src/HOLCF/Product_Cpo.thy
author wenzelm
Tue, 10 Nov 2009 21:02:18 +0100
changeset 33599 89c439646960
parent 33506 afb577487b15
child 35900 aa5dfb03eb1e
permissions -rw-r--r--
recovered update from 7264824baf66, which got lost in 7264824baf66;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     1
(*  Title:      HOLCF/Product_Cpo.thy
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     2
    Author:     Franz Regensburger
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     3
*)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     4
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     5
header {* The cpo of cartesian products *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     6
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     7
theory Product_Cpo
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
     8
imports Adm
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
     9
begin
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    10
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    11
defaultsort cpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    12
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    13
subsection {* Type @{typ unit} is a pcpo *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    14
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    15
instantiation unit :: below
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    16
begin
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    17
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    18
definition
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    19
  below_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<longleftrightarrow> True"
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    20
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    21
instance ..
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    22
end
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    23
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    24
instance unit :: discrete_cpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    25
by intro_classes simp
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    26
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    27
instance unit :: finite_po ..
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    28
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    29
instance unit :: pcpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    30
by intro_classes simp
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    31
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    32
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    33
subsection {* Product type is a partial order *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    34
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    35
instantiation "*" :: (below, below) below
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    36
begin
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    37
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    38
definition
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    39
  below_prod_def: "(op \<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)"
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    40
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    41
instance ..
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    42
end
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    43
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    44
instance "*" :: (po, po) po
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    45
proof
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    46
  fix x :: "'a \<times> 'b"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    47
  show "x \<sqsubseteq> x"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    48
    unfolding below_prod_def by simp
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    49
next
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    50
  fix x y :: "'a \<times> 'b"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    51
  assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" thus "x = y"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    52
    unfolding below_prod_def Pair_fst_snd_eq
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    53
    by (fast intro: below_antisym)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    54
next
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    55
  fix x y z :: "'a \<times> 'b"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    56
  assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    57
    unfolding below_prod_def
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    58
    by (fast intro: below_trans)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    59
qed
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    60
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    61
subsection {* Monotonicity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    62
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    63
lemma prod_belowI: "\<lbrakk>fst p \<sqsubseteq> fst q; snd p \<sqsubseteq> snd q\<rbrakk> \<Longrightarrow> p \<sqsubseteq> q"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    64
unfolding below_prod_def by simp
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    65
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    66
lemma Pair_below_iff [simp]: "(a, b) \<sqsubseteq> (c, d) \<longleftrightarrow> a \<sqsubseteq> c \<and> b \<sqsubseteq> d"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    67
unfolding below_prod_def by simp
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    68
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    69
text {* Pair @{text "(_,_)"}  is monotone in both arguments *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    70
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    71
lemma monofun_pair1: "monofun (\<lambda>x. (x, y))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    72
by (simp add: monofun_def)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    73
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    74
lemma monofun_pair2: "monofun (\<lambda>y. (x, y))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    75
by (simp add: monofun_def)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    76
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    77
lemma monofun_pair:
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    78
  "\<lbrakk>x1 \<sqsubseteq> x2; y1 \<sqsubseteq> y2\<rbrakk> \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    79
by simp
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    80
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    81
lemma ch2ch_Pair [simp]:
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    82
  "chain X \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (X i, Y i))"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    83
by (rule chainI, simp add: chainE)
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    84
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    85
text {* @{term fst} and @{term snd} are monotone *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    86
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    87
lemma monofun_fst: "monofun fst"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    88
by (simp add: monofun_def below_prod_def)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    89
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    90
lemma monofun_snd: "monofun snd"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
    91
by (simp add: monofun_def below_prod_def)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
    92
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    93
lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst]
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    94
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    95
lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd]
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    96
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    97
lemma prod_chain_cases:
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    98
  assumes "chain Y"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
    99
  obtains A B
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   100
  where "chain A" and "chain B" and "Y = (\<lambda>i. (A i, B i))"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   101
proof
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   102
  from `chain Y` show "chain (\<lambda>i. fst (Y i))" by (rule ch2ch_fst)
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   103
  from `chain Y` show "chain (\<lambda>i. snd (Y i))" by (rule ch2ch_snd)
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   104
  show "Y = (\<lambda>i. (fst (Y i), snd (Y i)))" by simp
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   105
qed
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   106
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   107
subsection {* Product type is a cpo *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   108
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   109
lemma is_lub_Pair:
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   110
  "\<lbrakk>range A <<| x; range B <<| y\<rbrakk> \<Longrightarrow> range (\<lambda>i. (A i, B i)) <<| (x, y)"
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   111
apply (rule is_lubI [OF ub_rangeI])
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   112
apply (simp add: is_ub_lub)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   113
apply (frule ub2ub_monofun [OF monofun_fst])
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   114
apply (drule ub2ub_monofun [OF monofun_snd])
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   115
apply (simp add: below_prod_def is_lub_lub)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   116
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   117
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   118
lemma thelub_Pair:
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   119
  "\<lbrakk>chain (A::nat \<Rightarrow> 'a::cpo); chain (B::nat \<Rightarrow> 'b::cpo)\<rbrakk>
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   120
    \<Longrightarrow> (\<Squnion>i. (A i, B i)) = (\<Squnion>i. A i, \<Squnion>i. B i)"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   121
by (fast intro: thelubI is_lub_Pair elim: thelubE)
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   122
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   123
lemma lub_cprod:
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   124
  fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   125
  assumes S: "chain S"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   126
  shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   127
proof -
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   128
  from `chain S` have "chain (\<lambda>i. fst (S i))"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   129
    by (rule ch2ch_fst)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   130
  hence 1: "range (\<lambda>i. fst (S i)) <<| (\<Squnion>i. fst (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   131
    by (rule cpo_lubI)
31112
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   132
  from `chain S` have "chain (\<lambda>i. snd (S i))"
4dcda8ca5d59 new lemmas
huffman
parents: 31076
diff changeset
   133
    by (rule ch2ch_snd)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   134
  hence 2: "range (\<lambda>i. snd (S i)) <<| (\<Squnion>i. snd (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   135
    by (rule cpo_lubI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   136
  show "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   137
    using is_lub_Pair [OF 1 2] by simp
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   138
qed
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   139
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   140
lemma thelub_cprod:
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   141
  "chain (S::nat \<Rightarrow> 'a::cpo \<times> 'b::cpo)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   142
    \<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   143
by (rule lub_cprod [THEN thelubI])
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   144
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   145
instance "*" :: (cpo, cpo) cpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   146
proof
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   147
  fix S :: "nat \<Rightarrow> ('a \<times> 'b)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   148
  assume "chain S"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   149
  hence "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   150
    by (rule lub_cprod)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   151
  thus "\<exists>x. range S <<| x" ..
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   152
qed
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   153
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   154
instance "*" :: (finite_po, finite_po) finite_po ..
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   155
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   156
instance "*" :: (discrete_cpo, discrete_cpo) discrete_cpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   157
proof
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   158
  fix x y :: "'a \<times> 'b"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   159
  show "x \<sqsubseteq> y \<longleftrightarrow> x = y"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   160
    unfolding below_prod_def Pair_fst_snd_eq
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   161
    by simp
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   162
qed
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   163
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   164
subsection {* Product type is pointed *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   165
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   166
lemma minimal_cprod: "(\<bottom>, \<bottom>) \<sqsubseteq> p"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   167
by (simp add: below_prod_def)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   168
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   169
instance "*" :: (pcpo, pcpo) pcpo
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   170
by intro_classes (fast intro: minimal_cprod)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   171
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   172
lemma inst_cprod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   173
by (rule minimal_cprod [THEN UU_I, symmetric])
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   174
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   175
lemma Pair_defined_iff [simp]: "(x, y) = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>"
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   176
unfolding inst_cprod_pcpo by simp
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   177
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   178
lemma fst_strict [simp]: "fst \<bottom> = \<bottom>"
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   179
unfolding inst_cprod_pcpo by (rule fst_conv)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   180
33506
afb577487b15 fix name of lemma snd_strict
huffman
parents: 31112
diff changeset
   181
lemma snd_strict [simp]: "snd \<bottom> = \<bottom>"
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   182
unfolding inst_cprod_pcpo by (rule snd_conv)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   183
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   184
lemma Pair_strict [simp]: "(\<bottom>, \<bottom>) = \<bottom>"
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   185
by simp
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   186
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   187
lemma split_strict [simp]: "split f \<bottom> = f \<bottom> \<bottom>"
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   188
unfolding split_def by simp
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   189
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   190
subsection {* Continuity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   191
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   192
lemma cont_pair1: "cont (\<lambda>x. (x, y))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   193
apply (rule contI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   194
apply (rule is_lub_Pair)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   195
apply (erule cpo_lubI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   196
apply (rule lub_const)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   197
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   198
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   199
lemma cont_pair2: "cont (\<lambda>y. (x, y))"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   200
apply (rule contI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   201
apply (rule is_lub_Pair)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   202
apply (rule lub_const)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   203
apply (erule cpo_lubI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   204
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   205
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   206
lemma contlub_fst: "contlub fst"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   207
apply (rule contlubI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   208
apply (simp add: thelub_cprod)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   209
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   210
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   211
lemma contlub_snd: "contlub snd"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   212
apply (rule contlubI)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   213
apply (simp add: thelub_cprod)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   214
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   215
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   216
lemma cont_fst: "cont fst"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   217
apply (rule monocontlub2cont)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   218
apply (rule monofun_fst)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   219
apply (rule contlub_fst)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   220
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   221
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   222
lemma cont_snd: "cont snd"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   223
apply (rule monocontlub2cont)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   224
apply (rule monofun_snd)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   225
apply (rule contlub_snd)
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   226
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   227
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   228
lemma cont2cont_Pair [cont2cont]:
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   229
  assumes f: "cont (\<lambda>x. f x)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   230
  assumes g: "cont (\<lambda>x. g x)"
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   231
  shows "cont (\<lambda>x. (f x, g x))"
31041
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   232
apply (rule cont_apply [OF f cont_pair1])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   233
apply (rule cont_apply [OF g cont_pair2])
29533
7f4a32134447 minimize dependencies
huffman
parents: 29531
diff changeset
   234
apply (rule cont_const)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   235
done
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   236
31041
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   237
lemmas cont2cont_fst [cont2cont] = cont_compose [OF cont_fst]
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   238
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   239
lemmas cont2cont_snd [cont2cont] = cont_compose [OF cont_snd]
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   240
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   241
lemma cont2cont_split:
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   242
  assumes f1: "\<And>a b. cont (\<lambda>x. f x a b)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   243
  assumes f2: "\<And>x b. cont (\<lambda>a. f x a b)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   244
  assumes f3: "\<And>x a. cont (\<lambda>b. f x a b)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   245
  assumes g: "cont (\<lambda>x. g x)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   246
  shows "cont (\<lambda>x. split (\<lambda>a b. f x a b) (g x))"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   247
unfolding split_def
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   248
apply (rule cont_apply [OF g])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   249
apply (rule cont_apply [OF cont_fst f2])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   250
apply (rule cont_apply [OF cont_snd f3])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   251
apply (rule cont_const)
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   252
apply (rule f1)
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   253
done
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   254
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   255
lemma cont_fst_snd_D1:
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   256
  "cont (\<lambda>p. f (fst p) (snd p)) \<Longrightarrow> cont (\<lambda>x. f x y)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   257
by (drule cont_compose [OF _ cont_pair1], simp)
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   258
31041
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   259
lemma cont_fst_snd_D2:
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   260
  "cont (\<lambda>p. f (fst p) (snd p)) \<Longrightarrow> cont (\<lambda>y. f x y)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   261
by (drule cont_compose [OF _ cont_pair2], simp)
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   262
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   263
lemma cont2cont_split' [cont2cont]:
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   264
  assumes f: "cont (\<lambda>p. f (fst p) (fst (snd p)) (snd (snd p)))"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   265
  assumes g: "cont (\<lambda>x. g x)"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   266
  shows "cont (\<lambda>x. split (f x) (g x))"
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   267
proof -
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   268
  note f1 = f [THEN cont_fst_snd_D1]
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   269
  note f2 = f [THEN cont_fst_snd_D2, THEN cont_fst_snd_D1]
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   270
  note f3 = f [THEN cont_fst_snd_D2, THEN cont_fst_snd_D2]
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   271
  show ?thesis
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   272
    unfolding split_def
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   273
    apply (rule cont_apply [OF g])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   274
    apply (rule cont_apply [OF cont_fst f2])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   275
    apply (rule cont_apply [OF cont_snd f3])
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   276
    apply (rule cont_const)
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   277
    apply (rule f1)
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   278
    done
85b4843d9939 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents: 29535
diff changeset
   279
qed
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   280
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   281
subsection {* Compactness and chain-finiteness *}
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   282
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   283
lemma fst_below_iff: "fst (x::'a \<times> 'b) \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (y, snd x)"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   284
unfolding below_prod_def by simp
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   285
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   286
lemma snd_below_iff: "snd (x::'a \<times> 'b) \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (fst x, y)"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   287
unfolding below_prod_def by simp
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   288
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   289
lemma compact_fst: "compact x \<Longrightarrow> compact (fst x)"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   290
by (rule compactI, simp add: fst_below_iff)
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   291
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   292
lemma compact_snd: "compact x \<Longrightarrow> compact (snd x)"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   293
by (rule compactI, simp add: snd_below_iff)
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   294
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   295
lemma compact_Pair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (x, y)"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 31041
diff changeset
   296
by (rule compactI, simp add: below_prod_def)
29535
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   297
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   298
lemma compact_Pair_iff [simp]: "compact (x, y) \<longleftrightarrow> compact x \<and> compact y"
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   299
apply (safe intro!: compact_Pair)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   300
apply (drule compact_fst, simp)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   301
apply (drule compact_snd, simp)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   302
done
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   303
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   304
instance "*" :: (chfin, chfin) chfin
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   305
apply intro_classes
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   306
apply (erule compact_imp_max_in_chain)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   307
apply (case_tac "\<Squnion>i. Y i", simp)
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   308
done
08824fad8879 add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents: 29533
diff changeset
   309
29531
2eb29775b0b6 add Product_Cpo.thy
huffman
parents:
diff changeset
   310
end