author | paulson <lp15@cam.ac.uk> |
Thu, 03 Jun 2021 10:47:20 +0100 | |
changeset 73795 | 8893e0ed263a |
parent 71398 | e0237f2eb49d |
child 74543 | ee039c11fb6f |
permissions | -rw-r--r-- |
66276
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
1 |
(* |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
2 |
File: HOL/Computational_Algebra/Nth_Powers.thy |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
3 |
Author: Manuel Eberl <eberlm@in.tum.de> |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
4 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
5 |
n-th powers in general and n-th roots of natural numbers |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
6 |
*) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
7 |
section \<open>$n$-th powers and roots of naturals\<close> |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
8 |
theory Nth_Powers |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
9 |
imports Primes |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
10 |
begin |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
11 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
12 |
subsection \<open>The set of $n$-th powers\<close> |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
13 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
14 |
definition is_nth_power :: "nat \<Rightarrow> 'a :: monoid_mult \<Rightarrow> bool" where |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
15 |
"is_nth_power n x \<longleftrightarrow> (\<exists>y. x = y ^ n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
16 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
17 |
lemma is_nth_power_nth_power [simp, intro]: "is_nth_power n (x ^ n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
18 |
by (auto simp add: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
19 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
20 |
lemma is_nth_powerI [intro?]: "x = y ^ n \<Longrightarrow> is_nth_power n x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
21 |
by (auto simp: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
22 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
23 |
lemma is_nth_powerE: "is_nth_power n x \<Longrightarrow> (\<And>y. x = y ^ n \<Longrightarrow> P) \<Longrightarrow> P" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
24 |
by (auto simp: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
25 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
26 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
27 |
abbreviation is_square where "is_square \<equiv> is_nth_power 2" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
28 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
29 |
lemma is_zeroth_power [simp]: "is_nth_power 0 x \<longleftrightarrow> x = 1" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
30 |
by (simp add: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
31 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
32 |
lemma is_first_power [simp]: "is_nth_power 1 x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
33 |
by (simp add: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
34 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
35 |
lemma is_first_power' [simp]: "is_nth_power (Suc 0) x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
36 |
by (simp add: is_nth_power_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
37 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
38 |
lemma is_nth_power_0 [simp]: "n > 0 \<Longrightarrow> is_nth_power n (0 :: 'a :: semiring_1)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
39 |
by (auto simp: is_nth_power_def power_0_left intro!: exI[of _ 0]) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
40 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
41 |
lemma is_nth_power_0_iff [simp]: "is_nth_power n (0 :: 'a :: semiring_1) \<longleftrightarrow> n > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
42 |
by (cases n) auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
43 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
44 |
lemma is_nth_power_1 [simp]: "is_nth_power n 1" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
45 |
by (auto simp: is_nth_power_def intro!: exI[of _ 1]) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
46 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
47 |
lemma is_nth_power_Suc_0 [simp]: "is_nth_power n (Suc 0)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
48 |
by (simp add: One_nat_def [symmetric] del: One_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
49 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
50 |
lemma is_nth_power_conv_multiplicity: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
67399
diff
changeset
|
51 |
fixes x :: "'a :: {factorial_semiring, normalization_semidom_multiplicative}" |
66276
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
52 |
assumes "n > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
53 |
shows "is_nth_power n (normalize x) \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> n dvd multiplicity p x)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
54 |
proof (cases "x = 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
55 |
case False |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
56 |
show ?thesis |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
57 |
proof (safe intro!: is_nth_powerI elim!: is_nth_powerE) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
58 |
fix y p :: 'a assume *: "normalize x = y ^ n" "prime p" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
59 |
with assms and False have [simp]: "y \<noteq> 0" by (auto simp: power_0_left) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
60 |
have "multiplicity p x = multiplicity p (y ^ n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
61 |
by (subst *(1) [symmetric]) simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
62 |
with False and * and assms show "n dvd multiplicity p x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
63 |
by (auto simp: prime_elem_multiplicity_power_distrib) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
64 |
next |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
65 |
assume *: "\<forall>p. prime p \<longrightarrow> n dvd multiplicity p x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
66 |
have "multiplicity p ((\<Prod>p\<in>prime_factors x. p ^ (multiplicity p x div n)) ^ n) = |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
67 |
multiplicity p x" if "prime p" for p |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
68 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
69 |
from that and * have "n dvd multiplicity p x" by blast |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
70 |
have "multiplicity p x = 0" if "p \<notin> prime_factors x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
71 |
using that and \<open>prime p\<close> by (simp add: prime_factors_multiplicity) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
72 |
with that and * and assms show ?thesis unfolding prod_power_distrib power_mult [symmetric] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
73 |
