8745
|
1 |
(*<*)
|
16523
|
2 |
theory natsum imports Main begin
|
8745
|
3 |
(*>*)
|
|
4 |
text{*\noindent
|
9792
|
5 |
In particular, there are @{text"case"}-expressions, for example
|
9541
|
6 |
@{term[display]"case n of 0 => 0 | Suc m => m"}
|
8745
|
7 |
primitive recursion, for example
|
|
8 |
*}
|
|
9 |
|
27015
|
10 |
primrec sum :: "nat \<Rightarrow> nat" where
|
|
11 |
"sum 0 = 0" |
|
|
12 |
"sum (Suc n) = Suc n + sum n"
|
8745
|
13 |
|
|
14 |
text{*\noindent
|
|
15 |
and induction, for example
|
|
16 |
*}
|
|
17 |
|
16523
|
18 |
lemma "sum n + sum n = n*(Suc n)"
|
|
19 |
apply(induct_tac n)
|
|
20 |
apply(auto)
|
10171
|
21 |
done
|
8745
|
22 |
|
10538
|
23 |
text{*\newcommand{\mystar}{*%
|
|
24 |
}
|
11456
|
25 |
\index{arithmetic operations!for \protect\isa{nat}}%
|
15364
|
26 |
The arithmetic operations \isadxboldpos{+}{$HOL2arithfun},
|
|
27 |
\isadxboldpos{-}{$HOL2arithfun}, \isadxboldpos{\mystar}{$HOL2arithfun},
|
11428
|
28 |
\sdx{div}, \sdx{mod}, \cdx{min} and
|
|
29 |
\cdx{max} are predefined, as are the relations
|
15364
|
30 |
\isadxboldpos{\isasymle}{$HOL2arithrel} and
|
|
31 |
\isadxboldpos{<}{$HOL2arithrel}. As usual, @{prop"m-n = (0::nat)"} if
|
10654
|
32 |
@{prop"m<n"}. There is even a least number operation
|
12327
|
33 |
\sdx{LEAST}\@. For example, @{prop"(LEAST n. 0 < n) = Suc 0"}.
|
11456
|
34 |
\begin{warn}\index{overloading}
|
12327
|
35 |
The constants \cdx{0} and \cdx{1} and the operations
|
15364
|
36 |
\isadxboldpos{+}{$HOL2arithfun}, \isadxboldpos{-}{$HOL2arithfun},
|
|
37 |
\isadxboldpos{\mystar}{$HOL2arithfun}, \cdx{min},
|
|
38 |
\cdx{max}, \isadxboldpos{\isasymle}{$HOL2arithrel} and
|
|
39 |
\isadxboldpos{<}{$HOL2arithrel} are overloaded: they are available
|
12329
|
40 |
not just for natural numbers but for other types as well.
|
12327
|
41 |
For example, given the goal @{text"x + 0 = x"}, there is nothing to indicate
|
|
42 |
that you are talking about natural numbers. Hence Isabelle can only infer
|
|
43 |
that @{term x} is of some arbitrary type where @{text 0} and @{text"+"} are
|
|
44 |
declared. As a consequence, you will be unable to prove the
|
|
45 |
goal. To alert you to such pitfalls, Isabelle flags numerals without a
|
|
46 |
fixed type in its output: @{prop"x+0 = x"}. (In the absence of a numeral,
|
16523
|
47 |
it may take you some time to realize what has happened if \pgmenu{Show
|
|
48 |
Types} is not set). In this particular example, you need to include
|
12327
|
49 |
an explicit type constraint, for example @{text"x+0 = (x::nat)"}. If there
|
|
50 |
is enough contextual information this may not be necessary: @{prop"Suc x =
|
|
51 |
x"} automatically implies @{text"x::nat"} because @{term Suc} is not
|
|
52 |
overloaded.
|
10978
|
53 |
|
12327
|
54 |
For details on overloading see \S\ref{sec:overloading}.
|
|
55 |
Table~\ref{tab:overloading} in the appendix shows the most important
|
|
56 |
overloaded operations.
|
|
57 |
\end{warn}
|
|
58 |
\begin{warn}
|
15364
|
59 |
The symbols \isadxboldpos{>}{$HOL2arithrel} and
|
|
60 |
\isadxboldpos{\isasymge}{$HOL2arithrel} are merely syntax: @{text"x > y"}
|
|
61 |
stands for @{prop"y < x"} and similary for @{text"\<ge>"} and
|
|
62 |
@{text"\<le>"}.
