| author | blanchet | 
| Sun, 16 Feb 2014 18:39:41 +0100 | |
| changeset 55519 | 8a54bf4a92ca | 
| parent 55417 | 01fbfb60c33e | 
| child 55642 | 63beb38e9258 | 
| permissions | -rw-r--r-- | 
| 42147 | 1  | 
(* Title: HOL/Probability/Infinite_Product_Measure.thy  | 
2  | 
Author: Johannes Hölzl, TU München  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {*Infinite Product Measure*}
 | 
|
6  | 
||
7  | 
theory Infinite_Product_Measure  | 
|
| 
50039
 
bfd5198cbe40
added projective_family; generalized generator in product_prob_space to projective_family
 
immler@in.tum.de 
parents: 
50038 
diff
changeset
 | 
8  | 
imports Probability_Measure Caratheodory Projective_Family  | 
| 42147 | 9  | 
begin  | 
10  | 
||
| 47694 | 11  | 
lemma (in product_prob_space) emeasure_PiM_emb_not_empty:  | 
12  | 
  assumes X: "J \<noteq> {}" "J \<subseteq> I" "finite J" "\<forall>i\<in>J. X i \<in> sets (M i)"
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
13  | 
shows "emeasure (Pi\<^sub>M I M) (emb I J (Pi\<^sub>E J X)) = emeasure (Pi\<^sub>M J M) (Pi\<^sub>E J X)"  | 
| 42147 | 14  | 
proof cases  | 
| 47694 | 15  | 
assume "finite I" with X show ?thesis by simp  | 
| 42147 | 16  | 
next  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
17  | 
let ?\<Omega> = "\<Pi>\<^sub>E i\<in>I. space (M i)"  | 
| 42147 | 18  | 
let ?G = generator  | 
19  | 
assume "\<not> finite I"  | 
|
| 
45777
 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 
hoelzl 
parents: 
44928 
diff
changeset
 | 
20  | 
  then have I_not_empty: "I \<noteq> {}" by auto
 | 
| 47694 | 21  | 
interpret G!: algebra ?\<Omega> generator by (rule algebra_generator) fact  | 
| 50252 | 22  | 
note mu_G_mono =  | 
23  | 
G.additive_increasing[OF positive_mu_G[OF I_not_empty] additive_mu_G[OF I_not_empty],  | 
|
24  | 
THEN increasingD]  | 
|
25  | 
  write mu_G  ("\<mu>G")
 | 
|
| 42147 | 26  | 
|
| 47694 | 27  | 
  { fix Z J assume J: "J \<noteq> {}" "finite J" "J \<subseteq> I" and Z: "Z \<in> ?G"
 | 
| 42147 | 28  | 
|
29  | 
from `infinite I` `finite J` obtain k where k: "k \<in> I" "k \<notin> J"  | 
|
30  | 
by (metis rev_finite_subset subsetI)  | 
|
31  | 
moreover from Z guess K' X' by (rule generatorE)  | 
|
32  | 
moreover def K \<equiv> "insert k K'"  | 
|
33  | 
moreover def X \<equiv> "emb K K' X'"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
34  | 
    ultimately have K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "X \<in> sets (Pi\<^sub>M K M)" "Z = emb I K X"
 | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
35  | 
      "K - J \<noteq> {}" "K - J \<subseteq> I" "\<mu>G Z = emeasure (Pi\<^sub>M K M) X"
 | 
| 42147 | 36  | 
by (auto simp: subset_insertI)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
37  | 
let ?M = "\<lambda>y. (\<lambda>x. merge J (K - J) (y, x)) -` emb (J \<union> K) K X \<inter> space (Pi\<^sub>M (K - J) M)"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
38  | 
    { fix y assume y: "y \<in> space (Pi\<^sub>M J M)"
 | 
| 42147 | 39  | 
