| author | wenzelm | 
| Sun, 18 Dec 2016 16:13:20 +0100 | |
| changeset 64600 | 86e2f2208a58 | 
| parent 62390 | 842917225d56 | 
| child 64915 | 2bb0152d82cf | 
| permissions | -rw-r--r-- | 
| 13383 | 1  | 
(* Title: HOL/ex/Tarski.thy  | 
| 40945 | 2  | 
Author: Florian Kammüller, Cambridge University Computer Laboratory  | 
| 13383 | 3  | 
*)  | 
| 7112 | 4  | 
|
| 61343 | 5  | 
section \<open>The Full Theorem of Tarski\<close>  | 
| 7112 | 6  | 
|
| 27681 | 7  | 
theory Tarski  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
40945 
diff
changeset
 | 
8  | 
imports Main "~~/src/HOL/Library/FuncSet"  | 
| 27681 | 9  | 
begin  | 
| 7112 | 10  | 
|
| 61343 | 11  | 
text \<open>  | 
| 13383 | 12  | 
Minimal version of lattice theory plus the full theorem of Tarski:  | 
13  | 
The fixedpoints of a complete lattice themselves form a complete  | 
|
14  | 
lattice.  | 
|
15  | 
||
16  | 
Illustrates first-class theories, using the Sigma representation of  | 
|
17  | 
structures. Tidied and converted to Isar by lcp.  | 
|
| 61343 | 18  | 
\<close>  | 
| 13383 | 19  | 
|
20  | 
record 'a potype =  | 
|
| 7112 | 21  | 
pset :: "'a set"  | 
22  | 
  order :: "('a * 'a) set"
 | 
|
23  | 
||
| 19736 | 24  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
25  | 
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
 | 
| 19736 | 26  | 
"monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)"  | 
| 7112 | 27  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
28  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
29  | 
least :: "['a => bool, 'a potype] => 'a" where  | 
| 19736 | 30  | 
"least P po = (SOME x. x: pset po & P x &  | 
31  | 
(\<forall>y \<in> pset po. P y --> (x,y): order po))"  | 
|
| 7112 | 32  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
33  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
34  | 
greatest :: "['a => bool, 'a potype] => 'a" where  | 
| 19736 | 35  | 
"greatest P po = (SOME x. x: pset po & P x &  | 
36  | 
(\<forall>y \<in> pset po. P y --> (y,x): order po))"  | 
|
| 7112 | 37  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
38  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
39  | 
lub :: "['a set, 'a potype] => 'a" where  | 
| 19736 | 40  | 
"lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"  | 
| 7112 | 41  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
42  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
43  | 
glb :: "['a set, 'a potype] => 'a" where  | 
| 19736 | 44  | 
"glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"  | 
| 7112 | 45  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
46  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
47  | 
isLub :: "['a set, 'a potype, 'a] => bool" where  | 
| 19736 | 48  | 
"isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &  | 
49  | 
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))"  | 
|
| 7112 | 50  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
51  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
52  | 
isGlb :: "['a set, 'a potype, 'a] => bool" where  | 
| 19736 | 53  | 
"isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &  | 
54  | 
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))"  | 
|
| 7112 | 55  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
56  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
57  | 
  "fix"    :: "[('a => 'a), 'a set] => 'a set" where
 | 
| 19736 | 58  | 
  "fix f A  = {x. x: A & f x = x}"
 | 
| 7112 | 59  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
60  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
61  | 
  interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
 | 
| 19736 | 62  | 
  "interval r a b = {x. (a,x): r & (x,b): r}"
 | 
| 7112 | 63  | 
|
64  | 
||
| 19736 | 65  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
66  | 
Bot :: "'a potype => 'a" where  | 
| 19736 | 67  | 
"Bot po = least (%x. True) po"  | 
| 7112 | 68  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
69  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
70  | 
Top :: "'a potype => 'a" where  | 
| 19736 | 71  | 
"Top po = greatest (%x. True) po"  | 
| 7112 | 72  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
73  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
74  | 
  PartialOrder :: "('a potype) set" where
 | 
| 30198 | 75  | 
  "PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) &
 | 
| 13585 | 76  | 
trans (order P)}"  | 
| 7112 | 77  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
78  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
79  | 
  CompleteLattice :: "('a potype) set" where
 | 
| 19736 | 80  | 
  "CompleteLattice = {cl. cl: PartialOrder &
 | 
| 17841 | 81  | 
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &  | 
82  | 
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"  | 
|
| 7112 | 83  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
84  | 
definition  | 
| 27681 | 85  | 
  CLF_set :: "('a potype * ('a => 'a)) set" where
 | 
86  | 
"CLF_set = (SIGMA cl: CompleteLattice.  | 
|
| 61384 | 87  | 
            {f. f: pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)})"
 | 
| 13383 | 88  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
89  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
90  | 
  induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
 | 
| 19736 | 91  | 
  "induced A r = {(a,b). a : A & b: A & (a,b): r}"
 | 
| 7112 | 92  | 
|
93  | 
||
| 19736 | 94  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
95  | 
  sublattice :: "('a potype * 'a set)set" where
 | 
| 19736 | 96  | 
"sublattice =  | 
97  | 
(SIGMA cl: CompleteLattice.  | 
|
| 17841 | 98  | 
          {S. S \<subseteq> pset cl &
 | 
| 19736 | 99  | 
(| pset = S, order = induced S (order cl) |): CompleteLattice})"  | 
| 7112 | 100  | 
|
| 19736 | 101  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
102  | 
  sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50) where
 | 
| 19736 | 103  | 
  "S <<= cl == S : sublattice `` {cl}"
 | 
| 7112 | 104  | 
|
| 19736 | 105  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21232 
diff
changeset
 | 
106  | 
dual :: "'a potype => 'a potype" where  | 
| 19736 | 107  | 
"dual po = (| pset = pset po, order = converse (order po) |)"  | 
| 7112 | 108  | 
|
| 27681 | 109  | 
locale S =  | 
| 13115 | 110  | 
fixes cl :: "'a potype"  | 
111  | 
and A :: "'a set"  | 
|
112  | 
    and r  :: "('a * 'a) set"
 | 
|
| 13585 | 113  | 
defines A_def: "A == pset cl"  | 
114  | 
and r_def: "r == order cl"  | 
|
| 7112 | 115  | 
|
| 27681 | 116  | 
locale PO = S +  | 
117  | 
assumes cl_po: "cl : PartialOrder"  | 
|
118  | 
||
119  | 
locale CL = S +  | 
|
| 13115 | 120  | 
assumes cl_co: "cl : CompleteLattice"  | 
| 7112 | 121  | 
|
| 
61565
 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 
ballarin 
parents: 
61384 
diff
changeset
 | 
122  | 
sublocale CL < po?: PO  | 
| 27681 | 123  | 
apply (simp_all add: A_def r_def)  | 
124  | 
apply unfold_locales  | 
|
125  | 
using cl_co unfolding CompleteLattice_def by auto  | 
|
126  | 
||
127  | 
locale CLF = S +  | 
|
| 13115 | 128  | 
fixes f :: "'a => 'a"  | 
129  | 
and P :: "'a set"  | 
|
| 27681 | 130  | 
  assumes f_cl:  "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*)
 | 
| 13115 | 131  | 
defines P_def: "P == fix f A"  | 
| 7112 | 132  | 
|
| 
61565
 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 
ballarin 
parents: 
61384 
diff
changeset
 | 
133  | 
sublocale CLF < cl?: CL  | 
| 27681 | 134  | 
apply (simp_all add: A_def r_def)  | 
135  | 
apply unfold_locales  | 
|
136  | 
using f_cl unfolding CLF_set_def by auto  | 
|
| 7112 | 137  | 
|
| 27681 | 138  | 
locale Tarski = CLF +  | 
| 13115 | 139  | 
fixes Y :: "'a set"  | 
140  | 
and intY1 :: "'a set"  | 
|
141  | 
and v :: "'a"  | 
|
142  | 
assumes  | 
|
| 17841 | 143  | 
Y_ss: "Y \<subseteq> P"  | 
| 13115 | 144  | 
defines  | 
145  | 
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"  | 
|
| 13383 | 146  | 
    and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
 | 
| 13115 | 147  | 
x: intY1}  | 
| 13383 | 148  | 
(| pset=intY1, order=induced intY1 r|)"  | 
| 13115 | 149  | 
|
150  | 
||
| 61343 | 151  | 
subsection \<open>Partial Order\<close>  | 
| 13115 | 152  | 
|
| 27681 | 153  | 
lemma (in PO) dual:  | 
154  | 
"PO (dual cl)"  | 
|
155  | 
apply unfold_locales  | 
|
156  | 
using cl_po  | 
|
157  | 
unfolding PartialOrder_def dual_def  | 
|
158  | 
by auto  | 
|
159  | 
||
| 30198 | 160  | 
lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r"  | 
| 13383 | 161  | 
apply (insert cl_po)  | 
| 13115 | 162  | 
apply (simp add: PartialOrder_def A_def r_def)  | 
163  | 
done  | 
|
164  | 
||
| 27681 | 165  | 
lemma (in PO) PO_imp_sym [simp]: "antisym r"  | 
| 13383 | 166  | 
apply (insert cl_po)  | 
| 19316 | 167  | 
apply (simp add: PartialOrder_def r_def)  | 
| 13115 | 168  | 
done  | 
169  | 
||
| 27681 | 170  | 
lemma (in PO) PO_imp_trans [simp]: "trans r"  | 
| 13383 | 171  | 
apply (insert cl_po)  | 
| 19316 | 172  | 
apply (simp add: PartialOrder_def r_def)  | 
| 13115 | 173  | 
done  | 
174  | 
||
| 18705 | 175  | 
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"  | 
| 13383 | 176  | 
apply (insert cl_po)  | 
| 30198 | 177  | 
apply (simp add: PartialOrder_def refl_on_def A_def r_def)  | 
| 13115 | 178  | 
done  | 
179  | 
||
| 18705 | 180  | 
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"  | 
| 13383 | 181  | 
apply (insert cl_po)  | 
| 19316 | 182  | 
apply (simp add: PartialOrder_def antisym_def r_def)  | 
| 13115 | 183  | 
done  | 
184  | 
||
| 18705 | 185  | 
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"  | 
| 13383 | 186  | 
apply (insert cl_po)  | 
| 19316 | 187  | 
apply (simp add: PartialOrder_def r_def)  | 
| 13115 | 188  | 
apply (unfold trans_def, fast)  | 
189  | 
done  | 
|
190  | 
||
191  | 
lemma (in PO) monotoneE:  | 
|
192  | 
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"  | 
|
193  | 
by (simp add: monotone_def)  | 
|
194  | 
||
195  | 
lemma (in PO) po_subset_po:  | 
|
| 17841 | 196  | 
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"  | 
| 13115 | 197  | 
apply (simp (no_asm) add: PartialOrder_def)  | 
198  | 
apply auto  | 
|
| 61933 | 199  | 
\<comment> \<open>refl\<close>  | 
| 30198 | 200  | 
apply (simp add: refl_on_def induced_def)  | 
| 18705 | 201  | 
apply (blast intro: reflE)  | 
| 61933 | 202  | 
\<comment> \<open>antisym\<close>  | 
| 13115 | 203  | 
apply (simp add: antisym_def induced_def)  | 
| 18705 | 204  | 
apply (blast intro: antisymE)  | 
| 61933 | 205  | 
\<comment> \<open>trans\<close>  | 
| 13115 | 206  | 
apply (simp add: trans_def induced_def)  | 
| 18705 | 207  | 
apply (blast intro: transE)  | 
| 13115 | 208  | 
done  | 
209  | 
||
| 17841 | 210  | 
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"  | 
| 13115 | 211  | 
by (simp add: add: induced_def)  | 
212  | 
||
213  | 
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"  | 
|
214  | 