|
|
63 |
\end{warn}
|
|
64 |
\begin{warn}
|
12329
|
65 |
Constant @{text"1::nat"} is defined to equal @{term"Suc 0"}. This definition
|
12327
|
66 |
(see \S\ref{sec:ConstDefinitions}) is unfolded automatically by some
|
|
67 |
tactics (like @{text auto}, @{text simp} and @{text arith}) but not by
|
|
68 |
others (especially the single step tactics in Chapter~\ref{chap:rules}).
|
|
69 |
If you need the full set of numerals, see~\S\ref{sec:numerals}.
|
|
70 |
\emph{Novices are advised to stick to @{term"0::nat"} and @{term Suc}.}
|
10538
|
71 |
\end{warn}
|
|
72 |
|
11456
|
73 |
Both @{text auto} and @{text simp}
|
|
74 |
(a method introduced below, \S\ref{sec:Simplification}) prove
|
|
75 |
simple arithmetic goals automatically:
|
10538
|
76 |
*}
|
|
77 |
|
11711
|
78 |
lemma "\<lbrakk> \<not> m < n; m < n + (1::nat) \<rbrakk> \<Longrightarrow> m = n"
|
10538
|
79 |
(*<*)by(auto)(*>*)
|
|
80 |
|
|
81 |
text{*\noindent
|
11458
|
82 |
For efficiency's sake, this built-in prover ignores quantified formulae,
|
16768
|
83 |
many logical connectives, and all arithmetic operations apart from addition.
|
13181
|
84 |
In consequence, @{text auto} and @{text simp} cannot prove this slightly more complex goal:
|
11458
|
85 |
*}
|
10538
|
86 |
|
13181
|
87 |
lemma "m \<noteq> (n::nat) \<Longrightarrow> m < n \<or> n < m"
|
11458
|
88 |
(*<*)by(arith)(*>*)
|
|
89 |
|
13996
|
90 |
text{*\noindent The method \methdx{arith} is more general. It attempts to
|
|
91 |
prove the first subgoal provided it is a \textbf{linear arithmetic} formula.
|
|
92 |
Such formulas may involve the usual logical connectives (@{text"\<not>"},
|
|
93 |
@{text"\<and>"}, @{text"\<or>"}, @{text"\<longrightarrow>"}, @{text"="},
|
|
94 |
@{text"\<forall>"}, @{text"\<exists>"}), the relations @{text"="},
|
|
95 |
@{text"\<le>"} and @{text"<"}, and the operations @{text"+"}, @{text"-"},
|
|
96 |
@{term min} and @{term max}. For example, *}
|
10538
|
97 |
|
16523
|
98 |
lemma "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))"
|
10538
|
99 |
apply(arith)
|
|
100 |
(*<*)done(*>*)
|
|
101 |
|
|
102 |
text{*\noindent
|
|
103 |
succeeds because @{term"k*k"} can be treated as atomic. In contrast,
|
|
104 |
*}
|
|
105 |
|
27168
|
106 |
lemma "n*n = n+1 \<Longrightarrow> n=0"
|
10538
|
107 |
(*<*)oops(*>*)
|
|
108 |
|
|
109 |
text{*\noindent
|
27168
|
110 |
is not proved by @{text arith} because the proof relies
|
13996
|
111 |
on properties of multiplication. Only multiplication by numerals (which is
|
27168
|
112 |
the same as iterated addition) is taken into account.
|
10538
|
113 |
|
13996
|
114 |
\begin{warn} The running time of @{text arith} is exponential in the number
|
|
115 |
of occurrences of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and
|
11428
|
116 |
\cdx{max} because they are first eliminated by case distinctions.
|
10538
|
117 |
|
13996
|
118 |
If @{text k} is a numeral, \sdx{div}~@{text k}, \sdx{mod}~@{text k} and
|
|
119 |
@{text k}~\sdx{dvd} are also supported, where the former two are eliminated
|
|
120 |
by case distinctions, again blowing up the running time.
|
|
121 |
|
16768
|
122 |
If the formula involves quantifiers, @{text arith} may take
|
13996
|
123 |
super-exponential time and space.
|
10538
|
124 |
\end{warn}
|
|
125 |
*}
|
|
126 |
|
8745
|
127 |
(*<*)
|
|
128 |
end
|
|
129 |
(*>*)
|