note * = merge_emb[OF `K \<subseteq> I` `J \<subseteq> I` y, of X]  | 
40  | 
moreover  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
41  | 
have **: "?M y \<in> sets (Pi\<^sub>M (K - J) M)"  | 
| 42147 | 42  | 
using J K y by (intro merge_sets) auto  | 
43  | 
ultimately  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
44  | 
have ***: "((\<lambda>x. merge J (I - J) (y, x)) -` Z \<inter> space (Pi\<^sub>M I M)) \<in> ?G"  | 
| 42147 | 45  | 
using J K by (intro generatorI) auto  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
46  | 
have "\<mu>G ((\<lambda>x. merge J (I - J) (y, x)) -` emb I K X \<inter> space (Pi\<^sub>M I M)) = emeasure (Pi\<^sub>M (K - J) M) (?M y)"  | 
| 50252 | 47  | 
unfolding * using K J by (subst mu_G_eq[OF _ _ _ **]) auto  | 
| 42147 | 48  | 
note * ** *** this }  | 
49  | 
note merge_in_G = this  | 
|
50  | 
||
51  | 
have "finite (K - J)" using K by auto  | 
|
52  | 
||
53  | 
interpret J: finite_product_prob_space M J by default fact+  | 
|
54  | 
interpret KmJ: finite_product_prob_space M "K - J" by default fact+  | 
|
55  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
56  | 
have "\<mu>G Z = emeasure (Pi\<^sub>M (J \<union> (K - J)) M) (emb (J \<union> (K - J)) K X)"  | 
| 42147 | 57  | 
using K J by simp  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
58  | 
also have "\<dots> = (\<integral>\<^sup>+ x. emeasure (Pi\<^sub>M (K - J) M) (?M x) \<partial>Pi\<^sub>M J M)"  | 
| 47694 | 59  | 
using K J by (subst emeasure_fold_integral) auto  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
60  | 
also have "\<dots> = (\<integral>\<^sup>+ y. \<mu>G ((\<lambda>x. merge J (I - J) (y, x)) -` Z \<inter> space (Pi\<^sub>M I M)) \<partial>Pi\<^sub>M J M)"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
61  | 
(is "_ = (\<integral>\<^sup>+x. \<mu>G (?MZ x) \<partial>Pi\<^sub>M J M)")  | 
| 47694 | 62  | 
proof (intro positive_integral_cong)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
63  | 
fix x assume x: "x \<in> space (Pi\<^sub>M J M)"  | 
| 42147 | 64  | 
with K merge_in_G(2)[OF this]  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
65  | 
show "emeasure (Pi\<^sub>M (K - J) M) (?M x) = \<mu>G (?MZ x)"  | 
| 50252 | 66  | 
unfolding `Z = emb I K X` merge_in_G(1)[OF x] by (subst mu_G_eq) auto  | 
| 42147 | 67  | 
qed  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
68  | 
finally have fold: "\<mu>G Z = (\<integral>\<^sup>+x. \<mu>G (?MZ x) \<partial>Pi\<^sub>M J M)" .  | 
| 42147 | 69  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
70  | 
    { fix x assume x: "x \<in> space (Pi\<^sub>M J M)"
 | 
| 42147 | 71  | 
then have "\<mu>G (?MZ x) \<le> 1"  | 
72  | 
unfolding merge_in_G(4)[OF x] `Z = emb I K X`  | 
|
73  | 
by (intro KmJ.measure_le_1 merge_in_G(2)[OF x]) }  | 
|
74  | 
note le_1 = this  | 
|
75  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
76  | 
let ?q = "\<lambda>y. \<mu>G ((\<lambda>x. merge J (I - J) (y,x)) -` Z \<inter> space (Pi\<^sub>M I M))"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