by (simp add: add: induced_def)  | 
|
215  | 
||
| 17841 | 216  | 
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"  | 
| 13383 | 217  | 
apply (insert cl_co)  | 
| 13115 | 218  | 
apply (simp add: CompleteLattice_def A_def)  | 
219  | 
done  | 
|
220  | 
||
221  | 
declare (in CL) cl_co [simp]  | 
|
222  | 
||
223  | 
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"  | 
|
224  | 
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])  | 
|
225  | 
||
226  | 
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"  | 
|
227  | 
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])  | 
|
228  | 
||
229  | 
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
41413 
diff
changeset
 | 
230  | 
by (simp add: isLub_def isGlb_def dual_def converse_unfold)  | 
| 13115 | 231  | 
|
232  | 
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
41413 
diff
changeset
 | 
233  | 
by (simp add: isLub_def isGlb_def dual_def converse_unfold)  | 
| 13115 | 234  | 
|
235  | 
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"  | 
|
| 13383 | 236  | 
apply (insert cl_po)  | 
| 30198 | 237  | 
apply (simp add: PartialOrder_def dual_def refl_on_converse  | 
| 13115 | 238  | 
trans_converse antisym_converse)  | 
239  | 
done  | 
|
240  | 
||
241  | 
lemma Rdual:  | 
|
| 17841 | 242  | 
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))  | 
243  | 
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"  | 
|
| 13115 | 244  | 
apply safe  | 
245  | 
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
 | 
|
246  | 
(|pset = A, order = r|) " in exI)  | 
|
247  | 
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
 | 
|
248  | 
apply (drule mp, fast)  | 
|
249  | 
apply (simp add: isLub_lub isGlb_def)  | 
|
250  | 
apply (simp add: isLub_def, blast)  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
41413 
diff
changeset
 | 
254  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)  | 
| 13115 | 255  | 
|
256  | 
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
41413 
diff
changeset
 | 
257  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)  | 
| 13115 | 258  | 
|
| 17841 | 259  | 
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"  | 
| 13115 | 260  | 
by (simp add: PartialOrder_def CompleteLattice_def, fast)  | 
261  | 
||
262  | 
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]  | 
|
263  | 
||
| 27681 | 264  | 
(*declare CL_imp_PO [THEN PO.PO_imp_refl, simp]  | 
| 21232 | 265  | 
declare CL_imp_PO [THEN PO.PO_imp_sym, simp]  | 
| 27681 | 266  | 
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*)  | 
| 13115 | 267  | 
|
| 30198 | 268  | 
lemma (in CL) CO_refl_on: "refl_on A r"  | 
269  | 
by (rule PO_imp_refl_on)  | 
|
| 13115 | 270  | 
|
271  | 
lemma (in CL) CO_antisym: "antisym r"  | 
|
272  | 
by (rule PO_imp_sym)  | 
|
273  | 
||
274  | 
lemma (in CL) CO_trans: "trans r"  | 
|
275  | 
by (rule PO_imp_trans)  | 
|
276  | 
||
277  | 
lemma CompleteLatticeI:  | 
|
| 17841 | 278  | 
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));  | 
279  | 
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]  | 
|
| 13115 | 280  | 
==> po \<in> CompleteLattice"  | 
| 13383 | 281  | 
apply (unfold CompleteLattice_def, blast)  | 
| 13115 | 282  | 
done  | 
283  | 
||
284  | 
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"  | 
|
| 13383 | 285  | 
apply (insert cl_co)  | 
| 13115 | 286  | 
apply (simp add: CompleteLattice_def dual_def)  | 
| 13383 | 287  | 
apply (fold dual_def)  | 
288  | 
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]  | 
|
| 13115 | 289  | 
dualPO)  | 
290  | 
done  | 
|
291  | 
||
| 13585 | 292  | 
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"  | 
| 13115 | 293  | 
by (simp add: dual_def)  | 
294  | 
||
| 13585 | 295  | 
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"  | 
| 13115 | 296  | 
by (simp add: dual_def)  | 
297  | 
||
298  | 
lemma (in PO) monotone_dual:  | 
|
| 13585 | 299  | 
"monotone f (pset cl) (order cl)  | 
300  | 
==> monotone f (pset (dual cl)) (order(dual cl))"  | 
|
301  | 
by (simp add: monotone_def dualA_iff dualr_iff)  | 
|
| 13115 | 302  | 
|
303  | 
lemma (in PO) interval_dual:  | 
|
| 13585 | 304  | 
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"  | 
| 13115 | 305  | 
apply (simp add: interval_def dualr_iff)  | 
306  | 
apply (fold r_def, fast)  | 
|
307  | 
done  | 
|
308  | 
||
| 27681 | 309  | 
lemma (in PO) trans:  | 
310  | 
"(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r"  | 
|
311  | 
using cl_po apply (auto simp add: PartialOrder_def r_def)  | 
|
312  | 
unfolding trans_def by blast  | 
|
313  | 
||
| 13115 | 314  | 
lemma (in PO) interval_not_empty:  | 
| 27681 | 315  | 
  "interval r a b \<noteq> {} ==> (a, b) \<in> r"
 | 
| 13115 | 316  | 
apply (simp add: interval_def)  | 
| 27681 | 317  | 
using trans by blast  | 
| 13115 | 318  | 
|
319  | 
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"  | 
|
320  | 
by (simp add: interval_def)  | 
|
321  | 
||
322  | 
lemma (in PO) left_in_interval:  | 
|
323  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
 | 
|
324  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
325  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
| 18705 | 326  | 
apply (simp add: reflE)  | 
| 13115 | 327  | 
done  | 
328  | 
||
329  | 
lemma (in PO) right_in_interval:  | 
|
330  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
 | 
|
331  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
332  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
