| 
1606
 | 
     1  | 
(*  Title:      ZF/ex/Mutil
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1996  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
The Mutilated Checkerboard Problem, formalized inductively
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Mutil;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
(** Basic properties of evnodd **)
  | 
| 
 | 
    13  | 
  | 
| 
1624
 | 
    14  | 
goalw thy [evnodd_def] "<i,j>: evnodd(A,b) <-> <i,j>: A & (i#+j) mod 2 = b";
  | 
| 
2875
 | 
    15  | 
by (Blast_tac 1);
  | 
| 
1624
 | 
    16  | 
qed "evnodd_iff";
  | 
| 
1606
 | 
    17  | 
  | 
| 
 | 
    18  | 
goalw thy [evnodd_def] "evnodd(A, b) <= A";
  | 
| 
2875
 | 
    19  | 
by (Blast_tac 1);
  | 
| 
1606
 | 
    20  | 
qed "evnodd_subset";
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
(* Finite(X) ==> Finite(evnodd(X,b)) *)
  | 
| 
 | 
    23  | 
bind_thm("Finite_evnodd", evnodd_subset RS subset_imp_lepoll RS lepoll_Finite);
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
goalw thy [evnodd_def] "evnodd(A Un B, b) = evnodd(A,b) Un evnodd(B,b)";
  | 
| 
2469
 | 
    26  | 
by (simp_tac (!simpset addsimps [Collect_Un]) 1);
  | 
| 
1606
 | 
    27  | 
qed "evnodd_Un";
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
goalw thy [evnodd_def] "evnodd(A - B, b) = evnodd(A,b) - evnodd(B,b)";
  | 
| 
2469
 | 
    30  | 
by (simp_tac (!simpset addsimps [Collect_Diff]) 1);
  | 
| 
1606
 | 
    31  | 
qed "evnodd_Diff";
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
goalw thy [evnodd_def]
  | 
| 
 | 
    34  | 
    "evnodd(cons(<i,j>,C), b) = \
  | 
| 
 | 
    35  | 
\    if((i#+j) mod 2 = b, cons(<i,j>, evnodd(C,b)), evnodd(C,b))";
  | 
| 
2469
 | 
    36  | 
by (asm_simp_tac (!simpset addsimps [evnodd_def, Collect_cons] 
  | 
| 
1606
 | 
    37  | 
                        setloop split_tac [expand_if]) 1);
  | 
| 
 | 
    38  | 
qed "evnodd_cons";
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
goalw thy [evnodd_def] "evnodd(0, b) = 0";
  | 
| 
2469
 | 
    41  | 
by (simp_tac (!simpset addsimps [evnodd_def]) 1);
  | 
| 
1606
 | 
    42  | 
qed "evnodd_0";
  | 
| 
 | 
    43  | 
  | 
| 
2469
 | 
    44  | 
Addsimps [evnodd_cons, evnodd_0];
  | 
| 
1606
 | 
    45  | 
  | 
| 
 | 
    46  | 
(*** Dominoes ***)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
goal thy "!!d. d:domino ==> Finite(d)";
  | 
| 
2875
 | 
    49  | 
by (blast_tac (!claset addSIs [Finite_cons, Finite_0] addEs [domino.elim]) 1);
  | 
| 
1606
 | 
    50  | 
qed "domino_Finite";
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
goal thy "!!d. [| d:domino; b<2 |] ==> EX i' j'. evnodd(d,b) = {<i',j'>}";
 | 
| 
 | 
    53  | 
by (eresolve_tac [domino.elim] 1);
  | 
| 
 | 
    54  | 
by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 2);
 | 
| 
 | 
    55  | 
by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 1);
 | 
| 
 | 
    56  | 
by (REPEAT_FIRST (ares_tac [add_type]));
  | 
| 
 | 
    57  | 
(*Four similar cases: case (i#+j) mod 2 = b, 2#-b, ...*)
  | 
