author | wenzelm |
Tue, 10 Nov 2009 21:02:18 +0100 | |
changeset 33599 | 89c439646960 |
parent 33506 | afb577487b15 |
child 35900 | aa5dfb03eb1e |
permissions | -rw-r--r-- |
29531 | 1 |
(* Title: HOLCF/Product_Cpo.thy |
2 |
Author: Franz Regensburger |
|
3 |
*) |
|
4 |
||
5 |
header {* The cpo of cartesian products *} |
|
6 |
||
7 |
theory Product_Cpo |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
8 |
imports Adm |
29531 | 9 |
begin |
10 |
||
11 |
defaultsort cpo |
|
12 |
||
13 |
subsection {* Type @{typ unit} is a pcpo *} |
|
14 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
15 |
instantiation unit :: below |
29531 | 16 |
begin |
17 |
||
18 |
definition |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
19 |
below_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<longleftrightarrow> True" |
29531 | 20 |
|
21 |
instance .. |
|
22 |
end |
|
23 |
||
24 |
instance unit :: discrete_cpo |
|
25 |
by intro_classes simp |
|
26 |
||
27 |
instance unit :: finite_po .. |
|
28 |
||
29 |
instance unit :: pcpo |
|
30 |
by intro_classes simp |
|
31 |
||
32 |
||
33 |
subsection {* Product type is a partial order *} |
|
34 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
35 |
instantiation "*" :: (below, below) below |
29531 | 36 |
begin |
37 |
||
38 |
definition |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
39 |
below_prod_def: "(op \<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)" |
29531 | 40 |
|
41 |
instance .. |
|
42 |
end |
|
43 |
||
44 |
instance "*" :: (po, po) po |
|
45 |
proof |
|
46 |
fix x :: "'a \<times> 'b" |
|
47 |
show "x \<sqsubseteq> x" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
48 |
unfolding below_prod_def by simp |
29531 | 49 |
next |
50 |
fix x y :: "'a \<times> 'b" |
|
51 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" thus "x = y" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
52 |
unfolding below_prod_def Pair_fst_snd_eq |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
53 |
by (fast intro: below_antisym) |
29531 | 54 |
next |
55 |
fix x y z :: "'a \<times> 'b" |
|
56 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
57 |
unfolding below_prod_def |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
58 |
by (fast intro: below_trans) |
29531 | 59 |
qed |
60 |
||
61 |
subsection {* Monotonicity of @{text "(_,_)"}, @{term fst}, @{term snd} *} |
|
62 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
63 |
lemma prod_belowI: "\<lbrakk>fst p \<sqsubseteq> fst q; snd p \<sqsubseteq> snd q\<rbrakk> \<Longrightarrow> p \<sqsubseteq> q" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
64 |
unfolding below_prod_def by simp |
29531 | 65 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
66 |
lemma Pair_below_iff [simp]: "(a, b) \<sqsubseteq> (c, d) \<longleftrightarrow> a \<sqsubseteq> c \<and> b \<sqsubseteq> d" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
67 |
unfolding below_prod_def by simp |
29531 | 68 |
|
69 |
text {* Pair @{text "(_,_)"} is monotone in both arguments *} |
|
70 |
||
71 |
lemma monofun_pair1: "monofun (\<lambda>x. (x, y))" |
|
72 |
by (simp add: monofun_def) |
|
73 |
||
74 |
lemma monofun_pair2: "monofun (\<lambda>y. (x, y))" |
|
75 |
by (simp add: monofun_def) |
|
76 |
||
77 |
lemma monofun_pair: |
|
78 |
"\<lbrakk>x1 \<sqsubseteq> x2; y1 \<sqsubseteq> y2\<rbrakk> \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)" |
|
79 |
by simp |
|
80 |
||
31112 | 81 |
lemma ch2ch_Pair [simp]: |
82 |
"chain X \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (X i, Y i))" |
|
83 |
by (rule chainI, simp add: chainE) |
|
84 |
||
29531 | 85 |
text {* @{term fst} and @{term snd} are monotone *} |
86 |
||
87 |
lemma monofun_fst: "monofun fst" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
88 |
by (simp add: monofun_def below_prod_def) |
29531 | 89 |
|
90 |
lemma monofun_snd: "monofun snd" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
91 |
by (simp add: monofun_def below_prod_def) |
29531 | 92 |
|
31112 | 93 |
lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst] |
94 |
||
95 |
lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd] |
|
96 |
||
97 |
lemma prod_chain_cases: |
|
98 |
assumes "chain Y" |
|
99 |
obtains A B |
|
100 |
where "chain A" and "chain B" and "Y = (\<lambda>i. (A i, B i))" |