by (subst multiplicity_prod_prime_powers) (auto simp: in_prime_factors_imp_prime elim: dvdE) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
74 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
75 |
with assms False |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
76 |
have "normalize x = normalize ((\<Prod>p\<in>prime_factors x. p ^ (multiplicity p x div n)) ^ n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
77 |
by (intro multiplicity_eq_imp_eq) (auto simp: multiplicity_prod_prime_powers) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
78 |
thus "normalize x = normalize (\<Prod>p\<in>prime_factors x. p ^ (multiplicity p x div n)) ^ n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
79 |
by (simp add: normalize_power) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
80 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
81 |
qed (insert assms, auto) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
82 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
83 |
lemma is_nth_power_conv_multiplicity_nat: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
84 |
assumes "n > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
85 |
shows "is_nth_power n (x :: nat) \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> n dvd multiplicity p x)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
86 |
using is_nth_power_conv_multiplicity[OF assms, of x] by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
87 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
88 |
lemma is_nth_power_mult: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
89 |
assumes "is_nth_power n a" "is_nth_power n b" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
90 |
shows "is_nth_power n (a * b :: 'a :: comm_monoid_mult)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
91 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
92 |
from assms obtain a' b' where "a = a' ^ n" "b = b' ^ n" by (auto elim!: is_nth_powerE) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
93 |
hence "a * b = (a' * b') ^ n" by (simp add: power_mult_distrib) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
94 |
thus ?thesis by (rule is_nth_powerI) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
95 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
96 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
97 |
lemma is_nth_power_mult_coprime_natD: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
98 |
fixes a b :: nat |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
99 |
assumes "coprime a b" "is_nth_power n (a * b)" "a > 0" "b > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
100 |
shows "is_nth_power n a" "is_nth_power n b" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
101 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
102 |
have A: "is_nth_power n a" if "coprime a b" "is_nth_power n (a * b)" "a \<noteq> 0" "b \<noteq> 0" "n > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
103 |
for a b :: nat unfolding is_nth_power_conv_multiplicity_nat[OF \<open>n > 0\<close>] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
104 |
proof safe |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
105 |
fix p :: nat assume p: "prime p" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
106 |
from \<open>coprime a b\<close> have "\<not>(p dvd a \<and> p dvd b)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
107 |
using coprime_common_divisor_nat[of a b p] p by auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
108 |
moreover from that and p |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
109 |
have "n dvd multiplicity p a + multiplicity p b" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
110 |
by (auto simp: is_nth_power_conv_multiplicity_nat prime_elem_multiplicity_mult_distrib) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
111 |
ultimately show "n dvd multiplicity p a" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
112 |
by (auto simp: not_dvd_imp_multiplicity_0) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
113 |
qed |
67051 | 114 |
from A [of a b] assms show "is_nth_power n a" |
115 |
by (cases "n = 0") simp_all |
|
116 |
from A [of b a] assms show "is_nth_power n b" |
|
117 |
by (cases "n = 0") (simp_all add: ac_simps) |
|
66276
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
118 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
119 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
120 |
lemma is_nth_power_mult_coprime_nat_iff: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
121 |
fixes a b :: nat |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
122 |
assumes "coprime a b" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
123 |
shows "is_nth_power n (a * b) \<longleftrightarrow> is_nth_power n a \<and>is_nth_power n b" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
124 |
using assms |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
125 |
by (cases "a = 0"; cases "b = 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
126 |
(auto intro: is_nth_power_mult dest: is_nth_power_mult_coprime_natD[of a b n] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
127 |
simp del: One_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
128 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
129 |
lemma is_nth_power_prime_power_nat_iff: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
130 |
fixes p :: nat assumes "prime p" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
131 |
shows "is_nth_power n (p ^ k) \<longleftrightarrow> n dvd k" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
132 |
using assms |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
133 |
by (cases "n > 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
134 |
(auto simp: is_nth_power_conv_multiplicity_nat prime_elem_multiplicity_power_distrib) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
135 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
136 |
lemma is_nth_power_nth_power': |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
137 |
assumes "n dvd n'" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
138 |
shows "is_nth_power n (m ^ n')" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
139 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
140 |
from assms have "n' = n' div n * n" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
141 |
also have "m ^ \<dots> = (m ^ (n' div n)) ^ n" by (simp add: power_mult) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
142 |
also have "is_nth_power n \<dots>" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
143 |
finally show ?thesis . |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
144 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
145 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
146 |
definition is_nth_power_nat :: "nat \<Rightarrow> nat \<Rightarrow> bool" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
147 |
where [code_abbrev]: "is_nth_power_nat = is_nth_power" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
148 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
149 |
lemma is_nth_power_nat_code [code]: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
150 |
"is_nth_power_nat n m = |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
