author | wenzelm |
Tue, 23 Dec 2008 00:56:03 +0100 | |
changeset 29152 | 89b0803404d7 |
parent 28290 | 4cc2b6046258 |
child 29265 | 5b4247055bd7 |
permissions | -rw-r--r-- |
23274 | 1 |
structure LinZTac = |
2 |
struct |
|
3 |
||
4 |
val trace = ref false; |
|
5 |
fun trace_msg s = if !trace then tracing s else (); |
|
6 |
||
7 |
val cooper_ss = @{simpset}; |
|
8 |
||
9 |
val nT = HOLogic.natT; |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25985
diff
changeset
|
10 |
val binarith = @{thms normalize_bin_simps}; |
23318 | 11 |
val comp_arith = binarith @ simp_thms |
23274 | 12 |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
13 |
val zdvd_int = @{thm zdvd_int}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
14 |
val zdiff_int_split = @{thm zdiff_int_split}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
15 |
val all_nat = @{thm all_nat}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
16 |
val ex_nat = @{thm ex_nat}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
17 |
val number_of1 = @{thm number_of1}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
18 |
val number_of2 = @{thm number_of2}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
19 |
val split_zdiv = @{thm split_zdiv}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
20 |
val split_zmod = @{thm split_zmod}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
21 |
val mod_div_equality' = @{thm mod_div_equality'}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
22 |
val split_div' = @{thm split_div'}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
23 |
val Suc_plus1 = @{thm Suc_plus1}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
24 |
val imp_le_cong = @{thm imp_le_cong}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
25 |
val conj_le_cong = @{thm conj_le_cong}; |
23469 | 26 |
val nat_mod_add_eq = @{thm mod_add1_eq} RS sym; |
27 |
val nat_mod_add_left_eq = @{thm mod_add_left_eq} RS sym; |
|
28 |
val nat_mod_add_right_eq = @{thm mod_add_right_eq} RS sym; |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
29 |
val int_mod_add_eq = @{thm zmod_zadd1_eq} RS sym; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
30 |
val int_mod_add_left_eq = @{thm zmod_zadd_left_eq} RS sym; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
31 |
val int_mod_add_right_eq = @{thm zmod_zadd_right_eq} RS sym; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
32 |
val nat_div_add_eq = @{thm div_add1_eq} RS sym; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
33 |
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym; |
23274 | 34 |
|
35 |
fun prepare_for_linz q fm = |
|
36 |
let |
|
37 |
val ps = Logic.strip_params fm |
|
38 |
val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm) |
|
39 |
val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm) |
|
40 |
fun mk_all ((s, T), (P,n)) = |
|
41 |
if 0 mem loose_bnos P then |
|
42 |
(HOLogic.all_const T $ Abs (s, T, P), n) |
|
43 |
else (incr_boundvars ~1 P, n-1) |
|
44 |
fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t; |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
45 |
val rhs = hs |
23274 | 46 |
val np = length ps |
47 |
val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n))) |
|
48 |
(foldr HOLogic.mk_imp c rhs, np) ps |
|
49 |
val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT) |
|
50 |
(term_frees fm' @ term_vars fm'); |
|
51 |
val fm2 = foldr mk_all2 fm' vs |
|
52 |
in (fm2, np + length vs, length rhs) end; |
|
53 |
||
54 |
(*Object quantifier to meta --*) |
|
55 |
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ; |
|
56 |
||
57 |
(* object implication to meta---*) |
|
58 |
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp; |
|
59 |
||
60 |
||