|
101 |
proof |
|
102 |
from `chain Y` show "chain (\<lambda>i. fst (Y i))" by (rule ch2ch_fst) |
|
103 |
from `chain Y` show "chain (\<lambda>i. snd (Y i))" by (rule ch2ch_snd) |
|
104 |
show "Y = (\<lambda>i. (fst (Y i), snd (Y i)))" by simp |
|
105 |
qed |
|
106 |
||
29531 | 107 |
subsection {* Product type is a cpo *} |
108 |
||
109 |
lemma is_lub_Pair: |
|
31112 | 110 |
"\<lbrakk>range A <<| x; range B <<| y\<rbrakk> \<Longrightarrow> range (\<lambda>i. (A i, B i)) <<| (x, y)" |
29531 | 111 |
apply (rule is_lubI [OF ub_rangeI]) |
31112 | 112 |
apply (simp add: is_ub_lub) |
29531 | 113 |
apply (frule ub2ub_monofun [OF monofun_fst]) |
114 |
apply (drule ub2ub_monofun [OF monofun_snd]) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
115 |
apply (simp add: below_prod_def is_lub_lub) |
29531 | 116 |
done |
117 |
||
31112 | 118 |
lemma thelub_Pair: |
119 |
"\<lbrakk>chain (A::nat \<Rightarrow> 'a::cpo); chain (B::nat \<Rightarrow> 'b::cpo)\<rbrakk> |
|
120 |
\<Longrightarrow> (\<Squnion>i. (A i, B i)) = (\<Squnion>i. A i, \<Squnion>i. B i)" |
|
121 |
by (fast intro: thelubI is_lub_Pair elim: thelubE) |
|
122 |
||
29531 | 123 |
lemma lub_cprod: |
124 |
fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)" |
|
125 |
assumes S: "chain S" |
|
126 |
shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
|
127 |
proof - |
|
31112 | 128 |
from `chain S` have "chain (\<lambda>i. fst (S i))" |
129 |
by (rule ch2ch_fst) |
|
29531 | 130 |
hence 1: "range (\<lambda>i. fst (S i)) <<| (\<Squnion>i. fst (S i))" |
131 |
by (rule cpo_lubI) |
|
31112 | 132 |
from `chain S` have "chain (\<lambda>i. snd (S i))" |
133 |
by (rule ch2ch_snd) |
|
29531 | 134 |
hence 2: "range (\<lambda>i. snd (S i)) <<| (\<Squnion>i. snd (S i))" |
135 |
by (rule cpo_lubI) |
|
136 |
show "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
|
137 |
using is_lub_Pair [OF 1 2] by simp |
|
138 |
qed |
|
139 |
||
140 |
lemma thelub_cprod: |
|
141 |
"chain (S::nat \<Rightarrow> 'a::cpo \<times> 'b::cpo) |
|
142 |
\<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
|
143 |
by (rule lub_cprod [THEN thelubI]) |
|
144 |
||
145 |
instance "*" :: (cpo, cpo) cpo |
|
146 |
proof |
|
147 |
fix S :: "nat \<Rightarrow> ('a \<times> 'b)" |
|
148 |
assume "chain S" |
|
149 |
hence "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
|
150 |
by (rule lub_cprod) |
|
151 |
thus "\<exists>x. range S <<| x" .. |
|
152 |
qed |
|
153 |
||
154 |
instance "*" :: (finite_po, finite_po) finite_po .. |
|
155 |
||
156 |
instance "*" :: (discrete_cpo, discrete_cpo) discrete_cpo |
|
157 |
proof |
|
158 |
fix x y :: "'a \<times> 'b" |
|
159 |
show "x \<sqsubseteq> y \<longleftrightarrow> x = y" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
160 |
unfolding below_prod_def Pair_fst_snd_eq |
29531 | 161 |
by simp |
162 |
qed |
|
163 |
||
164 |
subsection {* Product type is pointed *} |
|
165 |
||
166 |
lemma minimal_cprod: "(\<bottom>, \<bottom>) \<sqsubseteq> p" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
167 |
by (simp add: below_prod_def) |
29531 | 168 |
|
169 |
instance "*" :: (pcpo, pcpo) pcpo |
|
170 |
by intro_classes (fast intro: minimal_cprod) |
|
171 |
||
172 |
lemma inst_cprod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)" |
|
173 |
by (rule minimal_cprod [THEN UU_I, symmetric]) |
|
174 |
||
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
175 |
lemma Pair_defined_iff [simp]: "(x, y) = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
176 |
unfolding inst_cprod_pcpo by simp |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
177 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
178 |
lemma fst_strict [simp]: "fst \<bottom> = \<bottom>" |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
179 |
unfolding inst_cprod_pcpo by (rule fst_conv) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
180 |
|
33506 | 181 |
lemma snd_strict [simp]: "snd \<bottom> = \<bottom>" |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
182 |
unfolding inst_cprod_pcpo by (rule snd_conv) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
183 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
184 |
lemma Pair_strict [simp]: "(\<bottom>, \<bottom>) = \<bottom>" |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
185 |
