28583
|
1 |
theory Live imports Natural
|
|
2 |
begin
|
|
3 |
|
|
4 |
text{* Which variables/locations does an expression depend on?
|
|
5 |
Any set of variables that completely determine the value of the expression,
|
|
6 |
in the worst case all locations: *}
|
|
7 |
|
|
8 |
consts Dep :: "((loc \<Rightarrow> 'a) \<Rightarrow> 'b) \<Rightarrow> loc set"
|
|
9 |
specification (Dep)
|
|
10 |
dep_on: "(\<forall>x\<in>Dep e. s x = t x) \<Longrightarrow> e s = e t"
|
|
11 |
by(rule_tac x="%x. UNIV" in exI)(simp add: expand_fun_eq[symmetric])
|
|
12 |
|
|
13 |
text{* The following definition of @{const Dep} looks very tempting
|
|
14 |
@{prop"Dep e = {a. EX s t. (ALL x. x\<noteq>a \<longrightarrow> s x = t x) \<and> e s \<noteq> e t}"}
|
|
15 |
but does not work in case @{text e} depends on an infinite set of variables.
|
|
16 |
For example, if @{term"e s"} tests if @{text s} is 0 at infinitely many locations. Then @{term"Dep e"} incorrectly yields the empty set!
|
|
17 |
|
|
18 |
If we had a concrete representation of expressions, we would simply write
|
|
19 |
a recursive free-variables function.
|
|
20 |
*}
|
|
21 |
|
|
22 |
primrec L :: "com \<Rightarrow> loc set \<Rightarrow> loc set" where
|
|
23 |
"L SKIP A = A" |
|
|
24 |
"L (x :== e) A = A-{x} \<union> Dep e" |
|
|
25 |
"L (c1; c2) A = (L c1 \<circ> L c2) A" |
|
|
26 |
"L (IF b THEN c1 ELSE c2) A = Dep b \<union> L c1 A \<union> L c2 A" |
|
|
27 |
"L (WHILE b DO c) A = Dep b \<union> A \<union> L c A"
|
|
28 |
|
|
29 |
primrec "kill" :: "com \<Rightarrow> loc set" where
|
|
30 |
"kill SKIP = {}" |
|
|
31 |
"kill (x :== e) = {x}" |
|
|
32 |
"kill (c1; c2) = kill c1 \<union> kill c2" |
|
|
33 |
"kill (IF b THEN c1 ELSE c2) = Dep b \<union> kill c1 \<inter> kill c2" |
|
|
34 |
"kill (WHILE b DO c) = {}"
|
|
35 |
|
|
36 |
primrec gen :: "com \<Rightarrow> loc set" where
|
|
37 |
"gen SKIP = {}" |
|
|
38 |
"gen (x :== e) = Dep e" |
|
|
39 |
"gen (c1; c2) = gen c1 \<union> (gen c2-kill c1)" |
|
|
40 |
"gen (IF b THEN c1 ELSE c2) = Dep b \<union> gen c1 \<union> gen c2" |
|
|
41 |
"gen (WHILE b DO c) = Dep b \<union> gen c"
|
|
42 |
|
|
43 |
lemma L_gen_kill: "L c A = gen c \<union> (A - kill c)"
|
|
44 |
by(induct c arbitrary:A) auto
|
|
45 |
|
|
46 |
lemma L_idemp: "L c (L c A) \<subseteq> L c A"
|
|
47 |
by(fastsimp simp add:L_gen_kill)
|
|
48 |
|
|
49 |
theorem L_sound: "\<forall> x \<in> L c A. s x = t x \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
|
|
50 |
\<forall>x\<in>A. s' x = t' x"
|
|
51 |
proof (induct c arbitrary: A s t s' t')
|
|
52 |
case SKIP then show ?case by auto
|
|
53 |
next
|
|
54 |
case (Assign x e) then show ?case
|
|
55 |
by (auto simp:update_def ball_Un dest!: dep_on)
|
|
56 |
next
|
|
57 |
case (Semi c1 c2)
|
|
58 |
from Semi(4) obtain s'' where s1: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" and s2: "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
59 |
by auto
|
|
60 |
from Semi(5) obtain t'' where t1: "\<langle>c1,t\<rangle> \<longrightarrow>\<^sub>c t''" and t2: "\<langle>c2,t''\<rangle> \<longrightarrow>\<^sub>c t'"
|
|
61 |
by auto
|
|
62 |
show ?case using Semi(1)[OF _ s1 t1] Semi(2)[OF _ s2 t2] Semi(3) by fastsimp
