| 
298
 | 
     1  | 
(*  Title: 	HOLCF/porder0.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Franz Regensburger
  | 
| 
 | 
     4  | 
    Copyright   1993 Technische Universitaet Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Definition of class porder (partial order)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
The prototype theory for this class is void.thy 
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
*)
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Porder0 = Void +
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
(* Introduction of new class. The witness is type void. *)
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
classes po < term
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
(* default type is still term ! *)
  | 
| 
 | 
    19  | 
(* void is the prototype in po *)
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
arities void :: po
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
consts	"<<"	::	"['a,'a::po] => bool"	(infixl 55)
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
rules
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
(* class axioms: justification is theory Void *)
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
refl_less	"x << x"	
  | 
| 
 | 
    30  | 
				(* witness refl_less_void    *)
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
antisym_less	"[|x<<y ; y<<x |] ==> x = y"	
  | 
| 
 | 
    33  | 
				(* witness antisym_less_void *)
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
trans_less	"[|x<<y ; y<<z |] ==> x<<z"
  | 
| 
 | 
    36  | 
				(* witness trans_less_void   *)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
(* instance of << for the prototype void *)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
inst_void_po	"(op <<)::[void,void]=>bool = less_void"
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
end 
  |