by simp |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
186 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
187 |
lemma split_strict [simp]: "split f \<bottom> = f \<bottom> \<bottom>" |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
188 |
unfolding split_def by simp |
29531 | 189 |
|
190 |
subsection {* Continuity of @{text "(_,_)"}, @{term fst}, @{term snd} *} |
|
191 |
||
192 |
lemma cont_pair1: "cont (\<lambda>x. (x, y))" |
|
193 |
apply (rule contI) |
|
194 |
apply (rule is_lub_Pair) |
|
195 |
apply (erule cpo_lubI) |
|
196 |
apply (rule lub_const) |
|
197 |
done |
|
198 |
||
199 |
lemma cont_pair2: "cont (\<lambda>y. (x, y))" |
|
200 |
apply (rule contI) |
|
201 |
apply (rule is_lub_Pair) |
|
202 |
apply (rule lub_const) |
|
203 |
apply (erule cpo_lubI) |
|
204 |
done |
|
205 |
||
206 |
lemma contlub_fst: "contlub fst" |
|
207 |
apply (rule contlubI) |
|
208 |
apply (simp add: thelub_cprod) |
|
209 |
done |
|
210 |
||
211 |
lemma contlub_snd: "contlub snd" |
|
212 |
apply (rule contlubI) |
|
213 |
apply (simp add: thelub_cprod) |
|
214 |
done |
|
215 |
||
216 |
lemma cont_fst: "cont fst" |
|
217 |
apply (rule monocontlub2cont) |
|
218 |
apply (rule monofun_fst) |
|
219 |
apply (rule contlub_fst) |
|
220 |
done |
|
221 |
||
222 |
lemma cont_snd: "cont snd" |
|
223 |
apply (rule monocontlub2cont) |
|
224 |
apply (rule monofun_snd) |
|
225 |
apply (rule contlub_snd) |
|
226 |
done |
|
227 |
||
228 |
lemma cont2cont_Pair [cont2cont]: |
|
229 |
assumes f: "cont (\<lambda>x. f x)" |
|
230 |
assumes g: "cont (\<lambda>x. g x)" |
|
231 |
shows "cont (\<lambda>x. (f x, g x))" |
|
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
232 |
apply (rule cont_apply [OF f cont_pair1]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
233 |
apply (rule cont_apply [OF g cont_pair2]) |
29533 | 234 |
apply (rule cont_const) |
29531 | 235 |
done |
236 |
||
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
237 |
lemmas cont2cont_fst [cont2cont] = cont_compose [OF cont_fst] |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
238 |
|
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
239 |
lemmas cont2cont_snd [cont2cont] = cont_compose [OF cont_snd] |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
240 |
|
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
241 |
lemma cont2cont_split: |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
242 |
assumes f1: "\<And>a b. cont (\<lambda>x. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
243 |
assumes f2: "\<And>x b. cont (\<lambda>a. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
244 |
assumes f3: "\<And>x a. cont (\<lambda>b. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
245 |
assumes g: "cont (\<lambda>x. g x)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
246 |
shows "cont (\<lambda>x. split (\<lambda>a b. f x a b) (g x))" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
247 |
unfolding split_def |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
248 |
apply (rule cont_apply [OF g]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
249 |
apply (rule cont_apply [OF cont_fst f2]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
250 |
apply (rule cont_apply [OF cont_snd f3]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
251 |
apply (rule cont_const) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
252 |
apply (rule f1) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
253 |
done |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
254 |
|
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
255 |
lemma cont_fst_snd_D1: |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
256 |
"cont (\<lambda>p. f (fst p) (snd p)) \<Longrightarrow> cont (\<lambda>x. f x y)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
257 |
by (drule cont_compose [OF _ cont_pair1], simp) |
29531 | 258 |
|
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
259 |
lemma cont_fst_snd_D2: |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
260 |
"cont (\<lambda>p. f (fst p) (snd p)) \<Longrightarrow> cont (\<lambda>y. f x y)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
261 |
by (drule cont_compose [OF _ cont_pair2], simp) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
262 |
|
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
