| 37665 |      1 | (*  Title:      HOL/Library/Indicator_Function.thy
 | 
|  |      2 |     Author:     Johannes Hoelzl (TU Muenchen)
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header {* Indicator Function *}
 | 
|  |      6 | 
 | 
|  |      7 | theory Indicator_Function
 | 
|  |      8 | imports Main
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | definition "indicator S x = (if x \<in> S then 1 else 0)"
 | 
|  |     12 | 
 | 
|  |     13 | lemma indicator_simps[simp]:
 | 
|  |     14 |   "x \<in> S \<Longrightarrow> indicator S x = 1"
 | 
|  |     15 |   "x \<notin> S \<Longrightarrow> indicator S x = 0"
 | 
|  |     16 |   unfolding indicator_def by auto
 | 
|  |     17 | 
 | 
|  |     18 | lemma
 | 
|  |     19 |   shows indicator_pos_le[intro, simp]: "(0::'a::linordered_semidom) \<le> indicator S x"
 | 
|  |     20 |   and indicator_le_1[intro, simp]: "indicator S x \<le> (1::'a::linordered_semidom)"
 | 
|  |     21 |   and indicator_abs_le_1: "\<bar>indicator S x\<bar> \<le> (1::'a::linordered_idom)"
 | 
|  |     22 |   unfolding indicator_def by auto
 | 
|  |     23 | 
 | 
|  |     24 | lemma split_indicator:
 | 
|  |     25 |   "P (indicator S x) \<longleftrightarrow> ((x \<in> S \<longrightarrow> P 1) \<and> (x \<notin> S \<longrightarrow> P 0))"
 | 
|  |     26 |   unfolding indicator_def by auto
 | 
|  |     27 | 
 | 
|  |     28 | lemma
 | 
|  |     29 |   shows indicator_inter_arith: "indicator (A \<inter> B) x = indicator A x * (indicator B x::'a::semiring_1)"
 | 
|  |     30 |   and indicator_union_arith: "indicator (A \<union> B) x =  indicator A x + indicator B x - indicator A x * (indicator B x::'a::ring_1)"
 | 
|  |     31 |   and indicator_inter_min: "indicator (A \<inter> B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)"
 | 
|  |     32 |   and indicator_union_max: "indicator (A \<union> B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)"
 | 
|  |     33 |   and indicator_compl: "indicator (- A) x = 1 - (indicator A x::'a::ring_1)"
 | 
|  |     34 |   and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x::'a::ring_1)"
 | 
|  |     35 |   unfolding indicator_def by (auto simp: min_def max_def)
 | 
|  |     36 | 
 | 
|  |     37 | lemma
 | 
|  |     38 |   shows indicator_times: "indicator (A \<times> B) x = indicator A (fst x) * (indicator B (snd x)::'a::semiring_1)"
 | 
|  |     39 |   unfolding indicator_def by (cases x) auto
 | 
|  |     40 | 
 | 
|  |     41 | lemma
 | 
|  |     42 |   shows indicator_sum: "indicator (A <+> B) x = (case x of Inl x \<Rightarrow> indicator A x | Inr x \<Rightarrow> indicator B x)"
 | 
|  |     43 |   unfolding indicator_def by (cases x) auto
 | 
|  |     44 | 
 | 
|  |     45 | lemma
 | 
|  |     46 |   fixes f :: "'a \<Rightarrow> 'b::semiring_1" assumes "finite A"
 | 
|  |     47 |   shows setsum_mult_indicator[simp]: "(\<Sum>x \<in> A. f x * indicator B x) = (\<Sum>x \<in> A \<inter> B. f x)"
 | 
|  |     48 |   and setsum_indicator_mult[simp]: "(\<Sum>x \<in> A. indicator B x * f x) = (\<Sum>x \<in> A \<inter> B. f x)"
 | 
|  |     49 |   unfolding indicator_def
 | 
|  |     50 |   using assms by (auto intro!: setsum_mono_zero_cong_right split: split_if_asm)
 | 
|  |     51 | 
 | 
|  |     52 | lemma setsum_indicator_eq_card:
 | 
|  |     53 |   assumes "finite A"
 | 
|  |     54 |   shows "(SUM x : A. indicator B x) = card (A Int B)"
 | 
|  |     55 |   using setsum_mult_indicator[OF assms, of "%x. 1::nat"]
 | 
|  |     56 |   unfolding card_eq_setsum by simp
 | 
|  |     57 | 
 | 
|  |     58 | end |