77  | 
have "?q \<in> borel_measurable (Pi\<^sub>M J M)"  | 
| 42147 | 78  | 
unfolding `Z = emb I K X` using J K merge_in_G(3)  | 
| 50252 | 79  | 
by (simp add: merge_in_G mu_G_eq emeasure_fold_measurable cong: measurable_cong)  | 
| 42147 | 80  | 
note this fold le_1 merge_in_G(3) }  | 
81  | 
note fold = this  | 
|
82  | 
||
| 47694 | 83  | 
have "\<exists>\<mu>. (\<forall>s\<in>?G. \<mu> s = \<mu>G s) \<and> measure_space ?\<Omega> (sigma_sets ?\<Omega> ?G) \<mu>"  | 
| 50252 | 84  | 
proof (rule G.caratheodory_empty_continuous[OF positive_mu_G additive_mu_G])  | 
| 47694 | 85  | 
fix A assume "A \<in> ?G"  | 
| 42147 | 86  | 
with generatorE guess J X . note JX = this  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
87  | 
interpret JK: finite_product_prob_space M J by default fact+  | 
| 
46898
 
1570b30ee040
tuned proofs -- eliminated pointless chaining of facts after 'interpret';
 
wenzelm 
parents: 
46731 
diff
changeset
 | 
88  | 
from JX show "\<mu>G A \<noteq> \<infinity>" by simp  | 
| 42147 | 89  | 
next  | 
| 47694 | 90  | 
    fix A assume A: "range A \<subseteq> ?G" "decseq A" "(\<Inter>i. A i) = {}"
 | 
| 42147 | 91  | 
then have "decseq (\<lambda>i. \<mu>G (A i))"  | 
| 50252 | 92  | 
by (auto intro!: mu_G_mono simp: decseq_def)  | 
| 42147 | 93  | 
moreover  | 
94  | 
have "(INF i. \<mu>G (A i)) = 0"  | 
|
95  | 
proof (rule ccontr)  | 
|
96  | 
assume "(INF i. \<mu>G (A i)) \<noteq> 0" (is "?a \<noteq> 0")  | 
|
97  | 
moreover have "0 \<le> ?a"  | 
|
| 50252 | 98  | 
using A positive_mu_G[OF I_not_empty] by (auto intro!: INF_greatest simp: positive_def)  | 
| 42147 | 99  | 
ultimately have "0 < ?a" by auto  | 
100  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
101  | 
      have "\<forall>n. \<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^sub>M J M) \<and> A n = emb I J X \<and> \<mu>G (A n) = emeasure (limP J M (\<lambda>J. (Pi\<^sub>M J M))) X"
 | 
| 42147 | 102  | 
using A by (intro allI generator_Ex) auto  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
103  | 
      then obtain J' X' where J': "\<And>n. J' n \<noteq> {}" "\<And>n. finite (J' n)" "\<And>n. J' n \<subseteq> I" "\<And>n. X' n \<in> sets (Pi\<^sub>M (J' n) M)"
 | 
| 42147 | 104  | 
and A': "\<And>n. A n = emb I (J' n) (X' n)"  | 
105  | 
unfolding choice_iff by blast  | 
|
106  | 
moreover def J \<equiv> "\<lambda>n. (\<Union>i\<le>n. J' i)"  | 
|
107  | 
moreover def X \<equiv> "\<lambda>n. emb (J n) (J' n) (X' n)"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
108  | 
      ultimately have J: "\<And>n. J n \<noteq> {}" "\<And>n. finite (J n)" "\<And>n. J n \<subseteq> I" "\<And>n. X n \<in> sets (Pi\<^sub>M (J n) M)"
 | 
| 42147 | 109  | 
by auto  | 
| 47694 | 110  | 
with A' have A_eq: "\<And>n. A n = emb I (J n) (X n)" "\<And>n. A n \<in> ?G"  | 
111  | 
unfolding J_def X_def by (subst prod_emb_trans) (insert A, auto)  | 
|
| 42147 | 112  | 
|
113  | 
have J_mono: "\<And>n m. n \<le> m \<Longrightarrow> J n \<subseteq> J m"  | 
