doc-src/TutorialI/Types/document/Axioms.tex
author paulson
Thu, 26 May 2005 10:05:11 +0200
changeset 16087 89d0ee1fb198
parent 15481 fc075ae929e4
child 16353 94e565ded526
permissions -rw-r--r--
Narrower version of the Proof General's head; removal of the alternative icon and environment
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Axioms}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
     4
\isamarkupfalse%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     5
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
     6
\isamarkupsubsection{Axioms%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
     7
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
     8
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     9
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    10
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    11
Attaching axioms to our classes lets us reason on the
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    12
level of classes.  The results will be applicable to all types in a class,
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    13
just as in axiomatic mathematics.  These ideas are demonstrated by means of
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    14
our ordering relations.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    15
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    16
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    18
\isamarkupsubsubsection{Partial Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    20
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    21
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    23
A \emph{partial order} is a subclass of \isa{ordrel}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    24
where certain axioms need to hold:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    25
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    26
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    27
\isacommand{axclass}\ parord\ {\isacharless}\ ordrel\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    28
refl{\isacharcolon}\ \ \ \ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ x{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    29
trans{\isacharcolon}\ \ \ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ z\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ z{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    30
antisym{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ x\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharequal}\ y{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    31
less{\isacharunderscore}le{\isacharcolon}\ {\isachardoublequote}x\ {\isacharless}{\isacharless}\ y\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isasymand}\ x\ {\isasymnoteq}\ y{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    32
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    33
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    34
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    35
The first three axioms are the familiar ones, and the final one
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    36
requires that \isa{{\isacharless}{\isacharless}} and \isa{{\isacharless}{\isacharless}{\isacharequal}} are related as expected.
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    37
Note that behind the scenes, Isabelle has restricted the axioms to class
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    38
\isa{parord}. For example, the axiom \isa{refl} really is
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    39
\isa{{\isacharparenleft}{\isacharquery}x{\isasymColon}{\isacharquery}{\isacharprime}a{\isasymColon}parord{\isacharparenright}\ {\isacharless}{\isacharless}{\isacharequal}\ {\isacharquery}x}.
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    40
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    41
We have not made \isa{less{\isacharunderscore}le} a global definition because it would
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
    42
fix once and for all that \isa{{\isacharless}{\isacharless}} is defined in terms of \isa{{\isacharless}{\isacharless}{\isacharequal}} and
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
    43
never the other way around. Below you will see why we want to avoid this
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    44
asymmetry. The drawback of our choice is that
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    45
we need to define both \isa{{\isacharless}{\isacharless}{\isacharequal}} and \isa{{\isacharless}{\isacharless}} for each instance.
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    46
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    47
We can now prove simple theorems in this abstract setting, for example
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    48
that \isa{{\isacharless}{\isacharless}} is not symmetric:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    49
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    50
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    51
\isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isacharcolon}{\isacharcolon}parord{\isacharparenright}\ {\isacharless}{\isacharless}\ y\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymnot}\ y\ {\isacharless}{\isacharless}\ x{\isacharparenright}\ {\isacharequal}\ True{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    52
\isamarkuptrue%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
    53
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    54
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    55
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    56
We could now continue in this vein and develop a whole theory of
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    57
results about partial orders. Eventually we will want to apply these results
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    58
to concrete types, namely the instances of the class. Thus we first need to
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    59
prove that the types in question, for example \isa{bool}, are indeed
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    60
instances of \isa{parord}:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    61
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    62
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    63
\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ parord\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    64
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
    65
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    66
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    67
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
    68
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    69
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    70
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    71
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    72
Can you figure out why we have to include \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}use{\isacharparenright}}?
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    73
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    74
We can now apply our single lemma above in the context of booleans:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    75
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    76
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    77
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}P{\isacharcolon}{\isacharcolon}bool{\isacharparenright}\ {\isacharless}{\isacharless}\ Q\ {\isasymLongrightarrow}\ {\isasymnot}{\isacharparenleft}Q\ {\isacharless}{\isacharless}\ P{\isacharparenright}{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    78
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
    79
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    80
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    81
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    82
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    83
The effect is not stunning, but it demonstrates the principle.  It also shows
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    84
that tools like the simplifier can deal with generic rules.
