1632
|
1 |
(* Title: HOL/Integ/Bin.thy
|
|
2 |
Authors: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
David Spelt, University of Twente
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
Copyright 1996 University of Twente
|
|
6 |
|
|
7 |
Arithmetic on binary integers.
|
|
8 |
|
|
9 |
The sign Plus stands for an infinite string of leading F's.
|
|
10 |
The sign Minus stands for an infinite string of leading T's.
|
|
11 |
|
|
12 |
A number can have multiple representations, namely leading F's with sign
|
|
13 |
Plus and leading T's with sign Minus. See twos-compl.ML/int_of_binary for
|
|
14 |
the numerical interpretation.
|
|
15 |
|
|
16 |
The representation expects that (m mod 2) is 0 or 1, even if m is negative;
|
|
17 |
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
|
|
18 |
|
|
19 |
Division is not defined yet!
|
|
20 |
*)
|
|
21 |
|
|
22 |
Bin = Integ +
|
|
23 |
|
|
24 |
syntax
|
|
25 |
"_Int" :: xnum => int ("_")
|
|
26 |
|
|
27 |
datatype
|
|
28 |
bin = Plus
|
|
29 |
| Minus
|
|
30 |
| Bcons bin bool
|
|
31 |
|
|
32 |
consts
|
|
33 |
integ_of_bin :: bin=>int
|
|
34 |
norm_Bcons :: [bin,bool]=>bin
|
|
35 |
bin_succ :: bin=>bin
|
|
36 |
bin_pred :: bin=>bin
|
|
37 |
bin_minus :: bin=>bin
|
|
38 |
bin_add,bin_mult :: [bin,bin]=>bin
|
|
39 |
h_bin :: [bin,bool,bin]=>bin
|
|
40 |
|
|
41 |
(*norm_Bcons adds a bit, suppressing leading 0s and 1s*)
|
|
42 |
|
|
43 |
primrec norm_Bcons bin
|
|
44 |
norm_Plus "norm_Bcons Plus b = (if b then (Bcons Plus b) else Plus)"
|
|
45 |
norm_Minus "norm_Bcons Minus b = (if b then Minus else (Bcons Minus b))"
|
|
46 |
norm_Bcons "norm_Bcons (Bcons w' x') b = Bcons (Bcons w' x') b"
|
|
47 |
|
|
48 |
primrec integ_of_bin bin
|
|
49 |
iob_Plus "integ_of_bin Plus = $#0"
|
|
50 |
iob_Minus "integ_of_bin Minus = $~($#1)"
|
|
51 |
iob_Bcons "integ_of_bin(Bcons w x) = (if x then $#1 else $#0) + (integ_of_bin w) + (integ_of_bin w)"
|
|
52 |
|
|
53 |
primrec bin_succ bin
|
|
54 |
succ_Plus "bin_succ Plus = Bcons Plus True"
|
|
55 |
succ_Minus "bin_succ Minus = Plus"
|
|
56 |
succ_Bcons "bin_succ(Bcons w x) = (if x then (Bcons (bin_succ w) False) else (norm_Bcons w True))"
|
|
57 |
|
|
58 |
primrec bin_pred bin
|
|
59 |
pred_Plus "bin_pred(Plus) = Minus"
|
|
60 |
pred_Minus "bin_pred(Minus) = Bcons Minus False"
|
|
61 |
pred_Bcons "bin_pred(Bcons w x) = (if x then (norm_Bcons w False) else (Bcons (bin_pred w) True))"
|
|
62 |
|
|
63 |
primrec bin_minus bin
|
|
64 |
min_Plus "bin_minus Plus = Plus"
|
|
65 |
min_Minus "bin_minus Minus = Bcons Plus True"
|
|
66 |
min_Bcons "bin_minus(Bcons w x) = (if x then (bin_pred (Bcons (bin_minus w) False)) else (Bcons (bin_minus w) False))"
|
|
67 |
|
|
68 |
primrec bin_add bin
|
|
69 |
add_Plus "bin_add Plus w = w"
|
|
70 |
add_Minus "bin_add Minus w = bin_pred w"
|
|
71 |
add_Bcons "bin_add (Bcons v x) w = h_bin v x w"
|
|
72 |
|
|
73 |
primrec bin_mult bin
|
|
74 |
mult_Plus "bin_mult Plus w = Plus"
|
|
75 |
mult_Minus "bin_mult Minus w = bin_minus w"
|
|
76 |
