author | wenzelm |
Wed, 05 Dec 2001 03:13:57 +0100 | |
changeset 12378 | 86c58273f8c0 |
parent 11609 | 3f3d1add4d94 |
child 15391 | 797ed46d724b |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Sum_Type.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
The disjoint sum of two types. |
|
7 |
*) |
|
8 |
||
11609
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10832
diff
changeset
|
9 |
Sum_Type = Product_Type + |
10213 | 10 |
|
11 |
(* type definition *) |
|
12 |
||
13 |
constdefs |
|
14 |
Inl_Rep :: ['a, 'a, 'b, bool] => bool |
|
15 |
"Inl_Rep == (%a. %x y p. x=a & p)" |
|
16 |
||
17 |
Inr_Rep :: ['b, 'a, 'b, bool] => bool |
|
18 |
"Inr_Rep == (%b. %x y p. y=b & ~p)" |
|
19 |
||
20 |
global |
|
21 |
||
22 |
typedef (Sum) |
|
23 |
('a, 'b) "+" (infixr 10) |
|
24 |
= "{f. (? a. f = Inl_Rep(a::'a)) | (? b. f = Inr_Rep(b::'b))}" |
|
25 |
||
26 |
||
27 |
(* abstract constants and syntax *) |
|
28 |
||
29 |
consts |
|
30 |
Inl :: "'a => 'a + 'b" |
|
31 |
Inr :: "'b => 'a + 'b" |
|
32 |
||
33 |
(*disjoint sum for sets; the operator + is overloaded with wrong type!*) |
|
34 |
Plus :: "['a set, 'b set] => ('a + 'b) set" (infixr "<+>" 65) |
|
35 |
Part :: ['a set, 'b => 'a] => 'a set |
|
36 |
||
37 |
local |
|
38 |
||
39 |
defs |
|
40 |
Inl_def "Inl == (%a. Abs_Sum(Inl_Rep(a)))" |
|
41 |
Inr_def "Inr == (%b. Abs_Sum(Inr_Rep(b)))" |
|
42 |
||
10832 | 43 |
sum_def "A <+> B == (Inl`A) Un (Inr`B)" |
10213 | 44 |
|
45 |
(*for selecting out the components of a mutually recursive definition*) |
|
46 |
Part_def "Part A h == A Int {x. ? z. x = h(z)}" |
|
47 |
||
48 |
end |