| 18705 | 333  | 
apply (simp add: reflE)  | 
| 13115 | 334  | 
done  | 
335  | 
||
| 13383 | 336  | 
|
| 61343 | 337  | 
subsection \<open>sublattice\<close>  | 
| 13383 | 338  | 
|
| 13115 | 339  | 
lemma (in PO) sublattice_imp_CL:  | 
| 18750 | 340  | 
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"  | 
| 19316 | 341  | 
by (simp add: sublattice_def CompleteLattice_def r_def)  | 
| 13115 | 342  | 
|
343  | 
lemma (in CL) sublatticeI:  | 
|
| 17841 | 344  | 
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]  | 
| 18750 | 345  | 
==> S <<= cl"  | 
| 13115 | 346  | 
by (simp add: sublattice_def A_def r_def)  | 
347  | 
||
| 27681 | 348  | 
lemma (in CL) dual:  | 
349  | 
"CL (dual cl)"  | 
|
350  | 
apply unfold_locales  | 
|
351  | 
using cl_co unfolding CompleteLattice_def  | 
|
352  | 
apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff)  | 
|
353  | 
done  | 
|
354  | 
||
| 13383 | 355  | 
|
| 61343 | 356  | 
subsection \<open>lub\<close>  | 
| 13383 | 357  | 
|
| 17841 | 358  | 
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"  | 
| 13115 | 359  | 
apply (rule antisymE)  | 
360  | 
apply (auto simp add: isLub_def r_def)  | 
|
361  | 
done  | 
|
362  | 
||
| 17841 | 363  | 
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"  | 
| 13115 | 364  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
365  | 
apply (unfold lub_def least_def)  | 
|
366  | 
apply (rule some_equality [THEN ssubst])  | 
|
367  | 
apply (simp add: isLub_def)  | 
|
| 13383 | 368  | 
apply (simp add: lub_unique A_def isLub_def)  | 
| 13115 | 369  | 
apply (simp add: isLub_def r_def)  | 
370  | 
done  | 
|
371  | 
||
372  | 
lemma (in CL) lub_least:  | 
|
| 17841 | 373  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"  | 
| 13115 | 374  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
375  | 
apply (unfold lub_def least_def)  | 
|
376  | 
apply (rule_tac s=x in some_equality [THEN ssubst])  | 
|
377  | 
apply (simp add: isLub_def)  | 
|
| 13383 | 378  | 
apply (simp add: lub_unique A_def isLub_def)  | 
| 13115 | 379  | 
apply (simp add: isLub_def r_def A_def)  | 
380  | 
done  | 
|
381  | 
||
| 17841 | 382  | 
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"  | 
| 13115 | 383  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
384  | 
apply (unfold lub_def least_def)  | 
|
385  | 
apply (subst some_equality)  | 
|
386  | 
apply (simp add: isLub_def)  | 
|
387  | 
prefer 2 apply (simp add: isLub_def A_def)  | 
|
| 13383 | 388  | 
apply (simp add: lub_unique A_def isLub_def)  | 
| 13115 | 389  | 
done  | 
390  | 
||
391  | 
lemma (in CL) lubI:  | 
|
| 17841 | 392  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;  | 
| 13115 | 393  | 
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"  | 
394  | 
apply (rule lub_unique, assumption)  | 
|
395  | 
apply (simp add: isLub_def A_def r_def)  | 
|
396  | 
apply (unfold isLub_def)  | 
|
397  | 
apply (rule conjI)  | 
|
398  | 
apply (fold A_def r_def)  | 
|
399  | 
apply (rule lub_in_lattice, assumption)  | 
|
400  | 
apply (simp add: lub_upper lub_least)  | 
|
401  | 
done  | 
|
402  | 
||
| 17841 | 403  | 
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"  | 
| 13115 | 404  | 
by (simp add: lubI isLub_def A_def r_def)  | 
405  | 
||
406  | 
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"  | 
|
407  | 
by (simp add: isLub_def A_def)  | 
|
408  | 
||
409  | 
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"  | 
|
410  | 
by (simp add: isLub_def r_def)  | 
|
411  | 
||
412  | 
lemma (in CL) isLub_least:  | 
|
413  | 
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"  | 
|
414  | 
by (simp add: isLub_def A_def r_def)  | 
|
415  | 
||
416  | 
lemma (in CL) isLubI:  | 
|
| 13383 | 417  | 
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;  | 
| 13115 | 418  | 
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"  | 
419  | 
by (simp add: isLub_def A_def r_def)  | 
|
420  | 
||
| 13383 | 421  | 
|
| 61343 | 422  | 
subsection \<open>glb\<close>  | 
| 13383 | 423  | 
|
| 17841 | 424  | 
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"  | 
| 13115 | 425  | 
apply (subst glb_dual_lub)  | 
426  | 
apply (simp add: A_def)  | 
|
427  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 21232 | 428  | 
apply (rule CL.lub_in_lattice)  | 
| 27681 | 429  | 
apply (rule dual)  | 
| 13115 | 430  | 
apply (simp add: dualA_iff)  | 
431  | 
done  | 
|
432  | 
||
| 17841 | 433  | 
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"  | 
| 13115 | 434  | 
apply (subst glb_dual_lub)  | 
435  | 
apply (simp add: r_def)  | 
|
436  | 
apply (rule dualr_iff [THEN subst])  | 
|
| 21232 | 437  | 
apply (rule CL.lub_upper)  | 
| 27681 | 438  | 
apply (rule dual)  | 
| 13115 | 439  | 
apply (simp add: dualA_iff A_def, assumption)  | 
440  | 
done  | 
|
441  | 
||
| 61343 | 442  | 
text \<open>  | 
| 13383 | 443  | 
Reduce the sublattice property by using substructural properties;  | 
| 61933 | 444  | 
abandoned see \<open>Tarski_4.ML\<close>.  | 
| 61343 | 445  | 
\<close>  | 
| 13115 | 446  | 
|
447  | 
lemma (in CLF) [simp]:  | 
|
| 61384 | 448  | 
"f: pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)"  | 
| 13383 | 449  | 
apply (insert f_cl)  | 
| 27681 | 450  | 
apply (simp add: CLF_set_def)  | 
| 13115 | 451  | 
done  | 
452  | 
||
453  | 
declare (in CLF) f_cl [simp]  | 
|
454  | 
||
455  | 
||
| 61384 | 456  | 
lemma (in CLF) f_in_funcset: "f \<in> A \<rightarrow> A"  | 
| 13115 | 457  | 
