <= B |] ==> x : *s* B"; |
|
131 |
by (blast_tac (claset() addDs [STAR_subset]) 1); |
|
132 |
qed "STAR_subset_closed"; |
|
133 |
||
134 |
(*------------------------------------------------------------------ |
|
135 |
Nonstandard extension of a set (defined using a constant |
|
136 |
sequence) as a special case of an internal set |
|
137 |
-----------------------------------------------------------------*) |
|
138 |
||
139 |
Goalw [starset_n_def,starset_def] |
|
140 |
"ALL n. (As n = A) ==> *sn* As = *s* A"; |
|
141 |
by (Auto_tac); |
|
142 |
qed "starset_n_starset"; |
|
143 |
||
144 |
||
145 |
(*----------------------------------------------------------------*) |
|
146 |
(* Theorems about nonstandard extensions of functions *) |
|
147 |
(*----------------------------------------------------------------*) |
|
148 |
||
149 |
(*----------------------------------------------------------------*) |
|
150 |
(* Nonstandard extension of a function (defined using a *) |
|
151 |
(* constant sequence) as a special case of an internal function *) |
|
152 |
(*----------------------------------------------------------------*) |
|
153 |
||
154 |
Goalw [starfun_n_def,starfun_def] |
|
155 |
"ALL n. (F n = f) ==> *fn* F = *f* f"; |
|
156 |
by (Auto_tac); |
|
157 |
qed "starfun_n_starfun"; |
|
158 |
||
159 |
||
160 |
(* |
|
161 |
Prove that hrabs is a nonstandard extension of rabs without |
|
162 |
use of congruence property (proved after this for general |
|
163 |
nonstandard extensions of real valued functions). This makes |
|
164 |
proof much longer- see comments at end of HREALABS.thy where |
|
165 |
we proved a congruence theorem for hrabs. |
|
166 |
||
167 |
NEW!!! No need to prove all the lemmas anymore. Use the ultrafilter |
|
168 |
tactic! |
|
169 |
*) |
|
170 |
||
171 |
Goalw [is_starext_def] "is_starext abs abs"; |
|
172 |
by (Step_tac 1); |
|
173 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
174 |
by (res_inst_tac [("z","y")] eq_Abs_hypreal 1); |
|
175 |
by Auto_tac; |
|
176 |
by (rtac bexI 1 THEN rtac lemma_hyprel_refl 2); |
|
177 |
by (rtac bexI 1 THEN rtac lemma_hyprel_refl 2); |
|
178 |
by (auto_tac (claset() addSDs [spec], |
|
12018
ec054019c910
Numerals and simprocs for types real and hypreal. The abstract
paulson
parents:
10919
diff
changeset
|
179 |
simpset() addsimps [hypreal_minus,hrabs_def, hypreal_zero_def, |
10751 | 180 |
hypreal_le_def, hypreal_less_def])); |
181 |
by (TRYALL(Ultra_tac)); |
|
182 |
by (TRYALL(arith_tac)); |
|
183 |
qed "hrabs_is_starext_rabs"; |
|
184 |
||
185 |
Goal "[| X: Rep_hypreal z; Y: Rep_hypreal z |] \ |
|
186 |
\ ==> {n. X n = Y n} : FreeUltrafilterNat"; |
|
187 |
by (res_inst_tac [("z","z")] eq_Abs_hypreal 1); |
|
188 |
by (Auto_tac THEN Fuf_tac 1); |
|
189 |
qed "Rep_hypreal_FreeUltrafilterNat"; |
|
190 |
||
191 |
(*----------------------------------------------------------------------- |
|
192 |
Nonstandard extension of functions- congruence |
|
193 |
-----------------------------------------------------------------------*) |
|
194 |
||
10834 | 195 |
Goalw [congruent_def] "congruent hyprel (%X. hyprel``{%n. f (X n)})"; |
10751 | 196 |
by (safe_tac (claset())); |
197 |
by (ALLGOALS(Fuf_tac)); |
|
198 |
qed "starfun_congruent"; |
|
199 |
||
200 |
Goalw [starfun_def] |
|
10834 | 201 |
"(*f* f) (Abs_hypreal(hyprel``{%n. X n})) = \ |
202 |
\ Abs_hypreal(hyprel `` {%n. f (X n)})"; |
|
10751 | 203 |
by (res_inst_tac [("f","Abs_hypreal")] arg_cong 1); |
204 |
by (simp_tac (simpset() addsimps |
|
205 |
[hyprel_in_hypreal RS Abs_hypreal_inverse,[equiv_hyprel, |
|
206 |