263 |
lemma cont2cont_split' [cont2cont]: |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
264 |
assumes f: "cont (\<lambda>p. f (fst p) (fst (snd p)) (snd (snd p)))" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
265 |
assumes g: "cont (\<lambda>x. g x)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
266 |
shows "cont (\<lambda>x. split (f x) (g x))" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
267 |
proof - |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
268 |
note f1 = f [THEN cont_fst_snd_D1] |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
269 |
note f2 = f [THEN cont_fst_snd_D2, THEN cont_fst_snd_D1] |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
270 |
note f3 = f [THEN cont_fst_snd_D2, THEN cont_fst_snd_D2] |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
271 |
show ?thesis |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
272 |
unfolding split_def |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
273 |
apply (rule cont_apply [OF g]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
274 |
apply (rule cont_apply [OF cont_fst f2]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
275 |
apply (rule cont_apply [OF cont_snd f3]) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
276 |
apply (rule cont_const) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
277 |
apply (rule f1) |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
278 |
done |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
279 |
qed |
29531 | 280 |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
281 |
subsection {* Compactness and chain-finiteness *} |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
282 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
283 |
lemma fst_below_iff: "fst (x::'a \<times> 'b) \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (y, snd x)" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
284 |
unfolding below_prod_def by simp |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
285 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
286 |
lemma snd_below_iff: "snd (x::'a \<times> 'b) \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (fst x, y)" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
287 |
unfolding below_prod_def by simp |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
288 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
289 |
lemma compact_fst: "compact x \<Longrightarrow> compact (fst x)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
290 |
by (rule compactI, simp add: fst_below_iff) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
291 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
292 |
lemma compact_snd: "compact x \<Longrightarrow> compact (snd x)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
293 |
by (rule compactI, simp add: snd_below_iff) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
294 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
295 |
lemma compact_Pair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (x, y)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
296 |
by (rule compactI, simp add: below_prod_def) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
297 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
298 |
lemma compact_Pair_iff [simp]: "compact (x, y) \<longleftrightarrow> compact x \<and> compact y" |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
299 |
apply (safe intro!: compact_Pair) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
300 |
apply (drule compact_fst, simp) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
301 |
apply (drule compact_snd, simp) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
302 |
done |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
303 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
304 |
instance "*" :: (chfin, chfin) chfin |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
305 |
apply intro_classes |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
306 |
apply (erule compact_imp_max_in_chain) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
307 |
apply (case_tac "\<Squnion>i. Y i", simp) |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
308 |
done |
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
309 |
|
29531 | 310 |
end |