by (simp add: A_def)  | 
458  | 
||
459  | 
lemma (in CLF) monotone_f: "monotone f A r"  | 
|
460  | 
by (simp add: A_def r_def)  | 
|
461  | 
||
| 27681 | 462  | 
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set"  | 
463  | 
apply (simp add: CLF_set_def CL_dualCL monotone_dual)  | 
|
| 13115 | 464  | 
apply (simp add: dualA_iff)  | 
465  | 
done  | 
|
466  | 
||
| 27681 | 467  | 
lemma (in CLF) dual:  | 
468  | 
"CLF (dual cl) f"  | 
|
469  | 
apply (rule CLF.intro)  | 
|
470  | 
apply (rule CLF_dual)  | 
|
471  | 
done  | 
|
472  | 
||
| 13383 | 473  | 
|
| 61343 | 474  | 
subsection \<open>fixed points\<close>  | 
| 13383 | 475  | 
|
| 17841 | 476  | 
lemma fix_subset: "fix f A \<subseteq> A"  | 
| 13115 | 477  | 
by (simp add: fix_def, fast)  | 
478  | 
||
479  | 
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"  | 
|
480  | 
by (simp add: fix_def)  | 
|
481  | 
||
482  | 
lemma fixf_subset:  | 
|
| 17841 | 483  | 
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"  | 
484  | 
by (simp add: fix_def, auto)  | 
|
| 13115 | 485  | 
|
| 13383 | 486  | 
|
| 61343 | 487  | 
subsection \<open>lemmas for Tarski, lub\<close>  | 
| 13115 | 488  | 
lemma (in CLF) lubH_le_flubH:  | 
489  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
 | 
|
490  | 
apply (rule lub_least, fast)  | 
|
491  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
492  | 
apply (rule lub_in_lattice, fast)  | 
|
| 61933 | 493  | 
\<comment> \<open>\<open>\<forall>x:H. (x, f (lub H r)) \<in> r\<close>\<close>  | 
| 13115 | 494  | 
apply (rule ballI)  | 
495  | 
apply (rule transE)  | 
|
| 61933 | 496  | 
\<comment> \<open>instantiates \<open>(x, ???z) \<in> order cl to (x, f x)\<close>,\<close>  | 
497  | 
\<comment> \<open>because of the def of \<open>H\<close>\<close>  | 
|
| 13115 | 498  | 
apply fast  | 
| 61933 | 499  | 
\<comment> \<open>so it remains to show \<open>(f x, f (lub H cl)) \<in> r\<close>\<close>  | 
| 13115 | 500  | 
apply (rule_tac f = "f" in monotoneE)  | 
501  | 
apply (rule monotone_f, fast)  | 
|
502  | 
apply (rule lub_in_lattice, fast)  | 
|
503  | 
apply (rule lub_upper, fast)  | 
|
504  | 
apply assumption  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
lemma (in CLF) flubH_le_lubH:  | 
|
508  | 
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
 | 
|
509  | 
apply (rule lub_upper, fast)  | 
|
510  | 
apply (rule_tac t = "H" in ssubst, assumption)  | 
|
511  | 
apply (rule CollectI)  | 
|
512  | 
apply (rule conjI)  | 
|
513  | 
apply (rule_tac [2] f_in_funcset [THEN funcset_mem])  | 
|
514  | 
apply (rule_tac [2] lub_in_lattice)  | 
|
515  | 
prefer 2 apply fast  | 
|
516  | 
apply (rule_tac f = "f" in monotoneE)  | 
|
517  | 
apply (rule monotone_f)  | 
|
| 13383 | 518  | 
apply (blast intro: lub_in_lattice)  | 
519  | 
apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem])  | 
|
| 13115 | 520  | 
apply (simp add: lubH_le_flubH)  | 
521  | 
done  | 
|
522  | 
||
523  | 
lemma (in CLF) lubH_is_fixp:  | 
|
524  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
|
525  | 
apply (simp add: fix_def)  | 
|
526  | 
apply (rule conjI)  | 
|
527  | 
apply (rule lub_in_lattice, fast)  | 
|
528  | 
apply (rule antisymE)  | 
|
529  | 
apply (simp add: flubH_le_lubH)  | 
|
530  | 
apply (simp add: lubH_le_flubH)  | 
|
531  | 
done  | 
|
532  | 
||
533  | 
lemma (in CLF) fix_in_H:  | 
|
534  | 
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
 | 
|
| 30198 | 535  | 
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on  | 
| 13383 | 536  | 
fix_subset [of f A, THEN subsetD])  | 
| 13115 | 537  | 
|
538  | 
lemma (in CLF) fixf_le_lubH:  | 
|
539  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
 | 
|
540  | 
apply (rule ballI)  | 
|
541  | 
apply (rule lub_upper, fast)  | 
|
542  | 
apply (rule fix_in_H)  | 
|
| 13383 | 543  | 
apply (simp_all add: P_def)  | 
| 13115 | 544  | 
done  | 
545  | 
||
546  | 
lemma (in CLF) lubH_least_fixf:  | 
|
| 13383 | 547  | 
     "H = {x. (x, f x) \<in> r & x \<in> A}
 | 
| 13115 | 548  | 
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"  | 
549  | 
apply (rule allI)  | 
|
550  | 
apply (rule impI)  | 
|
551  | 
apply (erule bspec)  | 
|
552  | 
apply (rule lubH_is_fixp, assumption)  | 
|
553  | 
done  | 
|
554  | 
||
| 61343 | 555  | 
subsection \<open>Tarski fixpoint theorem 1, first part\<close>  | 
| 13115 | 556  | 
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
 | 
557  | 
apply (rule sym)  | 
|
| 13383 | 558  | 
apply (simp add: P_def)  | 
| 13115 | 559  | 
apply (rule lubI)  | 
560  | 
apply (rule fix_subset)  | 
|
561  | 
apply (rule lub_in_lattice, fast)  | 
|
562  | 
apply (simp add: fixf_le_lubH)  | 
|
563  | 
apply (simp add: lubH_least_fixf)  | 
|
564  | 
done  | 
|
565  | 
||
566  | 
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
 | 
|
| 61933 | 567  | 
\<comment> \<open>Tarski for glb\<close>  | 
| 13115 | 568  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
569  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 21232 | 570  | 
apply (rule CLF.lubH_is_fixp)  | 
| 27681 | 571  | 
apply (rule dual)  | 
| 13115 | 572  | 
apply (simp add: dualr_iff dualA_iff)  | 
573  | 
done  | 
|
574  | 
||
575  | 
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
 | 
|
576  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
|
577  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 27681 | 578  | 
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual]  | 
| 13115 | 579  | 
dualPO CL_dualCL CLF_dual dualr_iff)  | 
580  | 
done  | 
|
581  | 
||
| 61343 | 582  | 
subsection \<open>interval\<close>  | 
| 13383 | 583  | 
|
| 13115 | 584  | 
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"  | 
| 30198 | 585  | 
apply (insert CO_refl_on)  | 
586  | 
apply (simp add: refl_on_def, blast)  | 
|
| 13115 | 587  | 
done  | 
588  | 
||
| 17841 | 589  | 
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"  | 
| 13115 | 590  | 
apply (simp add: interval_def)  | 
591  | 
apply (blast intro: rel_imp_elem)  | 
|
592  | 
done  | 
|
593  | 
||
594  | 
lemma (in CLF) intervalI:  | 
|
595  | 
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"  | 
|
| 17841 | 596  | 
by (simp add: interval_def)  | 
| 13115 | 597  | 
|
598  | 
lemma (in CLF) interval_lemma1:  | 
|
| 17841 | 599  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"  | 
600  | 
by (unfold interval_def, fast)  | 
|
| 13115 | 601  | 
|
602  | 
lemma (in CLF) interval_lemma2:  | 
|
| 17841 | 603  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"  | 
604  | 
by (unfold interval_def, fast)  | 
|
| 13115 | 605  | 
|
606  | 
lemma (in CLF) a_less_lub:  | 
|
| 17841 | 607  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
| 13115 | 608  | 
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"  | 
| 18705 | 609  | 
by (blast intro: transE)  | 
| 13115 | 610  | 
|
611  | 
lemma (in CLF) glb_less_b:  | 
|
| 17841 | 612  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
| 13115 | 613  | 
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"  | 
| 18705 | 614  | 
by (blast intro: transE)  | 
| 13115 | 615  | 
|
616  | 
lemma (in CLF) S_intv_cl:  | 
|
| 17841 | 617  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"  | 
| 13115 | 618  | 
by (simp add: subset_trans [OF _ interval_subset])  | 
619  | 
||
620  | 
lemma (in CLF) L_in_interval:  | 
|
| 17841 | 621  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;  | 
| 13115 | 622  | 
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
 | 
623  | 
apply (rule intervalI)  | 
|
624  | 
apply (rule a_less_lub)  | 
|
625  | 
prefer 2 apply assumption  | 
|
626  | 
apply (simp add: S_intv_cl)  | 
|
627  | 
apply (rule ballI)  | 
|
628  | 
apply (simp add: interval_lemma1)  | 
|
629  | 
apply (simp add: isLub_upper)  | 
|
| 61933 | 630  | 
\<comment> \<open>\<open>(L, b) \<in> r\<close>\<close>  | 
| 13115 | 631  | 
apply (simp add: isLub_least interval_lemma2)  | 
632  | 
done  | 
|
633  | 
||
634  | 
lemma (in CLF) G_in_interval:  | 
|
| 17841 | 635  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
 | 
| 13115 | 636  | 
         S \<noteq> {} |] ==> G \<in> interval r a b"
 | 
637  | 
apply (simp add: interval_dual)  | 
|
| 27681 | 638  | 
apply (simp add: CLF.L_in_interval [of _ f, OF dual]  | 
639  | 
dualA_iff A_def isGlb_dual_isLub)  | 
|
| 13115 | 640  | 
done  | 
641  | 
||
642  | 
lemma (in CLF) intervalPO:  | 
|
| 13383 | 643  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 13115 | 644  | 
==> (| pset = interval r a b, order = induced (interval r a b) r |)  | 
645  | 
\<in> PartialOrder"  | 
|
646  | 
apply (rule po_subset_po)  | 
|
647  | 
apply (simp add: interval_subset)  | 
|
648  | 
done  | 
|
649  | 
||
650  | 
lemma (in CLF) intv_CL_lub:  | 
|
| 13383 | 651  | 
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 17841 | 652  | 
==> \<forall>S. S \<subseteq> interval r a b -->  | 
| 13383 | 653  | 
(\<exists>L. isLub S (| pset = interval r a b,  | 
| 13115 | 654  | 
order = induced (interval r a b) r |) L)"  | 
655  | 
apply (intro strip)  | 
|
656  | 
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])  | 
|
657  | 
prefer 2 apply assumption  | 
|
658  | 
apply assumption  | 
|
659  | 
apply (erule exE)  | 
|
| 61933 | 660  | 
\<comment> \<open>define the lub for the interval as\<close>  | 
| 13115 | 661  | 
apply (rule_tac x = "if S = {} then a else L" in exI)
 | 
| 62390 | 662  | 
apply (simp (no_asm_simp) add: isLub_def split del: if_split)  | 
| 13383 | 663  | 
apply (intro impI conjI)  | 
| 61933 | 664  | 
\<comment> \<open>\<open>(if S = {} then a else L) \<in> interval r a b\<close>\<close>
 | 
| 13115 | 665  | 
apply (simp add: CL_imp_PO L_in_interval)  | 
666  | 
apply (simp add: left_in_interval)  | 
|
| 61933 | 667  | 
\<comment> \<open>lub prop 1\<close>  | 
| 13115 | 668  | 
apply (case_tac "S = {}")
 | 
| 61933 | 669  | 
\<comment> \<open>\<open>S = {}, y \<in> S = False => everything\<close>\<close>
 | 
| 13115 | 670  | 
apply fast  | 
| 61933 | 671  | 
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
 | 
| 13115 | 672  | 
apply simp  | 
| 61933 | 673  | 
\<comment> \<open>\<open>\<forall>y:S. (y, L) \<in> induced (interval r a b) r\<close>\<close>  | 
| 13115 | 674  | 
apply (rule ballI)  | 
675  | 
apply (simp add: induced_def L_in_interval)  | 
|
676  | 
apply (rule conjI)  | 
|
677  | 
apply (rule subsetD)  | 
|
678  | 
apply (simp add: S_intv_cl, assumption)  | 
|
679  | 
apply (simp add: isLub_upper)  | 
|
| 61933 | 680  | 
\<comment> \<open>\<open>\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r\<close>\<close>
 | 
| 13115 | 681  | 
apply (rule ballI)  | 
682  | 
apply (rule impI)  | 
|
683  | 
apply (case_tac "S = {}")
 | 
|
| 61933 | 684  | 
\<comment> \<open>\<open>S = {}\<close>\<close>
 | 
| 13115 | 685  | 
apply simp  | 
686  | 
apply (simp add: induced_def interval_def)  | 
|
687  | 
apply (rule conjI)  | 
|
| 18705 | 688  | 
apply (rule reflE, assumption)  | 
| 13115 | 689  | 