|
114  | 
unfolding J_def by force  | 
|
115  | 
||
116  | 
interpret J: finite_product_prob_space M "J i" for i by default fact+  | 
|
117  | 
||
118  | 
have a_le_1: "?a \<le> 1"  | 
|
| 50252 | 119  | 
using mu_G_spec[of "J 0" "A 0" "X 0"] J A_eq  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
43920 
diff
changeset
 | 
120  | 
by (auto intro!: INF_lower2[of 0] J.measure_le_1)  | 
| 42147 | 121  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
122  | 
let ?M = "\<lambda>K Z y. (\<lambda>x. merge K (I - K) (y, x)) -` Z \<inter> space (Pi\<^sub>M I M)"  | 
| 42147 | 123  | 
|
| 47694 | 124  | 
      { fix Z k assume Z: "range Z \<subseteq> ?G" "decseq Z" "\<forall>n. ?a / 2^k \<le> \<mu>G (Z n)"
 | 
125  | 
then have Z_sets: "\<And>n. Z n \<in> ?G" by auto  | 
|
| 42147 | 126  | 
        fix J' assume J': "J' \<noteq> {}" "finite J'" "J' \<subseteq> I"
 | 
127  | 
interpret J': finite_product_prob_space M J' by default fact+  | 
|
128  | 
||
| 46731 | 129  | 
let ?q = "\<lambda>n y. \<mu>G (?M J' (Z n) y)"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
130  | 
        let ?Q = "\<lambda>n. ?q n -` {?a / 2^(k+1) ..} \<inter> space (Pi\<^sub>M J' M)"
 | 
| 42147 | 131  | 
        { fix n
 | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
132  | 
have "?q n \<in> borel_measurable (Pi\<^sub>M J' M)"  | 
| 42147 | 133  | 
using Z J' by (intro fold(1)) auto  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
134  | 
then have "?Q n \<in> sets (Pi\<^sub>M J' M)"  | 
| 42147 | 135  | 
by (rule measurable_sets) auto }  | 
136  | 
note Q_sets = this  | 
|
137  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
138  | 
have "?a / 2^(k+1) \<le> (INF n. emeasure (Pi\<^sub>M J' M) (?Q n))"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
43920 
diff
changeset
 | 
139  | 
proof (intro INF_greatest)  | 
| 42147 | 140  | 
fix n  | 
141  | 
have "?a / 2^k \<le> \<mu>G (Z n)" using Z by auto  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
142  | 
also have "\<dots> \<le> (\<integral>\<^sup>+ x. indicator (?Q n) x + ?a / 2^(k+1) \<partial>Pi\<^sub>M J' M)"  | 
| 47694 | 143  | 
unfolding fold(2)[OF J' `Z n \<in> ?G`]  | 
144  | 
proof (intro positive_integral_mono)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
145  | 
fix x assume x: "x \<in> space (Pi\<^sub>M J' M)"  | 
| 42147 | 146  | 
then have "?q n x \<le> 1 + 0"  | 
147  | 
using J' Z fold(3) Z_sets by auto  | 
|
148  | 
also have "\<dots> \<le> 1 + ?a / 2^(k+1)"  | 
|
149  | 
using `0 < ?a` by (intro add_mono) auto  | 
|
150  | 
finally have "?q n x \<le> 1 + ?a / 2^(k+1)" .  | 
|
151  | 
with x show "?q n x \<le> indicator (?Q n) x + ?a / 2^(k+1)"  | 
|
152  | 
by (auto split: split_indicator simp del: power_Suc)  | 
|
153  | 
qed  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
154  | 
also have "\<dots> = emeasure (Pi\<^sub>M J' M) (?Q n) + ?a / 2^(k+1)"  | 
| 47694 | 155  | 
using `0 \<le> ?a` Q_sets J'.emeasure_space_1  | 
156  | 
by (subst positive_integral_add) auto  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