starfun_congruent] MRS UN_equiv_class]) 1); |
|
207 |
qed "starfun"; |
|
208 |
||
209 |
(*------------------------------------------- |
|
210 |
multiplication: ( *f ) x ( *g ) = *(f x g) |
|
211 |
------------------------------------------*) |
|
212 |
Goal "(*f* f) xa * (*f* g) xa = (*f* (%x. f x * g x)) xa"; |
|
213 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
214 |
by (auto_tac (claset(),simpset() addsimps [starfun,hypreal_mult])); |
|
215 |
qed "starfun_mult"; |
|
216 |
Addsimps [starfun_mult RS sym]; |
|
217 |
||
218 |
(*--------------------------------------- |
|
219 |
addition: ( *f ) + ( *g ) = *(f + g) |
|
220 |
---------------------------------------*) |
|
221 |
Goal "(*f* f) xa + (*f* g) xa = (*f* (%x. f x + g x)) xa"; |
|
222 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
223 |
by (auto_tac (claset(),simpset() addsimps [starfun,hypreal_add])); |
|
224 |
qed "starfun_add"; |
|
225 |
Addsimps [starfun_add RS sym]; |
|
226 |
||
227 |
(*-------------------------------------------- |
|
228 |
subtraction: ( *f ) + -( *g ) = *(f + -g) |
|
229 |
-------------------------------------------*) |
|
230 |
||
231 |
Goal "- (*f* f) x = (*f* (%x. - f x)) x"; |
|
232 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
233 |
by (auto_tac (claset(),simpset() addsimps [starfun, hypreal_minus])); |
|
234 |
qed "starfun_minus"; |
|
235 |
Addsimps [starfun_minus RS sym]; |
|
236 |
||
237 |
(*FIXME: delete*) |
|
238 |
Goal "(*f* f) xa + -(*f* g) xa = (*f* (%x. f x + -g x)) xa"; |
|
239 |
by (Simp_tac 1); |
|
240 |
qed "starfun_add_minus"; |
|
241 |
Addsimps [starfun_add_minus RS sym]; |
|
242 |
||
243 |
Goalw [hypreal_diff_def,real_diff_def] |
|
244 |
"(*f* f) xa - (*f* g) xa = (*f* (%x. f x - g x)) xa"; |
|
245 |
by (rtac starfun_add_minus 1); |
|
246 |
qed "starfun_diff"; |
|
247 |
Addsimps [starfun_diff RS sym]; |
|
248 |
||
249 |
(*-------------------------------------- |
|
250 |
composition: ( *f ) o ( *g ) = *(f o g) |
|
251 |
---------------------------------------*) |
|
252 |
||
253 |
Goal "(%x. (*f* f) ((*f* g) x)) = *f* (%x. f (g x))"; |
|
254 |
by (rtac ext 1); |
|
255 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
256 |
by (auto_tac (claset(),simpset() addsimps [starfun])); |
|
257 |
qed "starfun_o2"; |
|
258 |
||
259 |
Goalw [o_def] "(*f* f) o (*f* g) = (*f* (f o g))"; |
|
260 |
by (simp_tac (simpset() addsimps [starfun_o2]) 1); |
|
261 |
qed "starfun_o"; |
|
262 |
||
263 |
(*-------------------------------------- |
|
264 |
NS extension of constant function |
|
265 |
--------------------------------------*) |
|
266 |
Goal "(*f* (%x. k)) xa = hypreal_of_real k"; |
|
267 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
268 |
by (auto_tac (claset(),simpset() addsimps [starfun, |
|
269 |
hypreal_of_real_def])); |
|
270 |
qed "starfun_const_fun"; |
|
271 |
||
272 |
Addsimps [starfun_const_fun]; |
|
273 |
||
274 |
(*---------------------------------------------------- |
|
275 |
the NS extension of the identity function |
|
276 |
----------------------------------------------------*) |
|
277 |
||
278 |
Goal "x @= hypreal_of_real a ==> (*f* (%x. x)) x @= hypreal_of_real a"; |
|
279 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
280 |
by (auto_tac (claset(),simpset() addsimps [starfun])); |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
281 |
qed "starfun_Idfun_approx"; |
10751 | 282 |
|
283 |
Goal "(*f* (%x. x)) x = x"; |
|
284 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
285 |
by (auto_tac (claset(),simpset() addsimps [starfun])); |
|
286 |
qed "starfun_Id"; |
|
287 |
Addsimps [starfun_Id]; |
|