apply (rule interval_not_empty)  | 
690  | 
apply (simp add: interval_def)  | 
|
| 61933 | 691  | 
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
 | 
| 13115 | 692  | 
apply simp  | 
693  | 
apply (simp add: induced_def L_in_interval)  | 
|
694  | 
apply (rule isLub_least, assumption)  | 
|
695  | 
apply (rule subsetD)  | 
|
696  | 
prefer 2 apply assumption  | 
|
697  | 
apply (simp add: S_intv_cl, fast)  | 
|
698  | 
done  | 
|
699  | 
||
700  | 
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]  | 
|
701  | 
||
702  | 
lemma (in CLF) interval_is_sublattice:  | 
|
| 13383 | 703  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 18750 | 704  | 
==> interval r a b <<= cl"  | 
| 13115 | 705  | 
apply (rule sublatticeI)  | 
706  | 
apply (simp add: interval_subset)  | 
|
707  | 
apply (rule CompleteLatticeI)  | 
|
708  | 
apply (simp add: intervalPO)  | 
|
709  | 
apply (simp add: intv_CL_lub)  | 
|
710  | 
apply (simp add: intv_CL_glb)  | 
|
711  | 
done  | 
|
712  | 
||
| 13383 | 713  | 
lemmas (in CLF) interv_is_compl_latt =  | 
| 13115 | 714  | 
interval_is_sublattice [THEN sublattice_imp_CL]  | 
715  | 
||
| 13383 | 716  | 
|
| 61343 | 717  | 
subsection \<open>Top and Bottom\<close>  | 
| 13115 | 718  | 
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"  | 
719  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
720  | 
||
721  | 
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"  | 
|
722  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
723  | 
||
724  | 
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"  | 
|
725  | 
apply (simp add: Bot_def least_def)  | 
|
| 17841 | 726  | 
apply (rule_tac a="glb A cl" in someI2)  | 
727  | 
apply (simp_all add: glb_in_lattice glb_lower  | 
|
728  | 
r_def [symmetric] A_def [symmetric])  | 
|
| 13115 | 729  | 
done  | 
730  | 
||
731  | 
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"  | 
|
732  | 
apply (simp add: Top_dual_Bot A_def)  | 
|
| 13383 | 733  | 
apply (rule dualA_iff [THEN subst])  | 
| 27681 | 734  | 
apply (rule CLF.Bot_in_lattice [OF dual])  | 
| 13115 | 735  | 
done  | 
736  | 
||
737  | 
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"  | 
|
738  | 
apply (simp add: Top_def greatest_def)  | 
|
| 17841 | 739  | 
apply (rule_tac a="lub A cl" in someI2)  | 
| 13115 | 740  | 
apply (rule someI2)  | 
| 17841 | 741  | 
apply (simp_all add: lub_in_lattice lub_upper  | 
742  | 
r_def [symmetric] A_def [symmetric])  | 
|
| 13115 | 743  | 
done  | 
744  | 
||
745  | 
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"  | 
|
746  | 
apply (simp add: Bot_dual_Top r_def)  | 
|
747  | 
apply (rule dualr_iff [THEN subst])  | 
|
| 27681 | 748  | 
apply (rule CLF.Top_prop [OF dual])  | 
749  | 
apply (simp add: dualA_iff A_def)  | 
|
| 13115 | 750  | 
done  | 
751  | 
||
752  | 
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}"
 | 
|
753  | 
apply (rule notI)  | 
|
754  | 
apply (drule_tac a = "Top cl" in equals0D)  | 
|
755  | 
apply (simp add: interval_def)  | 
|
| 30198 | 756  | 
apply (simp add: refl_on_def Top_in_lattice Top_prop)  | 
| 13115 | 757  | 
done  | 
758  | 
||
759  | 
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
 | 
|
760  | 
apply (simp add: Bot_dual_Top)  | 
|
761  | 
apply (subst interval_dual)  | 
|
762  | 
prefer 2 apply assumption  | 
|
763  | 
apply (simp add: A_def)  | 
|
764  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 27681 | 765  | 
apply (rule CLF.Top_in_lattice [OF dual])  | 
766  | 
apply (rule CLF.Top_intv_not_empty [OF dual])  | 
|
767  | 
apply (simp add: dualA_iff A_def)  | 
|
| 13115 | 768  | 
done  | 
769  | 
||
| 61343 | 770  | 
subsection \<open>fixed points form a partial order\<close>  | 
| 13383 | 771  | 
|
| 13115 | 772  | 
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"  | 
773  | 
by (simp add: P_def fix_subset po_subset_po)  | 
|
774  | 
||
| 17841 | 775  | 
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"  | 
| 13115 | 776  | 
apply (rule subset_trans [OF _ fix_subset])  | 
777  | 
apply (rule Y_ss [simplified P_def])  | 
|
778  | 
done  | 
|
779  | 
||
780  | 
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"  | 
|
| 18750 | 781  | 
by (rule Y_subset_A [THEN lub_in_lattice])  | 
| 13115 | 782  | 
|
783  | 
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"  | 
|
784  | 
apply (rule lub_least)  | 
|
785  | 
apply (rule Y_subset_A)  | 
|
786  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
787  | 
apply (rule lubY_in_A)  | 
|
| 61933 | 788  | 
\<comment> \<open>\<open>Y \<subseteq> P ==> f x = x\<close>\<close>  | 
| 13115 | 789  | 
apply (rule ballI)  | 
790  | 
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])  | 
|
791  | 
apply (erule Y_ss [simplified P_def, THEN subsetD])  | 
|
| 61933 | 792  | 
\<comment> \<open>\<open>reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r\<close> by monotonicity\<close>  | 
| 13115 | 793  | 
apply (rule_tac f = "f" in monotoneE)  | 
794  | 
apply (rule monotone_f)  | 
|
795  | 
apply (simp add: Y_subset_A [THEN subsetD])  | 
|
796  | 
apply (rule lubY_in_A)  | 
|
797  | 
apply (simp add: lub_upper Y_subset_A)  | 
|
798  | 
done  | 
|
799  | 
||
| 17841 | 800  | 
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"  | 
| 13115 | 801  | 
apply (unfold intY1_def)  | 
802  | 
apply (rule interval_subset)  | 
|
803  | 
apply (rule lubY_in_A)  | 
|
804  | 
apply (rule Top_in_lattice)  | 
|
805  | 
done  | 
|
806  | 
||
807  | 
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]  | 