157  | 
finally show "?a / 2^(k+1) \<le> emeasure (Pi\<^sub>M J' M) (?Q n)" using `?a \<le> 1`  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
158  | 
by (cases rule: ereal2_cases[of ?a "emeasure (Pi\<^sub>M J' M) (?Q n)"])  | 
| 42147 | 159  | 
(auto simp: field_simps)  | 
160  | 
qed  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
161  | 
also have "\<dots> = emeasure (Pi\<^sub>M J' M) (\<Inter>n. ?Q n)"  | 
| 47694 | 162  | 
proof (intro INF_emeasure_decseq)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
163  | 
show "range ?Q \<subseteq> sets (Pi\<^sub>M J' M)" using Q_sets by auto  | 
| 42147 | 164  | 
show "decseq ?Q"  | 
165  | 
unfolding decseq_def  | 
|
166  | 
proof (safe intro!: vimageI[OF refl])  | 
|
167  | 
fix m n :: nat assume "m \<le> n"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
168  | 
fix x assume x: "x \<in> space (Pi\<^sub>M J' M)"  | 
| 42147 | 169  | 
assume "?a / 2^(k+1) \<le> ?q n x"  | 
170  | 
also have "?q n x \<le> ?q m x"  | 
|
| 50252 | 171  | 
proof (rule mu_G_mono)  | 
| 42147 | 172  | 
from fold(4)[OF J', OF Z_sets x]  | 
| 47694 | 173  | 
show "?M J' (Z n) x \<in> ?G" "?M J' (Z m) x \<in> ?G" by auto  | 
| 42147 | 174  | 
show "?M J' (Z n) x \<subseteq> ?M J' (Z m) x"  | 
175  | 
using `decseq Z`[THEN decseqD, OF `m \<le> n`] by auto  | 
|
176  | 
qed  | 
|
177  | 
finally show "?a / 2^(k+1) \<le> ?q m x" .  | 
|
178  | 
qed  | 
|
| 47694 | 179  | 
qed simp  | 
| 42147 | 180  | 
        finally have "(\<Inter>n. ?Q n) \<noteq> {}"
 | 
181  | 
using `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: divide_le_0_iff power_le_zero_eq)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
182  | 
then have "\<exists>w\<in>space (Pi\<^sub>M J' M). \<forall>n. ?a / 2 ^ (k + 1) \<le> ?q n w" by auto }  | 
| 42147 | 183  | 
note Ex_w = this  | 
184  | 
||
| 46731 | 185  | 
let ?q = "\<lambda>k n y. \<mu>G (?M (J k) (A n) y)"  | 
| 42147 | 186  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
43920 
diff
changeset
 | 
187  | 
have "\<forall>n. ?a / 2 ^ 0 \<le> \<mu>G (A n)" by (auto intro: INF_lower)  | 
| 42147 | 188  | 
from Ex_w[OF A(1,2) this J(1-3), of 0] guess w0 .. note w0 = this  | 
189  | 
||
| 46731 | 190  | 
let ?P =  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
191  | 
"\<lambda>k wk w. w \<in> space (Pi\<^sub>M (J (Suc k)) M) \<and> restrict w (J k) = wk \<and>  | 
| 46731 | 192  | 
(\<forall>n. ?a / 2 ^ (Suc k + 1) \<le> ?q (Suc k) n w)"  | 
| 55415 | 193  | 
def w \<equiv> "rec_nat w0 (\<lambda>k wk. Eps (?P k wk))"  | 
| 42147 | 194  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
195  | 
      { fix k have w: "w k \<in> space (Pi\<^sub>M (J k) M) \<and>
 | 
| 42147 | 196  | 
(\<forall>n. ?a / 2 ^ (k + 1) \<le> ?q k n (w k)) \<and> (k \<noteq> 0 \<longrightarrow> restrict (w k) (J (k - 1)) = w (k - 1))"  | 
197  | 
proof (induct k)  | 
|
198  | 
case 0 with w0 show ?case  | 
|
| 
55417
 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 