| 
2469
 | 
    58  | 
by (REPEAT (asm_simp_tac (!simpset addsimps [mod_succ, succ_neq_self] 
  | 
| 
1606
 | 
    59  | 
                                   setloop split_tac [expand_if]) 1
  | 
| 
2875
 | 
    60  | 
           THEN blast_tac (!claset addDs [ltD]) 1));
  | 
| 
1606
 | 
    61  | 
qed "domino_singleton";
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
(*** Tilings ***)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
(** The union of two disjoint tilings is a tiling **)
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
goal thy "!!t. t: tiling(A) ==> \
  | 
| 
1630
 | 
    69  | 
\              u: tiling(A) --> t Int u = 0 --> t Un u : tiling(A)";
  | 
| 
1606
 | 
    70  | 
by (etac tiling.induct 1);
  | 
| 
2469
 | 
    71  | 
by (simp_tac (!simpset addsimps tiling.intrs) 1);
  | 
| 
2875
 | 
    72  | 
by (asm_full_simp_tac (!simpset addsimps [Un_assoc,
  | 
| 
 | 
    73  | 
					  subset_empty_iff RS iff_sym]) 1);
  | 
| 
2896
 | 
    74  | 
by (blast_tac (!claset addIs tiling.intrs) 1);
  | 
| 
1630
 | 
    75  | 
bind_thm ("tiling_UnI", result() RS mp RS mp);
 | 
| 
1606
 | 
    76  | 
  | 
| 
 | 
    77  | 
goal thy "!!t. t:tiling(domino) ==> Finite(t)";
  | 
| 
 | 
    78  | 
by (eresolve_tac [tiling.induct] 1);
  | 
| 
 | 
    79  | 
by (resolve_tac [Finite_0] 1);
  | 
| 
2875
 | 
    80  | 
by (blast_tac (!claset addSIs [Finite_Un] addIs [domino_Finite]) 1);
  | 
| 
1606
 | 
    81  | 
qed "tiling_domino_Finite";
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
goal thy "!!t. t: tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|";
  | 
| 
 | 
    84  | 
by (eresolve_tac [tiling.induct] 1);
  | 
| 
2469
 | 
    85  | 
by (simp_tac (!simpset addsimps [evnodd_def]) 1);
  | 
| 
1624
 | 
    86  | 
by (res_inst_tac [("b1","0")] (domino_singleton RS exE) 1);
 | 
| 
2469
 | 
    87  | 
by (Simp_tac 2 THEN assume_tac 1);
  | 
| 
1624
 | 
    88  | 
by (res_inst_tac [("b1","1")] (domino_singleton RS exE) 1);
 | 
| 
2469
 | 
    89  | 
by (Simp_tac 2 THEN assume_tac 1);
  | 
| 
2896
 | 
    90  | 
by (Step_tac 1);
  | 
| 
1624
 | 
    91  | 
by (subgoal_tac "ALL p b. p:evnodd(a,b) --> p~:evnodd(ta,b)" 1);
  | 
| 
2469
 | 
    92  | 
by (asm_simp_tac (!simpset addsimps [evnodd_Un, Un_cons, tiling_domino_Finite,
  | 
| 
 | 
    93  | 
                                  evnodd_subset RS subset_Finite,
  | 
| 
 | 
    94  | 
                                  Finite_imp_cardinal_cons]) 1);
  | 
| 
2875
 | 
    95  | 
by (blast_tac (!claset addSDs [evnodd_subset RS subsetD] addEs [equalityE]) 1);
  | 
| 
1606
 | 
    96  | 
qed "tiling_domino_0_1";
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
goal thy "!!i n. [| i: nat;  n: nat |] ==> {i} * (n #+ n) : tiling(domino)";
 | 
| 
 | 
    99  | 
by (nat_ind_tac "n" [] 1);
  | 
| 
2469
 | 
   100  | 
by (simp_tac (!simpset addsimps tiling.intrs) 1);
  | 
| 
 | 
   101  | 
by (asm_simp_tac (!simpset addsimps [Un_assoc RS sym, Sigma_succ2]) 1);
  | 
| 
1606
 | 
   102  | 
by (resolve_tac tiling.intrs 1);