151 |
(if n = 0 then m = 1 |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
152 |
else if m = 0 then n > 0 |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
153 |
else if n = 1 then True |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
154 |
else (\<exists>k\<in>{1..m}. k ^ n = m))" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
155 |
by (auto simp: is_nth_power_nat_def is_nth_power_def power_eq_iff_eq_base self_le_power) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
156 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
157 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
158 |
(* TODO: Harmonise with Discrete.sqrt *) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
159 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
160 |
subsection \<open>The $n$-root of a natural number\<close> |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
161 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
162 |
definition nth_root_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
163 |
"nth_root_nat k n = (if k = 0 then 0 else Max {m. m ^ k \<le> n})" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
164 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
165 |
lemma zeroth_root_nat [simp]: "nth_root_nat 0 n = 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
166 |
by (simp add: nth_root_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
167 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
168 |
lemma nth_root_nat_aux1: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
169 |
assumes "k > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
170 |
shows "{m::nat. m ^ k \<le> n} \<subseteq> {..n}" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
171 |
proof safe |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
172 |
fix m assume "m ^ k \<le> n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
173 |
show "m \<le> n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
174 |
proof (cases "m = 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
175 |
case False |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
176 |
with assms have "m ^ 1 \<le> m ^ k" by (intro power_increasing) simp_all |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
177 |
also note \<open>m ^ k \<le> n\<close> |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
178 |
finally show ?thesis by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
179 |
qed simp_all |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
180 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
181 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
182 |
lemma nth_root_nat_aux2: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
183 |
assumes "k > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
184 |
shows "finite {m::nat. m ^ k \<le> n}" "{m::nat. m ^ k \<le> n} \<noteq> {}" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
185 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
186 |
from assms have "{m. m ^ k \<le> n} \<subseteq> {..n}" by (rule nth_root_nat_aux1) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
187 |
moreover have "finite {..n}" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
188 |
ultimately show "finite {m::nat. m ^ k \<le> n}" by (rule finite_subset) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
189 |
next |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
190 |
from assms show "{m::nat. m ^ k \<le> n} \<noteq> {}" by (auto intro!: exI[of _ 0] simp: power_0_left) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
191 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
192 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
193 |
lemma |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
194 |
assumes "k > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
195 |
shows nth_root_nat_power_le: "nth_root_nat k n ^ k \<le> n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
196 |
and nth_root_nat_ge: "x ^ k \<le> n \<Longrightarrow> x \<le> nth_root_nat k n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
197 |
using Max_in[OF nth_root_nat_aux2[OF assms], of n] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
198 |
Max_ge[OF nth_root_nat_aux2(1)[OF assms], of x n] assms |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
199 |
by (auto simp: nth_root_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
200 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
201 |
lemma nth_root_nat_less: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
202 |
assumes "k > 0" "x ^ k > n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
203 |
shows "nth_root_nat k n < x" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
204 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
205 |
from \<open>k > 0\<close> have "nth_root_nat k n ^ k \<le> n" by (rule nth_root_nat_power_le) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
206 |
also have "n < x ^ k" by fact |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
207 |
finally show ?thesis by (rule power_less_imp_less_base) simp_all |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
208 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
209 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
210 |
lemma nth_root_nat_unique: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
211 |
assumes "m ^ k \<le> n" "(m + 1) ^ k > n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
212 |
shows "nth_root_nat k n = m" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
213 |
proof (cases "k > 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
214 |
case True |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
215 |
from nth_root_nat_less[OF \<open>k > 0\<close> assms(2)] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
216 |
have "nth_root_nat k n \<le> m" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
217 |
moreover from \<open>k > 0\<close> and assms(1) have "nth_root_nat k n \<ge> m" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
218 |
by (intro nth_root_nat_ge) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
219 |
ultimately show ?thesis by (rule antisym) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
220 |
qed (insert assms, auto) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
221 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
222 |
lemma nth_root_nat_0 [simp]: "nth_root_nat k 0 = 0" by (simp add: nth_root_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
223 |
lemma nth_root_nat_1 [simp]: "k > 0 \<Longrightarrow> nth_root_nat k 1 = 1" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
224 |
by (rule nth_root_nat_unique) (auto simp del: One_nat_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
225 |
lemma nth_root_nat_Suc_0 [simp]: "k > 0 \<Longrightarrow> nth_root_nat k (Suc 0) = Suc 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
226 |
using nth_root_nat_1 by (simp del: nth_root_nat_1) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
227 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
228 |
lemma first_root_nat [simp]: "nth_root_nat 1 n = n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
229 |
by (intro nth_root_nat_unique) auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