288 |
||
289 |
(*---------------------------------------------------------------------- |
|
290 |
the *-function is a (nonstandard) extension of the function |
|
291 |
----------------------------------------------------------------------*) |
|
292 |
||
293 |
Goalw [is_starext_def] "is_starext (*f* f) f"; |
|
294 |
by (Auto_tac); |
|
295 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
296 |
by (res_inst_tac [("z","y")] eq_Abs_hypreal 1); |
|
297 |
by (auto_tac (claset() addSIs [bexI] ,simpset() addsimps [starfun])); |
|
298 |
qed "is_starext_starfun"; |
|
299 |
||
300 |
(*---------------------------------------------------------------------- |
|
301 |
Any nonstandard extension is in fact the *-function |
|
302 |
----------------------------------------------------------------------*) |
|
303 |
||
304 |
Goalw [is_starext_def] "is_starext F f ==> F = *f* f"; |
|
305 |
by (rtac ext 1); |
|
306 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
307 |
by (dres_inst_tac [("x","x")] spec 1); |
|
308 |
by (dres_inst_tac [("x","(*f* f) x")] spec 1); |
|
309 |
by (auto_tac (claset() addSDs [FreeUltrafilterNat_Compl_mem], |
|
310 |
simpset() addsimps [starfun])); |
|
311 |
by (Fuf_empty_tac 1); |
|
312 |
qed "is_starfun_starext"; |
|
313 |
||
314 |
Goal "(is_starext F f) = (F = *f* f)"; |
|
315 |
by (blast_tac (claset() addIs [is_starfun_starext,is_starext_starfun]) 1); |
|
316 |
qed "is_starext_starfun_iff"; |
|
317 |
||
318 |
(*-------------------------------------------------------- |
|
319 |
extented function has same solution as its standard |
|
320 |
version for real arguments. i.e they are the same |
|
321 |
for all real arguments |
|
322 |
-------------------------------------------------------*) |
|
323 |
Goal "(*f* f) (hypreal_of_real a) = hypreal_of_real (f a)"; |
|
324 |
by (auto_tac (claset(),simpset() addsimps |
|
325 |
[starfun,hypreal_of_real_def])); |
|
326 |
qed "starfun_eq"; |
|
327 |
||
328 |
Addsimps [starfun_eq]; |
|
329 |
||
330 |
Goal "(*f* f) (hypreal_of_real a) @= hypreal_of_real (f a)"; |
|
331 |
by (Auto_tac); |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
332 |
qed "starfun_approx"; |
10751 | 333 |
|
334 |
(* useful for NS definition of derivatives *) |
|
335 |
Goal "(*f* (%h. f (x + h))) xa = (*f* f) (hypreal_of_real x + xa)"; |
|
336 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
337 |
by (auto_tac (claset(),simpset() addsimps [starfun, |
|
338 |
hypreal_of_real_def,hypreal_add])); |
|
339 |
qed "starfun_lambda_cancel"; |
|
340 |
||
341 |
Goal "(*f* (%h. f(g(x + h)))) xa = (*f* (f o g)) (hypreal_of_real x + xa)"; |
|
342 |
by (res_inst_tac [("z","xa")] eq_Abs_hypreal 1); |
|
343 |
by (auto_tac (claset(),simpset() addsimps [starfun, |
|
344 |
hypreal_of_real_def,hypreal_add])); |
|
345 |
qed "starfun_lambda_cancel2"; |
|
346 |
||
347 |
Goal "[| (*f* f) xa @= l; (*f* g) xa @= m; \ |
|
348 |
\ l: HFinite; m: HFinite \ |
|
349 |
\ |] ==> (*f* (%x. f x * g x)) xa @= l * m"; |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
350 |
by (dtac approx_mult_HFinite 1); |
10751 | 351 |
by (REPEAT(assume_tac 1)); |
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
352 |
by (auto_tac (claset() addIs [approx_sym RSN (2,approx_HFinite)], |
10751 | 353 |
simpset())); |
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
354 |
qed "starfun_mult_HFinite_approx"; |
10751 | 355 |
|
356 |
Goal "[| (*f* f) xa @= l; (*f* g) xa @= m \ |
|
357 |
\ |] ==> (*f* (%x. f x + g x)) xa @= l + m"; |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
358 |
by (auto_tac (claset() addIs [approx_add], simpset())); |