blanchet 
parents: 
55415 
diff
changeset
 | 
199  | 
unfolding w_def nat.recs(1) by auto  | 
| 42147 | 200  | 
next  | 
201  | 
case (Suc k)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
202  | 
then have wk: "w k \<in> space (Pi\<^sub>M (J k) M)" by auto  | 
| 42147 | 203  | 
have "\<exists>w'. ?P k (w k) w'"  | 
204  | 
proof cases  | 
|
205  | 
assume [simp]: "J k = J (Suc k)"  | 
|
206  | 
show ?thesis  | 
|
207  | 
proof (intro exI[of _ "w k"] conjI allI)  | 
|
208  | 
fix n  | 
|
209  | 
have "?a / 2 ^ (Suc k + 1) \<le> ?a / 2 ^ (k + 1)"  | 
|
210  | 
using `0 < ?a` `?a \<le> 1` by (cases ?a) (auto simp: field_simps)  | 
|
211  | 
also have "\<dots> \<le> ?q k n (w k)" using Suc by auto  | 
|
212  | 
finally show "?a / 2 ^ (Suc k + 1) \<le> ?q (Suc k) n (w k)" by simp  | 
|
213  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
214  | 
show "w k \<in> space (Pi\<^sub>M (J (Suc k)) M)"  | 
| 42147 | 215  | 
using Suc by simp  | 
216  | 
then show "restrict (w k) (J k) = w k"  | 
|
| 47694 | 217  | 
by (simp add: extensional_restrict space_PiM)  | 
| 42147 | 218  | 
qed  | 
219  | 
next  | 
|
220  | 
assume "J k \<noteq> J (Suc k)"  | 
|
221  | 
            with J_mono[of k "Suc k"] have "J (Suc k) - J k \<noteq> {}" (is "?D \<noteq> {}") by auto
 | 
|
| 47694 | 222  | 
have "range (\<lambda>n. ?M (J k) (A n) (w k)) \<subseteq> ?G"  | 
| 42147 | 223  | 
"decseq (\<lambda>n. ?M (J k) (A n) (w k))"  | 
224  | 
"\<forall>n. ?a / 2 ^ (k + 1) \<le> \<mu>G (?M (J k) (A n) (w k))"  | 
|
225  | 
using `decseq A` fold(4)[OF J(1-3) A_eq(2), of "w k" k] Suc  | 
|
226  | 
by (auto simp: decseq_def)  | 
|
227  | 
            from Ex_w[OF this `?D \<noteq> {}`] J[of "Suc k"]
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
228  | 
obtain w' where w': "w' \<in> space (Pi\<^sub>M ?D M)"  | 
| 42147 | 229  | 
"\<forall>n. ?a / 2 ^ (Suc k + 1) \<le> \<mu>G (?M ?D (?M (J k) (A n) (w k)) w')" by auto  | 
| 49780 | 230  | 
let ?w = "merge (J k) ?D (w k, w')"  | 
231  | 
have [simp]: "\<And>x. merge (J k) (I - J k) (w k, merge ?D (I - ?D) (w', x)) =  | 
|
232  | 
merge (J (Suc k)) (I - (J (Suc k))) (?w, x)"  | 
|
| 42147 | 233  | 
using J(3)[of "Suc k"] J(3)[of k] J_mono[of k "Suc k"]  | 
234  | 
by (auto intro!: ext split: split_merge)  | 
|
235  | 
have *: "\<And>n. ?M ?D (?M (J k) (A n) (w k)) w' = ?M (J (Suc k)) (A n) ?w"  | 
|
236  | 
using w'(1) J(3)[of "Suc k"]  | 
|
| 47694 | 237  | 
by (auto simp: space_PiM split: split_merge intro!: extensional_merge_sub) force+  | 
| 42147 | 238  | 
show ?thesis  | 
239  | 
using w' J_mono[of k "Suc k"] wk unfolding *  | 
|
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
240  | 
by (intro exI[of _ ?w])  | 
| 
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
241  | 
(auto split: split_merge intro!: extensional_merge_sub ext simp: space_PiM PiE_iff)  | 
| 42147 | 242  | 
qed  | 
243  | 
then have "?P k (w k) (w (Suc k))"  | 
|
| 
55417
 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 
blanchet 
parents: 
55415 