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    85
The main advantage of the axiomatic method is that
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    86
theorems can be proved in the abstract and freely reused for each instance.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    87
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    88
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    89
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    90
\isamarkupsubsubsection{Linear Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    91
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    92
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    93
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    94
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    95
If any two elements of a partial order are comparable it is a
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    96
\textbf{linear} or \textbf{total} order:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    97
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    98
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    99
\isacommand{axclass}\ linord\ {\isacharless}\ parord\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   100
linear{\isacharcolon}\ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isasymor}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   101
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   102
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   103
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   104
By construction, \isa{linord} inherits all axioms from \isa{parord}.
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   105
Therefore we can show that linearity can be expressed in terms of \isa{{\isacharless}{\isacharless}}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   106
as follows:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   107
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   108
\isamarkuptrue%
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   109
\isacommand{lemma}\ {\isachardoublequote}{\isasymAnd}x{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isacharcolon}{\isacharcolon}linord{\isachardot}\ x\ {\isacharless}{\isacharless}\ y\ {\isasymor}\ x\ {\isacharequal}\ y\ {\isasymor}\ y\ {\isacharless}{\isacharless}\ x{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   110
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   111
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   112
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   113
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
   114
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   115
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   116
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   117
Linear orders are an example of subclassing\index{subclasses}
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   118
by construction, which is the most
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   119
common case.  Subclass relationships can also be proved.  
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   120
This is the topic of the following
10654
458068404143 *** empty log message ***
nipkow
parents: 10645
diff changeset
   121
paragraph.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   122
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   123
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   124
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   125
\isamarkupsubsubsection{Strict Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   126
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   127
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   128
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   129
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   130
An alternative axiomatization of partial orders takes \isa{{\isacharless}{\isacharless}} rather than
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   131
\isa{{\isacharless}{\isacharless}{\isacharequal}} as the primary concept. The result is a \textbf{strict} order:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   132
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   133
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   134
\isacommand{axclass}\ strord\ {\isacharless}\ ordrel\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   135
irrefl{\isacharcolon}\ \ \ \ \ {\isachardoublequote}{\isasymnot}\ x\ {\isacharless}{\isacharless}\ x{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   136
less{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}\ z\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}\ z{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   137
le{\isacharunderscore}less{\isacharcolon}\ \ \ \ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}\ y\ {\isasymor}\ x\ {\isacharequal}\ y{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   138
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   139
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   140
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   141
It is well known that partial orders are the same as strict orders. Let us
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   142
prove one direction, namely that partial orders are a subclass of strict
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   143
orders.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   144
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   145
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   146
\isacommand{instance}\ parord\ {\isacharless}\ strord\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   147
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
   148
\isamarkupfalse%
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
   149
\isamarkuptrue%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   150
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
   151
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   152
\isamarkupfalse%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 13778
diff changeset
   153
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   154
%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   155
\begin{isamarkuptext}%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   156
The subclass relation must always be acyclic. Therefore Isabelle will
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   157
complain if you also prove the relationship \isa{strord\ {\isacharless}\ parord}.%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   158
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   159
\isamarkuptrue%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   160
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   161
\isamarkupsubsubsection{Multiple Inheritance and Sorts%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   162
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   163
\isamarkuptrue%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   164
%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   165
\begin{isamarkuptext}%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   166
A class may inherit from more than one direct superclass. This is called
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   167
\bfindex{multiple inheritance}.  For example, we could define
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   168
the classes of well-founded orderings and well-orderings:%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   169
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   170
\isamarkuptrue%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   171
\isacommand{axclass}\ wford\ {\isacharless}\ parord\isanewline
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   172
wford{\isacharcolon}\ {\isachardoublequote}wf\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ y\ {\isacharless}{\isacharless}\ x{\isacharbraceright}{\isachardoublequote}\isanewline
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   173
\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   174
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   175
\isacommand{axclass}\ wellord\ {\isacharless}\ linord{\isacharcomma}\ wford\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   176
%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   177
\begin{isamarkuptext}%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   178
\noindent
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   179
The last line expresses the usual definition: a well-ordering is a linear
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   180
well-founded ordering. The result is the subclass diagram in
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   181
Figure~\ref{fig:subclass}.