|
808  | 
||
809  | 
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"  | 
|
810  | 
apply (simp add: intY1_def interval_def)  | 
|
811  | 
apply (rule conjI)  | 
|
812  | 
apply (rule transE)  | 
|
813  | 
apply (rule lubY_le_flubY)  | 
|
| 61933 | 814  | 
\<comment> \<open>\<open>(f (lub Y cl), f x) \<in> r\<close>\<close>  | 
| 13115 | 815  | 
apply (rule_tac f=f in monotoneE)  | 
816  | 
apply (rule monotone_f)  | 
|
817  | 
apply (rule lubY_in_A)  | 
|
818  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
819  | 
apply (simp add: intY1_def interval_def)  | 
|
| 61933 | 820  | 
\<comment> \<open>\<open>(f x, Top cl) \<in> r\<close>\<close>  | 
| 13115 | 821  | 
apply (rule Top_prop)  | 
822  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
823  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
824  | 
done  | 
|
825  | 
||
826  | 
lemma (in Tarski) intY1_mono:  | 
|
827  | 
"monotone (%x: intY1. f x) intY1 (induced intY1 r)"  | 
|
828  | 
apply (auto simp add: monotone_def induced_def intY1_f_closed)  | 
|
829  | 
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])  | 
|
830  | 
done  | 
|
831  | 
||
| 13383 | 832  | 
lemma (in Tarski) intY1_is_cl:  | 
| 13115 | 833  | 
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"  | 
834  | 
apply (unfold intY1_def)  | 
|
835  | 
apply (rule interv_is_compl_latt)  | 
|
836  | 
apply (rule lubY_in_A)  | 
|
837  | 
apply (rule Top_in_lattice)  | 
|
838  | 
apply (rule Top_intv_not_empty)  | 
|
839  | 
apply (rule lubY_in_A)  | 
|
840  | 
done  | 
|
841  | 
||
842  | 
lemma (in Tarski) v_in_P: "v \<in> P"  | 
|
843  | 
apply (unfold P_def)  | 
|
844  | 
apply (rule_tac A = "intY1" in fixf_subset)  | 
|
845  | 
apply (rule intY1_subset)  | 
|
| 27681 | 846  | 
unfolding v_def  | 
847  | 
apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified])  | 
|
848  | 
apply auto  | 
|
849  | 
apply (rule intY1_is_cl)  | 
|
| 31754 | 850  | 
apply (erule intY1_f_closed)  | 
| 27681 | 851  | 
apply (rule intY1_mono)  | 
| 13115 | 852  | 
done  | 
853  | 
||
| 13383 | 854  | 
lemma (in Tarski) z_in_interval:  | 
| 13115 | 855  | 
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"  | 
856  | 
apply (unfold intY1_def P_def)  | 
|
857  | 
apply (rule intervalI)  | 
|
| 13383 | 858  | 
prefer 2  | 
| 13115 | 859  | 
apply (erule fix_subset [THEN subsetD, THEN Top_prop])  | 
860  | 
apply (rule lub_least)  | 
|
861  | 
apply (rule Y_subset_A)  | 
|
862  | 
apply (fast elim!: fix_subset [THEN subsetD])  | 
|
863  | 
apply (simp add: induced_def)  | 
|
864  | 
done  | 
|
865  | 
||
| 13383 | 866  | 
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]  | 
| 13115 | 867  | 
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"  | 
868  | 
apply (simp add: induced_def intY1_f_closed z_in_interval P_def)  | 
|
| 13383 | 869  | 
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]  | 
| 18705 | 870  | 
reflE)  | 
| 13115 | 871  | 
done  | 
872  | 
||
873  | 
lemma (in Tarski) tarski_full_lemma:  | 
|
874  | 
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L"  | 
|
875  | 
apply (rule_tac x = "v" in exI)  | 
|
876  | 
apply (simp add: isLub_def)  | 
|
| 61933 | 877  | 
\<comment> \<open>\<open>v \<in> P\<close>\<close>  | 
| 13115 | 878  | 
apply (simp add: v_in_P)  | 
879  | 
apply (rule conjI)  | 
|
| 61933 | 880  | 
\<comment> \<open>\<open>v\<close> is lub\<close>  | 
881  | 
\<comment> \<open>\<open>1. \<forall>y:Y. (y, v) \<in> induced P r\<close>\<close>  | 
|
| 13115 | 882  | 
apply (rule ballI)  | 
883  | 
apply (simp add: induced_def subsetD v_in_P)  | 
|
884  | 
apply (rule conjI)  | 
|
885  | 
apply (erule Y_ss [THEN subsetD])  | 
|
886  | 
apply (rule_tac b = "lub Y cl" in transE)  | 
|
887  | 
apply (rule lub_upper)  | 
|
888  | 
apply (rule Y_subset_A, assumption)  | 
|
889  | 
apply (rule_tac b = "Top cl" in interval_imp_mem)  | 
|
890  | 
apply (simp add: v_def)  | 
|
891  | 
apply (fold intY1_def)  | 
|
| 27681 | 892  | 
apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified])  | 
893  | 
apply auto  | 
|
| 13115 | 894  | 
apply (rule indI)  | 
895  | 
prefer 3 apply assumption  | 
|
896  | 
prefer 2 apply (simp add: v_in_P)  | 
|
897  | 
apply (unfold v_def)  | 
|
898  | 
apply (rule indE)  | 
|
899  | 
apply (rule_tac [2] intY1_subset)  | 
|
| 27681 | 900  | 
apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified])  | 
| 13383 | 901  | 
apply (simp add: CL_imp_PO intY1_is_cl)  | 
| 13115 | 902  | 
apply force  | 
903  | 
apply (simp add: induced_def intY1_f_closed z_in_interval)  | 
|
| 18705 | 904  | 
apply (simp add: P_def fix_imp_eq [of _ f A] reflE  | 
905  | 
fix_subset [of f A, THEN subsetD])  | 
|
| 13115 | 906  | 
done  | 
907  | 
||
908  | 
lemma CompleteLatticeI_simp:  | 
|
| 13383 | 909  | 
"[| (| pset = A, order = r |) \<in> PartialOrder;  | 
| 17841 | 910  | 
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]  | 
| 13115 | 911  | 
==> (| pset = A, order = r |) \<in> CompleteLattice"  | 
912  | 
by (simp add: CompleteLatticeI Rdual)  | 
|
913  | 
||
914  | 
theorem (in CLF) Tarski_full:  | 
|
915  | 
"(| pset = P, order = induced P r|) \<in> CompleteLattice"  | 
|
916  | 
apply (rule CompleteLatticeI_simp)  | 
|
917  | 
apply (rule fixf_po, clarify)  | 
|
| 13383 | 918  | 
apply (simp add: P_def A_def r_def)  | 
| 27681 | 919  | 
apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]])  | 
| 28823 | 920  | 
proof - show "CLF cl f" .. qed  | 
| 7112 | 921  | 
|
922  | 
end  |