diff
changeset
 | 
244  | 
unfolding w_def nat.recs(2) unfolding w_def[symmetric]  | 
| 42147 | 245  | 
by (rule someI_ex)  | 
246  | 
then show ?case by auto  | 
|
247  | 
qed  | 
|
248  | 
moreover  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
249  | 
from w have "w k \<in> space (Pi\<^sub>M (J k) M)" by auto  | 
| 42147 | 250  | 
moreover  | 
251  | 
from w have "?a / 2 ^ (k + 1) \<le> ?q k k (w k)" by auto  | 
|
252  | 
        then have "?M (J k) (A k) (w k) \<noteq> {}"
 | 
|
| 50252 | 253  | 
using positive_mu_G[OF I_not_empty, unfolded positive_def] `0 < ?a` `?a \<le> 1`  | 
| 42147 | 254  | 
by (cases ?a) (auto simp: divide_le_0_iff power_le_zero_eq)  | 
255  | 
then obtain x where "x \<in> ?M (J k) (A k) (w k)" by auto  | 
|
| 49780 | 256  | 
then have "merge (J k) (I - J k) (w k, x) \<in> A k" by auto  | 
| 42147 | 257  | 
then have "\<exists>x\<in>A k. restrict x (J k) = w k"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
258  | 
using `w k \<in> space (Pi\<^sub>M (J k) M)`  | 
| 47694 | 259  | 
by (intro rev_bexI) (auto intro!: ext simp: extensional_def space_PiM)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
260  | 
ultimately have "w k \<in> space (Pi\<^sub>M (J k) M)"  | 
| 42147 | 261  | 
"\<exists>x\<in>A k. restrict x (J k) = w k"  | 
262  | 
"k \<noteq> 0 \<Longrightarrow> restrict (w k) (J (k - 1)) = w (k - 1)"  | 
|
263  | 
by auto }  | 
|
264  | 
note w = this  | 
|
265  | 
||
266  | 
      { fix k l i assume "k \<le> l" "i \<in> J k"
 | 
|
267  | 
        { fix l have "w k i = w (k + l) i"
 | 
|
268  | 
proof (induct l)  | 
|
269  | 
case (Suc l)  | 
|
270  | 
from `i \<in> J k` J_mono[of k "k + l"] have "i \<in> J (k + l)" by auto  | 
|
271  | 
with w(3)[of "k + Suc l"]  | 
|
272  | 
have "w (k + l) i = w (k + Suc l) i"  | 
|
273  | 
by (auto simp: restrict_def fun_eq_iff split: split_if_asm)  | 
|
274  | 
with Suc show ?case by simp  | 
|
275  | 
qed simp }  | 
|
276  | 
from this[of "l - k"] `k \<le> l` have "w l i = w k i" by simp }  | 
|
277  | 
note w_mono = this  | 
|
278  | 
||
279  | 
def w' \<equiv> "\<lambda>i. if i \<in> (\<Union>k. J k) then w (LEAST k. i \<in> J k) i else if i \<in> I then (SOME x. x \<in> space (M i)) else undefined"  | 
|
280  | 
      { fix i k assume k: "i \<in> J k"
 | 
|
281  | 
have "w k i = w (LEAST k. i \<in> J k) i"  | 
|
282  | 
by (intro w_mono Least_le k LeastI[of _ k])  | 
|
283  | 
then have "w' i = w k i"  | 
|
284  | 
unfolding w'_def using k by auto }  | 
|
285  | 
note w'_eq = this  | 
|
286  | 
have w'_simps1: "\<And>i. i \<notin> I \<Longrightarrow> w' i = undefined"  | 
|
287  | 
using J by (auto simp: w'_def)  | 
|
288  | 
have w'_simps2: "\<And>i. i \<notin> (\<Union>k. J k) \<Longrightarrow> i \<in> I \<Longrightarrow> w' i \<in> space (M i)"  | 
|
289  | 
using J by (auto simp: w'_def intro!: someI_ex[OF M.not_empty[unfolded ex_in_conv[symmetric]]])  | 
|
290  | 
      { fix i assume "i \<in> I" then have "w' i \<in> space (M i)"
 | 
|
| 47694 | 291  | 