mult_Bcons "bin_mult (Bcons v x) w = (if x then (bin_add (norm_Bcons (bin_mult v w) False) w) else (norm_Bcons (bin_mult v w) False))"
|
|
77 |
|
|
78 |
primrec h_bin bin
|
|
79 |
h_Plus "h_bin v x Plus = Bcons v x"
|
|
80 |
h_Minus "h_bin v x Minus = bin_pred (Bcons v x)"
|
|
81 |
h_BCons "h_bin v x (Bcons w y) = norm_Bcons (bin_add v (if (x & y) then bin_succ w else w)) (x~=y)"
|
|
82 |
|
|
83 |
end
|
|
84 |
|
|
85 |
ML
|
|
86 |
|
|
87 |
(** Concrete syntax for integers **)
|
|
88 |
|
|
89 |
local
|
|
90 |
open Syntax;
|
|
91 |
|
|
92 |
(* Bits *)
|
|
93 |
|
|
94 |
fun mk_bit 0 = const "False"
|
|
95 |
| mk_bit 1 = const "True"
|
|
96 |
| mk_bit _ = sys_error "mk_bit";
|
|
97 |
|
|
98 |
fun dest_bit (Const ("False", _)) = 0
|
|
99 |
| dest_bit (Const ("True", _)) = 1
|
|
100 |
| dest_bit _ = raise Match;
|
|
101 |
|
|
102 |
|
|
103 |
(* Bit strings *) (*we try to handle superfluous leading digits nicely*)
|
|
104 |
|
|
105 |
fun prefix_len _ [] = 0
|
|
106 |
| prefix_len pred (x :: xs) =
|
|
107 |
if pred x then 1 + prefix_len pred xs else 0;
|
|
108 |
|
|
109 |
fun mk_bin str =
|
|
110 |
let
|
|
111 |
val (sign, digs) =
|
|
112 |
(case explode str of
|
|
113 |
"#" :: "~" :: cs => (~1, cs)
|
|
114 |
| "#" :: cs => (1, cs)
|
|
115 |
| _ => raise ERROR);
|
|
116 |
|
|
117 |
val zs = prefix_len (equal "0") digs;
|
|
118 |
|
|
119 |
fun bin_of 0 = replicate zs 0
|
|
120 |
| bin_of ~1 = replicate zs 1 @ [~1]
|
|
121 |
| bin_of n = (n mod 2) :: bin_of (n div 2);
|
|
122 |
|
|
123 |
fun term_of [] = const "Plus"
|
|
124 |
| term_of [~1] = const "Minus"
|
|
125 |
| term_of (b :: bs) = const "Bcons" $ term_of bs $ mk_bit b;
|
|
126 |
in
|
|
127 |
term_of (bin_of (sign * (#1 (scan_int digs))))
|
|
128 |
end;
|
|
129 |
|
|
130 |
fun dest_bin tm =
|
|
131 |
let
|
|
132 |
fun bin_of (Const ("Plus", _)) = []
|
|
133 |
| bin_of (Const ("Minus", _)) = [~1]
|
|
134 |
| bin_of (Const ("Bcons", _) $ bs $ b) = dest_bit b :: bin_of bs
|
|
135 |
| bin_of _ = raise Match;
|
|
136 |
|
|
137 |
fun int_of [] = 0
|
|
138 |
| int_of (b :: bs) = b + 2 * int_of bs;
|
|
139 |
|
|
140 |
val rev_digs = bin_of tm;
|
|
141 |
val (sign, zs) =
|
|
142 |
(case rev rev_digs of
|
|
143 |
~1 :: bs => ("~", prefix_len (equal 1) bs)
|
|
144 |
| bs => ("", prefix_len (equal 0) bs));
|
|
145 |
val num = string_of_int (abs (int_of rev_digs));
|
|
146 |
in
|
|
147 |
"#" ^ sign ^ implode (replicate zs "0") ^ num
|
|
148 |
end;
|
|
149 |
|
|
150 |
|
|
151 |
(* translation of integer constant tokens to and from binary *)
|
|
152 |
|
|
153 |
fun int_tr (*"_Int"*) [t as Free (str, _)] =
|
|
154 |
(const "integ_of_bin" $
|
|
155 |
(mk_bin str handle ERROR => raise_term "int_tr" [t]))
|
|
156 |
| int_tr (*"_Int"*) ts = raise_term "int_tr" ts;
|
|
157 |
|
|
158 |
fun int_tr' (*"integ_of"*) [t] = const "_Int" $ free (dest_bin t)
|
|
159 |
| int_tr' (*"integ_of"*) _ = raise Match;
|
|
160 |
in
|
|
161 |
val parse_translation = [("_Int", int_tr)];
|
|
162 |
val print_translation = [("integ_of_bin", int_tr')];
|
|
163 |
end;
|