  | 
| 
 | 
   103  | 
by (assume_tac 2);
  | 
| 
2469
 | 
   104  | 
by (subgoal_tac    (*seems the easiest way of turning one to the other*)
  | 
| 
1606
 | 
   105  | 
    "{i}*{succ(n1#+n1)} Un {i}*{n1#+n1} = {<i,n1#+n1>, <i,succ(n1#+n1)>}" 1);
 | 
| 
2875
 | 
   106  | 
by (Blast_tac 2);
  | 
| 
2469
 | 
   107  | 
by (asm_simp_tac (!simpset addsimps [domino.horiz]) 1);
  | 
| 
2875
 | 
   108  | 
by (blast_tac (!claset addEs [mem_irrefl, mem_asym]) 1);
  | 
| 
1606
 | 
   109  | 
qed "dominoes_tile_row";
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
goal thy "!!m n. [| m: nat;  n: nat |] ==> m * (n #+ n) : tiling(domino)";
  | 
| 
 | 
   112  | 
by (nat_ind_tac "m" [] 1);
  | 
| 
2469
 | 
   113  | 
by (simp_tac (!simpset addsimps tiling.intrs) 1);
  | 
| 
 | 
   114  | 
by (asm_simp_tac (!simpset addsimps [Sigma_succ1]) 1);
  | 
| 
2875
 | 
   115  | 
by (blast_tac (!claset addIs [tiling_UnI, dominoes_tile_row] 
  | 
| 
1606
 | 
   116  | 
                    addEs [mem_irrefl]) 1);
  | 
| 
 | 
   117  | 
qed "dominoes_tile_matrix";
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
goal thy "!!m n. [| m: nat;  n: nat;  \
  | 
| 
 | 
   121  | 
\                   t = (succ(m)#+succ(m))*(succ(n)#+succ(n));  \
  | 
| 
 | 
   122  | 
\                   t' = t - {<0,0>} - {<succ(m#+m), succ(n#+n)>} |] ==> \
 | 
| 
 | 
   123  | 
\                t' ~: tiling(domino)";
  | 
| 
 | 
   124  | 
by (resolve_tac [notI] 1);
  | 
| 
 | 
   125  | 
by (dresolve_tac [tiling_domino_0_1] 1);
  | 
| 
 | 
   126  | 
by (subgoal_tac "|evnodd(t',0)| < |evnodd(t',1)|" 1);
  | 
| 
2469
 | 
   127  | 
by (asm_full_simp_tac (!simpset addsimps [lt_not_refl]) 1);
  | 
| 
1606
 | 
   128  | 
by (subgoal_tac "t : tiling(domino)" 1);
  | 
| 
1624
 | 
   129  | 
(*Requires a small simpset that won't move the succ applications*)
  | 
| 
1606
 | 
   130  | 
by (asm_simp_tac (ZF_ss addsimps [nat_succI, add_type, 
  | 
| 
2469
 | 
   131  | 
                                  dominoes_tile_matrix]) 2);
  | 
| 
1606
 | 
   132  | 
by (subgoal_tac "(m#+m)#+(n#+n) = (m#+n)#+(m#+n)" 1);
  | 
| 
2469
 | 
   133  | 
by (asm_simp_tac (!simpset addsimps add_ac) 2);
  | 
| 
1606
 | 
   134  | 
by (asm_full_simp_tac 
  | 
| 
2469
 | 
   135  | 
    (!simpset addsimps [evnodd_Diff, mod2_add_self,
  | 
| 
 | 
   136  | 
                        mod2_succ_succ, tiling_domino_0_1 RS sym]) 1);
  | 
| 
1606
 | 
   137  | 
by (resolve_tac [lt_trans] 1);
  | 
| 
 | 
   138  | 
by (REPEAT
  | 
| 
 | 
   139  | 
    (rtac Finite_imp_cardinal_Diff 1 
  | 
| 
 | 
   140  | 
     THEN
  | 
| 
2469
 | 
   141  | 
     asm_simp_tac (!simpset addsimps [tiling_domino_Finite, Finite_evnodd, 
  | 
| 
 | 
   142  | 
                                      Finite_Diff]) 1 
  | 
| 
1606
 | 
   143  | 
     THEN
  | 
| 
2469
 | 
   144  | 
     asm_simp_tac (!simpset addsimps [evnodd_iff, nat_0_le RS ltD, 
  | 
| 
 | 
   145  | 
                                      mod2_add_self]) 1));
  | 
| 
1606
 | 
   146  | 
qed "mutil_not_tiling";
  |