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   182
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   183
\begin{figure}[htbp]
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   184
\[
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   185
\begin{array}{r@ {}r@ {}c@ {}l@ {}l}
12815
wenzelm
parents: 12332
diff changeset
   186
& & \isa{type}\\
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   187
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   188
& & \isa{ordrel}\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   189
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   190
& & \isa{strord}\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   191
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   192
& & \isa{parord} \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   193
& / & & \backslash \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   194
\isa{linord} & & & & \isa{wford} \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   195
& \backslash & & / \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   196
& & \isa{wellord}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   197
\end{array}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   198
\]
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   199
\caption{Subclass Diagram}
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   200
\label{fig:subclass}
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   201
\end{figure}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   202
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   203
Since class \isa{wellord} does not introduce any new axioms, it can simply
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   204
be viewed as the intersection of the two classes \isa{linord} and \isa{wford}. Such intersections need not be given a new name but can be created on
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   205
the fly: the expression $\{C@1,\dots,C@n\}$, where the $C@i$ are classes,
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   206
represents the intersection of the $C@i$. Such an expression is called a
11428
332347b9b942 tidying the index
paulson
parents: 11196
diff changeset
   207
\textbf{sort},\index{sorts} and sorts can appear in most places where we have only shown
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   208
classes so far, for example in type constraints: \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}{\isacharbraceleft}linord{\isacharcomma}wford{\isacharbraceright}}.
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   209
In fact, \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}C} is short for \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}{\isacharbraceleft}C{\isacharbraceright}}.
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   210
However, we do not pursue this rarefied concept further.
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   211
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   212
This concludes our demonstration of type classes based on orderings.  We
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   213
remind our readers that \isa{Main} contains a theory of
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   214
orderings phrased in terms of the usual \isa{{\isasymle}} and \isa{{\isacharless}}.
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   215
If possible, base your own ordering relations on this theory.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   216
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   217
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   218
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   219
\isamarkupsubsubsection{Inconsistencies%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   220
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   221
\isamarkuptrue%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   222
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   223
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   224
The reader may be wondering what happens if we
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   225
attach an inconsistent set of axioms to a class. So far we have always
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   226
avoided to add new axioms to HOL for fear of inconsistencies and suddenly it
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   227
seems that we are throwing all caution to the wind. So why is there no
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   228
problem?
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   229
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   230
The point is that by construction, all type variables in the axioms of an
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   231
\isacommand{axclass} are automatically constrained with the class being
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   232
defined (as shown for axiom \isa{refl} above). These constraints are
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   233
always carried around and Isabelle takes care that they are never lost,
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   234
unless the type variable is instantiated with a type that has been shown to
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   235
belong to that class. Thus you may be able to prove \isa{False}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   236
from your axioms, but Isabelle will remind you that this
12332
aea72a834c85 *** empty log message ***
nipkow
parents: 11866
diff changeset
   237
theorem has the hidden hypothesis that the class is non-empty.
aea72a834c85 *** empty log message ***
nipkow
parents: 11866
diff changeset
   238
aea72a834c85 *** empty log message ***
nipkow
parents: 11866
diff changeset
   239
Even if each individual class is consistent, intersections of (unrelated)
aea72a834c85 *** empty log message ***
nipkow
parents: 11866
diff changeset
   240
classes readily become inconsistent in practice. Now we know this need not
aea72a834c85 *** empty log message ***
nipkow
parents: 11866
diff changeset
   241
worry us.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   242
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   243
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
   244
\isamarkupfalse%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   245
\end{isabellebody}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   246
%%% Local Variables:
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   247
%%% mode: latex
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   248
%%% TeX-master: "root"
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   249
%%% End: