src/HOL/Library/Diagonalize.thy
author wenzelm
Wed, 04 May 2011 15:37:39 +0200
changeset 42676 8724f20bf69c
parent 37388 793618618f78
permissions -rw-r--r--
proper case_names for int_cases, int_of_nat_induct; tuned some proofs, eliminating (cases, auto) anti-pattern;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
30326
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     1
(* Author: Florian Haftmann, TU Muenchen *)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     2
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     3
header {* A constructive version of Cantor's first diagonalization argument. *}
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     4
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     5
theory Diagonalize
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     6
imports Main
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     7
begin
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     8
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
     9
subsection {* Summation from @{text "0"} to @{text "n"} *}
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    10
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    11
definition sum :: "nat \<Rightarrow> nat" where
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    12
  "sum n = n * Suc n div 2"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    13
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    14
lemma sum_0:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    15
  "sum 0 = 0"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    16
  unfolding sum_def by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    17
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    18
lemma sum_Suc:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    19
  "sum (Suc n) = Suc n + sum n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    20
  unfolding sum_def by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    21
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    22
lemma sum2:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    23
  "2 * sum n = n * Suc n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    24
proof -
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    25
  have "2 dvd n * Suc n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    26
  proof (cases "2 dvd n")
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    27
    case True then show ?thesis by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    28
  next
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    29
    case False then have "2 dvd Suc n" by arith
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    30
    then show ?thesis by (simp del: mult_Suc_right)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    31
  qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    32
  then have "n * Suc n div 2 * 2 = n * Suc n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    33
    by (rule dvd_div_mult_self [of "2::nat"])
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    34
  then show ?thesis by (simp add: sum_def)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    35
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    36
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    37
lemma sum_strict_mono:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    38
  "strict_mono sum"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    39
proof (rule strict_monoI)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    40
  fix m n :: nat
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    41
  assume "m < n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    42
  then have "m * Suc m < n * Suc n" by (intro mult_strict_mono) simp_all
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    43
  then have "2 * sum m < 2 * sum n" by (simp add: sum2)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    44
  then show "sum m < sum n" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    45
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    46
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    47
lemma sum_not_less_self:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    48
  "n \<le> sum n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    49
proof -
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    50
  have "2 * n \<le> n * Suc n" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    51
  with sum2 have "2 * n \<le> 2 * sum n" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    52
  then show ?thesis by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    53
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    54
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    55
lemma sum_rest_aux:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    56
  assumes "q \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    57
  assumes "sum m \<le> sum n + q"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    58
  shows "m \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    59
proof (rule ccontr)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    60
  assume "\<not> m \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    61
  then have "n < m" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    62
  then have "m \<ge> Suc n" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    63
  then have "m = m - Suc n + Suc n" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    64
  then have "m = Suc (n + (m - Suc n))" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    65
  then obtain r where "m = Suc (n + r)" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    66
  with `sum m \<le> sum n + q` have "sum (Suc (n + r)) \<le> sum n + q" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    67
  then have "sum (n + r) + Suc (n + r) \<le> sum n + q" unfolding sum_Suc by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    68
  with `m = Suc (n + r)` have "sum (n + r) + m \<le> sum n + q" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    69
  have "sum n \<le> sum (n + r)" unfolding strict_mono_less_eq [OF sum_strict_mono] by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    70
  moreover from `q \<le> n` `n < m` have "q < m" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    71
  ultimately have "sum n + q < sum (n + r) + m" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    72
  with `sum (n + r) + m \<le> sum n + q` show False
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    73
    by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    74
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    75
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    76
lemma sum_rest:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    77
  assumes "q \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    78
  shows "sum m \<le> sum n + q \<longleftrightarrow> m \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    79
using assms apply (auto intro: sum_rest_aux)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    80
apply (simp add: strict_mono_less_eq [OF sum_strict_mono, symmetric, of m n])
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    81
done
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    82
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    83
37388
793618618f78 tuned quotes, antiquotations and whitespace
haftmann
parents: 30326
diff changeset
    84
subsection {* Diagonalization: an injective embedding of two @{typ nat}s to one @{typ nat} *}
30326
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    85
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    86
definition diagonalize :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    87
  "diagonalize m n = sum (m + n) + m"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    88
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    89
lemma diagonalize_inject:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    90
  assumes "diagonalize a b = diagonalize c d"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    91
  shows "a = c" and "b = d"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    92
proof -
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    93
  from assms have diageq: "sum (a + b) + a = sum (c + d) + c"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    94
    by (simp add: diagonalize_def)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    95
  have "a + b = c + d \<or> a + b \<ge> Suc (c + d) \<or> c + d \<ge> Suc (a + b)" by arith
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    96
  then have "a = c \<and> b = d"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    97
  proof (elim disjE)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    98
    assume sumeq: "a + b = c + d"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
    99
    then have "a = c" using diageq by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   100
    moreover from sumeq this have "b = d" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   101
    ultimately show ?thesis ..
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   102
  next
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   103
    assume "a + b \<ge> Suc (c + d)"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   104
    with strict_mono_less_eq [OF sum_strict_mono]
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   105
      have "sum (a + b) \<ge> sum (Suc (c + d))" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   106
    with diageq show ?thesis by (simp add: sum_Suc)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   107
  next
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   108
    assume "c + d \<ge> Suc (a + b)"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   109
    with strict_mono_less_eq [OF sum_strict_mono]
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   110
      have "sum (c + d) \<ge> sum (Suc (a + b))" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   111
    with diageq show ?thesis by (simp add: sum_Suc)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   112
  qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   113
  then show "a = c" and "b = d" by auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   114
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   115
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   116
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   117
subsection {* The reverse diagonalization: reconstruction a pair of @{typ nat}s from one @{typ nat} *}
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   118
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   119
text {* The inverse of the @{const sum} function *}
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   120
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   121
definition tupelize :: "nat \<Rightarrow> nat \<times> nat" where
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   122
  "tupelize q = (let d = Max {d. sum d \<le> q}; m = q - sum d
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   123
     in (m, d - m))"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   124
  
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   125
lemma tupelize_diagonalize:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   126
  "tupelize (diagonalize m n) = (m, n)"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   127
proof -
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   128
  from sum_rest
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   129
    have "\<And>r. sum r \<le> sum (m + n) + m \<longleftrightarrow> r \<le> m + n" by simp
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   130
  then have "Max {d. sum d \<le> (sum (m + n) + m)} = m + n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   131
    by (auto intro: Max_eqI)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   132
  then show ?thesis
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   133
    by (simp add: tupelize_def diagonalize_def)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   134
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   135
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   136
lemma snd_tupelize:
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   137
  "snd (tupelize n) \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   138
proof -
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   139
  have "sum 0 \<le> n" by (simp add: sum_0)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   140
  then have "Max {m \<Colon> nat. sum m \<le> n} \<le> Max {m \<Colon> nat. m \<le> n}"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   141
    by (intro Max_mono [of "{m. sum m \<le> n}" "{m. m \<le> n}"])
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   142
      (auto intro: Max_mono order_trans sum_not_less_self)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   143
  also have "Max {m \<Colon> nat. m \<le> n} \<le> n"
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   144
    by (subst Max_le_iff) auto
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   145
  finally have "Max {m. sum m \<le> n} \<le> n" .
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   146
  then show ?thesis by (simp add: tupelize_def Let_def)
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   147
qed
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   148
a01b2de0e3e1 constructive version of Cantor's first diagonalization argument
haftmann
parents:
diff changeset
   149
end