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
359 |
qed "starfun_add_approx"; |
10751 | 360 |
|
361 |
(*---------------------------------------------------- |
|
362 |
Examples: hrabs is nonstandard extension of rabs |
|
363 |
inverse is nonstandard extension of inverse |
|
364 |
---------------------------------------------------*) |
|
365 |
||
366 |
(* can be proved easily using theorem "starfun" and *) |
|
367 |
(* properties of ultrafilter as for inverse below we *) |
|
368 |
(* use the theorem we proved above instead *) |
|
369 |
||
370 |
Goal "*f* abs = abs"; |
|
371 |
by (rtac (hrabs_is_starext_rabs RS |
|
372 |
(is_starext_starfun_iff RS iffD1) RS sym) 1); |
|
373 |
qed "starfun_rabs_hrabs"; |
|
374 |
||
375 |
Goal "(*f* inverse) x = inverse(x)"; |
|
376 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
377 |
by (auto_tac (claset(), |
|
378 |
simpset() addsimps [starfun, hypreal_inverse, hypreal_zero_def])); |
|
379 |
qed "starfun_inverse_inverse"; |
|
380 |
Addsimps [starfun_inverse_inverse]; |
|
381 |
||
382 |
Goal "inverse ((*f* f) x) = (*f* (%x. inverse (f x))) x"; |
|
383 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
384 |
by (auto_tac (claset(), |
|
385 |
simpset() addsimps [starfun, hypreal_inverse])); |
|
386 |
qed "starfun_inverse"; |
|
387 |
Addsimps [starfun_inverse RS sym]; |
|
388 |
||
389 |
Goalw [hypreal_divide_def,real_divide_def] |
|
390 |
"(*f* f) xa / (*f* g) xa = (*f* (%x. f x / g x)) xa"; |
|
391 |
by Auto_tac; |
|
392 |
qed "starfun_divide"; |
|
393 |
Addsimps [starfun_divide RS sym]; |
|
394 |
||
395 |
Goal "inverse ((*f* f) x) = (*f* (%x. inverse (f x))) x"; |
|
396 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
397 |
by (auto_tac (claset() addIs [FreeUltrafilterNat_subset] |
|
398 |
addSDs [FreeUltrafilterNat_Compl_mem], |
|
399 |
simpset() addsimps [starfun, hypreal_inverse, hypreal_zero_def])); |
|
400 |
qed "starfun_inverse2"; |
|
401 |
||
402 |
(*------------------------------------------------------------- |
|
403 |
General lemma/theorem needed for proofs in elementary |
|
404 |
topology of the reals |
|
405 |
------------------------------------------------------------*) |
|
406 |
Goalw [starset_def] |
|
407 |
"(*f* f) x : *s* A ==> x : *s* {x. f x : A}"; |
|
408 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
|
409 |
by (auto_tac (claset(),simpset() addsimps [starfun])); |
|
410 |
by (dres_inst_tac [("x","%n. f (Xa n)")] bspec 1); |
|
411 |
by (Auto_tac THEN Fuf_tac 1); |
|
412 |
qed "starfun_mem_starset"; |
|
413 |
||
414 |
(*------------------------------------------------------------ |
|
415 |
Alternative definition for hrabs with rabs function |
|
416 |
applied entrywise to equivalence class representative. |
|
417 |
This is easily proved using starfun and ns extension thm |
|
418 |
------------------------------------------------------------*) |
|
10834 | 419 |
Goal "abs (Abs_hypreal (hyprel `` {X})) = \ |
420 |
\ Abs_hypreal(hyprel `` {%n. abs (X n)})"; |
|
10751 | 421 |
by (simp_tac (simpset() addsimps [starfun_rabs_hrabs RS sym,starfun]) 1); |
422 |
qed "hypreal_hrabs"; |
|
423 |
||
424 |
(*---------------------------------------------------------------- |
|
425 |
nonstandard extension of set through nonstandard extension |
|
426 |
of rabs function i.e hrabs. A more general result should be |
|
427 |
where we replace rabs by some arbitrary function f and hrabs |
|
428 |
by its NS extenson ( *f* f). See second NS set extension below. |
|
429 |
----------------------------------------------------------------*) |
|
430 |