23590
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
wenzelm
parents:
23469
diff
changeset
|
61 |
fun linz_tac ctxt q i = ObjectLogic.atomize_prems_tac i THEN (fn st => |
23274 | 62 |
let |
63 |
val g = List.nth (prems_of st, i - 1) |
|
64 |
val thy = ProofContext.theory_of ctxt |
|
65 |
(* Transform the term*) |
|
66 |
val (t,np,nh) = prepare_for_linz q g |
|
67 |
(* Some simpsets for dealing with mod div abs and nat*) |
|
68 |
val mod_div_simpset = HOL_basic_ss |
|
69 |
addsimps [refl,nat_mod_add_eq, nat_mod_add_left_eq, |
|
70 |
nat_mod_add_right_eq, int_mod_add_eq, |
|
71 |
int_mod_add_right_eq, int_mod_add_left_eq, |
|
72 |
nat_div_add_eq, int_div_add_eq, |
|
23469 | 73 |
@{thm mod_self}, @{thm "zmod_self"}, |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
74 |
@{thm mod_by_0}, @{thm div_by_0}, |
23274 | 75 |
@{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"}, |
76 |
@{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, @{thm "mod_1"}, |
|
77 |
Suc_plus1] |
|
23880 | 78 |
addsimps @{thms add_ac} |
23274 | 79 |
addsimprocs [cancel_div_mod_proc] |
80 |
val simpset0 = HOL_basic_ss |
|
81 |
addsimps [mod_div_equality', Suc_plus1] |
|
82 |
addsimps comp_arith |
|
83 |
addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}] |
|
84 |
(* Simp rules for changing (n::int) to int n *) |
|
85 |
val simpset1 = HOL_basic_ss |
|
86 |
addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym) |
|
23364 | 87 |
[@{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}] |
23274 | 88 |
addsplits [zdiff_int_split] |
89 |
(*simp rules for elimination of int n*) |
|
90 |
||
91 |
val simpset2 = HOL_basic_ss |
|
23364 | 92 |
addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm number_of1}, @{thm number_of2}, @{thm int_0}, @{thm int_1}] |
93 |
addcongs [@{thm conj_le_cong}, @{thm imp_le_cong}] |
|
23274 | 94 |
(* simp rules for elimination of abs *) |
23364 | 95 |
val simpset3 = HOL_basic_ss addsplits [@{thm abs_split}] |
23274 | 96 |
val ct = cterm_of thy (HOLogic.mk_Trueprop t) |
97 |
(* Theorem for the nat --> int transformation *) |
|
98 |
val pre_thm = Seq.hd (EVERY |
|
99 |
[simp_tac mod_div_simpset 1, simp_tac simpset0 1, |
|
100 |
TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1), |
|
101 |
TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)] |
|
102 |
(trivial ct)) |
|
103 |
fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i) |
|
104 |
(* The result of the quantifier elimination *) |
|
105 |
val (th, tac) = case (prop_of pre_thm) of |
|
106 |
Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ => |
|
28290 | 107 |
let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1)) |
23274 | 108 |
in |
109 |
((pth RS iffD2) RS pre_thm, |
|
110 |
assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)) |
|
111 |
end |
|
112 |
| _ => (pre_thm, assm_tac i) |
|
113 |
in (rtac (((mp_step nh) o (spec_step np)) th) i |
|
114 |
THEN tac) st |
|
115 |
end handle Subscript => no_tac st); |
|
116 |
||
117 |
fun linz_args meth = |
|
118 |
let val parse_flag = |
|
119 |
Args.$$$ "no_quantify" >> (K (K false)); |
|
120 |
in |
|
121 |
Method.simple_args |
|
122 |
(Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >> |
|
123 |
curry (Library.foldl op |>) true) |
|
124 |
(fn q => fn ctxt => meth ctxt q 1) |
|
125 |
end; |
|
126 |
||
127 |
fun linz_method ctxt q i = Method.METHOD (fn facts => |
|
128 |
Method.insert_tac facts 1 THEN linz_tac ctxt q i); |
|
129 |
||
130 |
val setup = |
|
131 |
Method.add_method ("cooper", |
|
132 |
linz_args linz_method, |
|
133 |
"decision procedure for linear integer arithmetic"); |
|
134 |
||
23590
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
wenzelm
parents:
23469
diff
changeset
|
135 |
end |