|
|
63 |
next
|
|
64 |
case (Cond b c1 c2)
|
|
65 |
show ?case
|
|
66 |
proof cases
|
|
67 |
assume "b s"
|
|
68 |
hence s: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by simp
|
|
69 |
have "b t" using `b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on)
|
|
70 |
hence t: "\<langle>c1,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto
|
|
71 |
show ?thesis using Cond(1)[OF _ s t] Cond(3) by fastsimp
|
|
72 |
next
|
|
73 |
assume "\<not> b s"
|
|
74 |
hence s: "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by auto
|
|
75 |
have "\<not> b t" using `\<not> b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on)
|
|
76 |
hence t: "\<langle>c2,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto
|
|
77 |
show ?thesis using Cond(2)[OF _ s t] Cond(3) by fastsimp
|
|
78 |
qed
|
|
79 |
next
|
|
80 |
case (While b c) note IH = this
|
|
81 |
{ fix cw
|
|
82 |
have "\<langle>cw,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> cw = (While b c) \<Longrightarrow> \<langle>cw,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
|
|
83 |
\<forall> x \<in> L cw A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x"
|
|
84 |
proof (induct arbitrary: t A pred:evalc)
|
|
85 |
case WhileFalse
|
|
86 |
have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on)
|
|
87 |
then have "t' = t" using WhileFalse by auto
|
|
88 |
then show ?case using WhileFalse by auto
|
|
89 |
next
|
|
90 |
case (WhileTrue _ s _ s'' s')
|
|
91 |
have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''" using WhileTrue(2,6) by simp
|
|
92 |
have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on)
|
|
93 |
then obtain t'' where "\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''" and "\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'"
|
|
94 |
using WhileTrue(6,7) by auto
|
28867
|
95 |
have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x"
|
|
96 |
using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` `\<langle>c,t\<rangle> \<longrightarrow>\<^sub>c t''`] WhileTrue(6,8)
|
|
97 |
by (auto simp:L_gen_kill)
|
|
98 |
moreover then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
|
|
99 |
ultimately show ?case using WhileTrue(5,6) `\<langle>While b c,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
|
28583
|
100 |
qed auto }
|
|
101 |
from this[OF IH(3) _ IH(4,2)] show ?case by metis
|
|
102 |
qed
|
|
103 |
|
28867
|
104 |
|
|
105 |
primrec bury :: "com \<Rightarrow> loc set \<Rightarrow> com" where
|
|
106 |
"bury SKIP _ = SKIP" |
|
|
107 |
"bury (x :== e) A = (if x:A then x:== e else SKIP)" |
|
|
108 |
"bury (c1; c2) A = (bury c1 (L c2 A); bury c2 A)" |
|
|
109 |
"bury (IF b THEN c1 ELSE c2) A = (IF b THEN bury c1 A ELSE bury c2 A)" |
|
|
110 |
"bury (WHILE b DO c) A = (WHILE b DO bury c (Dep b \<union> A \<union> L c A))"
|
|
111 |
|
|
112 |
theorem bury_sound:
|
|
113 |
"\<forall> x \<in> L c A. s x = t x \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>bury c A,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
|
|
114 |
\<forall>x\<in>A. s' x = t' x"
|
|
115 |
proof (induct c arbitrary: A s t s' t')
|
|
116 |
case SKIP then show ?case by auto
|
|
117 |
next
|
|
118 |
case (Assign x e) then show ?case
|
|
119 |
by (auto simp:update_def ball_Un split:split_if_asm dest!: dep_on)
|
|
120 |
next
|
|
121 |
case (Semi c1 c2)
|
|
122 |
from Semi(4) obtain s'' where s1: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" and s2: "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
123 |
by auto
|
|
124 |
from Semi(5) obtain t'' where t1: "\<langle>bury c1 (L c2 A),t\<rangle> \<longrightarrow>\<^sub>c t''" and t2: "\<langle>bury c2 A,t''\<rangle> \<longrightarrow>\<^sub>c t'"
|
|
125 |
by auto
|
|
126 |
show ?case using Semi(1)[OF _ s1 t1] Semi(2)[OF _ s2 t2] Semi(3) by fastsimp
|
|
127 |
next
|
|
128 |
case (Cond b c1 c2)
|
|
129 |
show ?case
|
|
130 |
proof cases
|
|
131 |
assume "b s"
|
|
132 |
hence s: "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by simp
|
|
133 |
have "b t" using `b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on)
|
|
134 |
hence t: "\<langle>bury c1 A,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto
|
|
135 |
show ?thesis using Cond(1)[OF _ s t] Cond(3) by fastsimp
|
|
136 |
next
|
|
137 |
assume "\<not> b s"
|
|
138 |
hence s: "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" using Cond(4) by auto
|
|
139 |
have "\<not> b t" using `\<not> b s` Cond(3) by (simp add: ball_Un)(blast dest: dep_on)
|
|
140 |
hence t: "\<langle>bury c2 A,t\<rangle> \<longrightarrow>\<^sub>c t'" using Cond(5) by auto
|
|
141 |
show ?thesis using Cond(2)[OF _ s t] Cond(3) by fastsimp
|
|
142 |
qed
|
|
143 |
next
|
|
144 |
case (While b c) note IH = this
|
|
145 |
{ fix cw
|
|
146 |
have "\<langle>cw,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> cw = (While b c) \<Longrightarrow> \<langle>bury cw A,t\<rangle> \<longrightarrow>\<^sub>c t' \<Longrightarrow>
|
|
147 |
\<forall> x \<in> L cw A. s x = t x \<Longrightarrow> \<forall>x\<in>A. s' x = t' x"
|
|
148 |
proof (induct arbitrary: t A pred:evalc)
|
|
149 |
case WhileFalse
|
|
150 |
have "\<not> b t" using WhileFalse by (simp add: ball_Un)(blast dest:dep_on)
|
|
151 |
then have "t' = t" using WhileFalse by auto
|
|
152 |
then show ?case using WhileFalse by auto
|
|
153 |
next
|
|
154 |
case (WhileTrue _ s _ s'' s')
|
|
155 |
have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''" using WhileTrue(2,6) by simp
|
|
156 |
have "b t" using WhileTrue by (simp add: ball_Un)(blast dest:dep_on)
|
|
157 |
then obtain t'' where tt'': "\<langle>bury c (Dep b \<union> A \<union> L c A),t\<rangle> \<longrightarrow>\<^sub>c t''"
|
|
158 |
and "\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'"
|
|
159 |
using WhileTrue(6,7) by auto
|
|
160 |
have "\<forall>x\<in>Dep b \<union> A \<union> L c A. s'' x = t'' x"
|
|
161 |
using IH(1)[OF _ `\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s''` tt''] WhileTrue(6,8)
|
|
162 |
by (auto simp:L_gen_kill)
|
|
163 |
moreover then have "\<forall>x\<in>L (While b c) A. s'' x = t'' x" by auto
|
|
164 |
ultimately show ?case
|
|
165 |
using WhileTrue(5,6) `\<langle>bury (While b c) A,t''\<rangle> \<longrightarrow>\<^sub>c t'` by metis
|
|
166 |
qed auto }
|
|
167 |
from this[OF IH(3) _ IH(4,2)] show ?case by metis
|
|
168 |
qed
|
|
169 |
|
|
170 |
|
28583
|
171 |
end |