Goalw [starset_def] |
|
431 |
"*s* {x. abs (x + - y) < r} = \ |
|
432 |
\ {x. abs(x + -hypreal_of_real y) < hypreal_of_real r}"; |
|
433 |
by (Step_tac 1); |
|
434 |
by (ALLGOALS(res_inst_tac [("z","x")] eq_Abs_hypreal)); |
|
435 |
by (auto_tac (claset() addSIs [exI] addSDs [bspec], |
|
436 |
simpset() addsimps [hypreal_minus, hypreal_of_real_def,hypreal_add, |
|
437 |
hypreal_hrabs,hypreal_less_def])); |
|
438 |
by (Fuf_tac 1); |
|
439 |
qed "STAR_rabs_add_minus"; |
|
440 |
||
441 |
Goalw [starset_def] |
|
442 |
"*s* {x. abs (f x + - y) < r} = \ |
|
443 |
\ {x. abs((*f* f) x + -hypreal_of_real y) < hypreal_of_real r}"; |
|
444 |
by (Step_tac 1); |
|
445 |
by (ALLGOALS(res_inst_tac [("z","x")] eq_Abs_hypreal)); |
|
446 |
by (auto_tac (claset() addSIs [exI] addSDs [bspec], |
|
447 |
simpset() addsimps [hypreal_minus, hypreal_of_real_def,hypreal_add, |
|
448 |
hypreal_hrabs,hypreal_less_def,starfun])); |
|
449 |
by (Fuf_tac 1); |
|
450 |
qed "STAR_starfun_rabs_add_minus"; |
|
451 |
||
452 |
(*------------------------------------------------------------------- |
|
10778
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
453 |
Another characterization of Infinitesimal and one of @= relation. |
10751 | 454 |
In this theory since hypreal_hrabs proved here. (To Check:) Maybe |
455 |
move both if possible? |
|
456 |
-------------------------------------------------------------------*) |
|
457 |
Goal "(x:Infinitesimal) = \ |
|
458 |
\ (EX X:Rep_hypreal(x). \ |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
459 |
\ ALL m. {n. abs(X n) < inverse(real(Suc m))} \ |
10778
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
460 |
\ : FreeUltrafilterNat)"; |
10751 | 461 |
by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); |
462 |
by (auto_tac (claset() addSIs [bexI,lemma_hyprel_refl], |
|
10778
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
463 |
simpset() addsimps [Infinitesimal_hypreal_of_nat_iff, |
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
464 |
hypreal_of_real_def,hypreal_inverse, |
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
465 |
hypreal_hrabs,hypreal_less, hypreal_of_nat_def])); |
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
466 |
by (asm_full_simp_tac (simpset() addsimps [real_of_nat_Suc_gt_zero, |
2c6605049646
more tidying, especially to remove real_of_posnat
paulson
parents:
10751
diff
changeset
|
467 |
real_not_refl2 RS not_sym]) 1) ; |
10751 | 468 |
by (dres_inst_tac [("x","n")] spec 1); |
469 |
by (Fuf_tac 1); |
|
470 |
qed "Infinitesimal_FreeUltrafilterNat_iff2"; |
|
471 |
||
10834 | 472 |
Goal "(Abs_hypreal(hyprel``{X}) @= Abs_hypreal(hyprel``{Y})) = \ |
10751 | 473 |
\ (ALL m. {n. abs (X n + - Y n) < \ |
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
474 |
\ inverse(real(Suc m))} : FreeUltrafilterNat)"; |
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
475 |
by (rtac (approx_minus_iff RS ssubst) 1); |
10751 | 476 |
by (rtac (mem_infmal_iff RS subst) 1); |
477 |
by (auto_tac (claset(), |
|
478 |
simpset() addsimps [hypreal_minus, hypreal_add, |
|
479 |
Infinitesimal_FreeUltrafilterNat_iff2])); |
|
480 |
by (dres_inst_tac [("x","m")] spec 1); |
|
481 |
by (Fuf_tac 1); |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
482 |
qed "approx_FreeUltrafilterNat_iff"; |
10751 | 483 |
|
484 |
Goal "inj starfun"; |
|
485 |
by (rtac injI 1); |
|
486 |
by (rtac ext 1 THEN rtac ccontr 1); |
|
10834 | 487 |
by (dres_inst_tac [("x","Abs_hypreal(hyprel ``{%n. xa})")] fun_cong 1); |
10751 | 488 |
by (auto_tac (claset(),simpset() addsimps [starfun])); |
489 |
qed "inj_starfun"; |