| 
26408
 | 
     1  | 
(*  Title:      FOLP/ex/Quantifiers_Cla.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
First-Order Logic: quantifier examples (intuitionistic and classical)
  | 
| 
 | 
     7  | 
Needs declarations of the theory "thy" and the tactic "tac"
  | 
| 
 | 
     8  | 
*)
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
theory Quantifiers_Cla
  | 
| 
 | 
    11  | 
imports FOLP
  | 
| 
 | 
    12  | 
begin
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma "?p : (ALL x y. P(x,y))  -->  (ALL y x. P(x,y))"
  | 
| 
 | 
    15  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma "?p : (EX x y. P(x,y)) --> (EX y x. P(x,y))"
  | 
| 
 | 
    18  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
(*Converse is false*)
  | 
| 
 | 
    22  | 
lemma "?p : (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x) | Q(x))"
  | 
| 
 | 
    23  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma "?p : (ALL x. P-->Q(x))  <->  (P--> (ALL x. Q(x)))"
  | 
| 
 | 
    26  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
lemma "?p : (ALL x. P(x)-->Q)  <->  ((EX x. P(x)) --> Q)"
  | 
| 
 | 
    30  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
text "Some harder ones"
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma "?p : (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
  | 
| 
 | 
    36  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
(*Converse is false*)
  | 
| 
 | 
    39  | 
lemma "?p : (EX x. P(x)&Q(x)) --> (EX x. P(x))  &  (EX x. Q(x))"
  | 
| 
 | 
    40  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
text "Basic test of quantifier reasoning"
  | 
| 
 | 
    44  | 
(*TRUE*)
  | 
| 
 | 
    45  | 
lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
  | 
| 
 | 
    46  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
  | 
| 
 | 
    49  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
text "The following should fail, as they are false!"
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma "?p : (ALL x. EX y. Q(x,y))  -->  (EX y. ALL x. Q(x,y))"
  | 
| 
 | 
    55  | 
  apply (tactic {* Cla.fast_tac FOLP_cs 1 *})?
 | 
| 
 | 
    56  | 
  oops
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma "?p : (EX x. Q(x))  -->  (ALL x. Q(x))"
  | 
| 
 | 
    59  | 
  apply (tactic {* Cla.fast_tac FOLP_cs 1 *})?
 | 
| 
 | 
    60  | 
  oops
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma "?p : P(?a) --> (ALL x. P(x))"
  | 
| 
 | 
    63  | 
  apply (tactic {* Cla.fast_tac FOLP_cs 1 *})?
 | 
| 
 | 
    64  | 
  oops
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma "?p : (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
  | 
| 
 | 
    67  | 
  apply (tactic {* Cla.fast_tac FOLP_cs 1 *})?
 | 
| 
 | 
    68  | 
  oops
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
text "Back to things that are provable..."
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma "?p : (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
  | 
| 
 | 
    74  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
(*An example of why exI should be delayed as long as possible*)
  | 
| 
 | 
    78  | 
lemma "?p : (P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
  | 
| 
 | 
    79  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma "?p : (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
  | 
| 
 | 
    82  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
  | 
| 
 | 
    85  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
text "Some slow ones"
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
(*Principia Mathematica *11.53  *)
  | 
| 
 | 
    91  | 
lemma "?p : (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
  | 
| 
 | 
    92  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
(*Principia Mathematica *11.55  *)
  | 
| 
 | 
    95  | 
lemma "?p : (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
  | 
| 
 | 
    96  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
(*Principia Mathematica *11.61  *)
  | 
| 
 | 
    99  | 
lemma "?p : (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
  | 
| 
 | 
   100  | 
  by (tactic {* Cla.fast_tac FOLP_cs 1 *})
 | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
end
  |