230 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
231 |
lemma first_root_nat' [simp]: "nth_root_nat (Suc 0) n = n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
232 |
by (intro nth_root_nat_unique) auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
233 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
234 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
235 |
lemma nth_root_nat_code_naive': |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
236 |
"nth_root_nat k n = (if k = 0 then 0 else Max (Set.filter (\<lambda>m. m ^ k \<le> n) {..n}))" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
237 |
proof (cases "k > 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
238 |
case True |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
239 |
hence "{m. m ^ k \<le> n} \<subseteq> {..n}" by (rule nth_root_nat_aux1) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
240 |
hence "Set.filter (\<lambda>m. m ^ k \<le> n) {..n} = {m. m ^ k \<le> n}" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
241 |
by (auto simp: Set.filter_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
242 |
with True show ?thesis by (simp add: nth_root_nat_def Set.filter_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
243 |
qed simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
244 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
245 |
function nth_root_nat_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" where |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
246 |
"nth_root_nat_aux m k acc n = |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
247 |
(let acc' = (k + 1) ^ m |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
248 |
in if k \<ge> n \<or> acc' > n then k else nth_root_nat_aux m (k+1) acc' n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
249 |
by auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
250 |
termination by (relation "measure (\<lambda>(_,k,_,n). n - k)", goal_cases) auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
251 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
252 |
lemma nth_root_nat_aux_le: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
253 |
assumes "k ^ m \<le> n" "m > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
254 |
shows "nth_root_nat_aux m k (k ^ m) n ^ m \<le> n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
255 |
using assms |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
256 |
by (induction m k "k ^ m" n rule: nth_root_nat_aux.induct) (auto simp: Let_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
257 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
258 |
lemma nth_root_nat_aux_gt: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
259 |
assumes "m > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
260 |
shows "(nth_root_nat_aux m k (k ^ m) n + 1) ^ m > n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
261 |
using assms |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
262 |
proof (induction m k "k ^ m" n rule: nth_root_nat_aux.induct) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
263 |
case (1 m k n) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
264 |
have "n < Suc k ^ m" if "n \<le> k" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
265 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
266 |
note that |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
267 |
also have "k < Suc k ^ 1" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
268 |
also from \<open>m > 0\<close> have "\<dots> \<le> Suc k ^ m" by (intro power_increasing) simp_all |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
269 |
finally show ?thesis . |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
270 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
271 |
with 1 show ?case by (auto simp: Let_def) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
272 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
273 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
274 |
lemma nth_root_nat_aux_correct: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
275 |
assumes "k ^ m \<le> n" "m > 0" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
276 |
shows "nth_root_nat_aux m k (k ^ m) n = nth_root_nat m n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
277 |
by (rule sym, intro nth_root_nat_unique nth_root_nat_aux_le nth_root_nat_aux_gt assms) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
278 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
279 |
lemma nth_root_nat_naive_code [code]: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
280 |
"nth_root_nat m n = (if m = 0 \<or> n = 0 then 0 else if m = 1 \<or> n = 1 then n else |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
281 |
nth_root_nat_aux m 1 1 n)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
282 |
using nth_root_nat_aux_correct[of 1 m n] by (auto simp: ) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
283 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
284 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
285 |
lemma nth_root_nat_nth_power [simp]: "k > 0 \<Longrightarrow> nth_root_nat k (n ^ k) = n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
286 |
by (intro nth_root_nat_unique order.refl power_strict_mono) simp_all |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
287 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
288 |
lemma nth_root_nat_nth_power': |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
289 |
assumes "k > 0" "k dvd m" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
290 |
shows "nth_root_nat k (n ^ m) = n ^ (m div k)" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
291 |
proof - |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
292 |
from assms have "m = (m div k) * k" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
293 |
also have "n ^ \<dots> = (n ^ (m div k)) ^ k" by (simp add: power_mult) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
294 |
also from assms have "nth_root_nat k \<dots> = n ^ (m div k)" by simp |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
295 |
finally show ?thesis . |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
296 |
qed |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
297 |
|
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
298 |
lemma nth_root_nat_mono: |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
299 |
assumes "m \<le> n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
300 |
shows "nth_root_nat k m \<le> nth_root_nat k n" |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
301 |
proof (cases "k = 0") |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
302 |
case False |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
303 |
with assms show ?thesis unfolding nth_root_nat_def |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
304 |
using nth_root_nat_aux2[of k m] nth_root_nat_aux2[of k n] |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
305 |
by (auto intro!: Max_mono) |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
306 |
qed auto |
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff
changeset
|
307 |
|
67399 | 308 |
end |