41959
|
1 |
(* Title: HOL/Hoare/SepLogHeap.thy
|
14074
|
2 |
Author: Tobias Nipkow
|
|
3 |
Copyright 2002 TUM
|
|
4 |
|
|
5 |
Heap abstractions (at the moment only Path and List)
|
|
6 |
for Separation Logic.
|
|
7 |
*)
|
|
8 |
|
18576
|
9 |
theory SepLogHeap
|
|
10 |
imports Main
|
|
11 |
begin
|
18447
|
12 |
|
42174
|
13 |
type_synonym heap = "(nat \<Rightarrow> nat option)"
|
14074
|
14 |
|
16972
|
15 |
text{* @{text "Some"} means allocated, @{text "None"} means
|
|
16 |
free. Address @{text "0"} serves as the null reference. *}
|
14074
|
17 |
|
|
18 |
subsection "Paths in the heap"
|
|
19 |
|
38353
|
20 |
primrec Path :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"
|
|
21 |
where
|
|
22 |
"Path h x [] y = (x = y)"
|
|
23 |
| "Path h x (a#as) y = (x\<noteq>0 \<and> a=x \<and> (\<exists>b. h x = Some b \<and> Path h b as y))"
|
14074
|
24 |
|
|
25 |
lemma [iff]: "Path h 0 xs y = (xs = [] \<and> y = 0)"
|
16972
|
26 |
by (cases xs) simp_all
|
14074
|
27 |
|
|
28 |
lemma [simp]: "x\<noteq>0 \<Longrightarrow> Path h x as z =
|
|
29 |
(as = [] \<and> z = x \<or> (\<exists>y bs. as = x#bs \<and> h x = Some y & Path h y bs z))"
|
16972
|
30 |
by (cases as) auto
|
14074
|
31 |
|
|
32 |
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
|
16972
|
33 |
by (induct as) auto
|
14074
|
34 |
|
|
35 |
lemma Path_upd[simp]:
|
|
36 |
"\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
|
16972
|
37 |
by (induct as) simp_all
|
14074
|
38 |
|
|
39 |
|
|
40 |
subsection "Lists on the heap"
|
|
41 |
|
38353
|
42 |
definition List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"
|
|
43 |
where "List h x as = Path h x as 0"
|
14074
|
44 |
|
|
45 |
lemma [simp]: "List h x [] = (x = 0)"
|
16972
|
46 |
by (simp add: List_def)
|
14074
|
47 |
|
|
48 |
lemma [simp]:
|
|
49 |
"List h x (a#as) = (x\<noteq>0 \<and> a=x \<and> (\<exists>y. h x = Some y \<and> List h y as))"
|
16972
|
50 |
by (simp add: List_def)
|
14074
|
51 |
|
|
52 |
lemma [simp]: "List h 0 as = (as = [])"
|
16972
|
53 |
by (cases as) simp_all
|
14074
|
54 |
|
|
55 |
lemma List_non_null: "a\<noteq>0 \<Longrightarrow>
|
|
56 |
List h a as = (\<exists>b bs. as = a#bs \<and> h a = Some b \<and> List h b bs)"
|
16972
|
57 |
by (cases as) simp_all
|
14074
|
58 |
|
|
59 |
theorem notin_List_update[simp]:
|
|
60 |
"\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
|
16972
|
61 |
by (induct as) simp_all
|
14074
|
62 |
|
|
63 |
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
|
16972
|
64 |
by (induct as) (auto simp add:List_non_null)
|
14074
|
65 |
|
|
66 |
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
|
16972
|
67 |
by (blast intro: List_unique)
|
14074
|
68 |
|
|
69 |
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
|
16972
|
70 |
by (induct as) auto
|
14074
|
71 |
|
|
72 |
lemma List_hd_not_in_tl[simp]: "List h b as \<Longrightarrow> h a = Some b \<Longrightarrow> a \<notin> set as"
|
|
73 |
apply (clarsimp simp add:in_set_conv_decomp)
|
|
74 |
apply(frule List_app[THEN iffD1])
|
|
75 |
apply(fastsimp dest: List_unique)
|
|
76 |
done
|
|
77 |
|
|
78 |
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
|
16972
|
79 |
by (induct as) (auto dest:List_hd_not_in_tl)
|
14074
|
80 |
|
|
81 |
lemma list_in_heap: "\<And>p. List h p ps \<Longrightarrow> set ps \<subseteq> dom h"
|
16972
|
82 |
by (induct ps) auto
|
14074
|
83 |
|
|
84 |
lemma list_ortho_sum1[simp]:
|
|
85 |
"\<And>p. \<lbrakk> List h1 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
|
16972
|
86 |
by (induct ps) (auto simp add:map_add_def split:option.split)
|
14074
|
87 |
|
18447
|
88 |
|
14074
|
89 |
lemma list_ortho_sum2[simp]:
|
|
90 |
"\<And>p. \<lbrakk> List h2 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
|
16972
|
91 |
by (induct ps) (auto simp add:map_add_def split:option.split)
|
14074
|
92 |
|
|
93 |
end
|