using w(1) by (cases "i \<in> (\<Union>k. J k)") (force simp: w'_simps2 w'_eq space_PiM)+ }  | 
| 42147 | 292  | 
note w'_simps[simp] = w'_eq w'_simps1 w'_simps2 this  | 
293  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
294  | 
have w': "w' \<in> space (Pi\<^sub>M I M)"  | 
| 47694 | 295  | 
using w(1) by (auto simp add: Pi_iff extensional_def space_PiM)  | 
| 42147 | 296  | 
|
297  | 
      { fix n
 | 
|
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
298  | 
have "restrict w' (J n) = w n" using w(1)[of n]  | 
| 
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
299  | 
by (auto simp add: fun_eq_iff space_PiM)  | 
| 42147 | 300  | 
with w[of n] obtain x where "x \<in> A n" "restrict x (J n) = restrict w' (J n)" by auto  | 
| 47694 | 301  | 
then have "w' \<in> A n" unfolding A_eq using w' by (auto simp: prod_emb_def space_PiM) }  | 
| 42147 | 302  | 
then have "w' \<in> (\<Inter>i. A i)" by auto  | 
303  | 
      with `(\<Inter>i. A i) = {}` show False by auto
 | 
|
304  | 
qed  | 
|
305  | 
ultimately show "(\<lambda>i. \<mu>G (A i)) ----> 0"  | 
|
| 51351 | 306  | 
using LIMSEQ_INF[of "\<lambda>i. \<mu>G (A i)"] by simp  | 
| 
45777
 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 
hoelzl 
parents: 
44928 
diff
changeset
 | 
307  | 
qed fact+  | 
| 
 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 
hoelzl 
parents: 
44928 
diff
changeset
 | 
308  | 
then guess \<mu> .. note \<mu> = this  | 
| 
 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 
hoelzl 
parents: 
44928 
diff
changeset
 | 
309  | 
show ?thesis  | 
| 47694 | 310  | 
proof (subst emeasure_extend_measure_Pair[OF PiM_def, of I M \<mu> J X])  | 
311  | 
    from assms show "(J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))"
 | 
|
312  | 
by (simp add: Pi_iff)  | 
|
313  | 
next  | 
|
314  | 
    fix J X assume J: "(J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))"
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
315  | 
then show "emb I J (Pi\<^sub>E J X) \<in> Pow (\<Pi>\<^sub>E i\<in>I. space (M i))"  | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
316  | 
by (auto simp: Pi_iff prod_emb_def dest: sets.sets_into_space)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
317  | 
have "emb I J (Pi\<^sub>E J X) \<in> generator"  | 
| 50003 | 318  | 
      using J `I \<noteq> {}` by (intro generatorI') (auto simp: Pi_iff)
 | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
319  | 
then have "\<mu> (emb I J (Pi\<^sub>E J X)) = \<mu>G (emb I J (Pi\<^sub>E J X))"  | 
| 47694 | 320  | 
using \<mu> by simp  | 
321  | 
also have "\<dots> = (\<Prod> j\<in>J. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"  | 
|
| 50252 | 322  | 
      using J  `I \<noteq> {}` by (subst mu_G_spec[OF _ _ _ refl]) (auto simp: emeasure_PiM Pi_iff)
 | 
| 47694 | 323  | 
    also have "\<dots> = (\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}.
 | 
324  | 
if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"  | 
|
325  | 
      using J `I \<noteq> {}` by (intro setprod_mono_one_right) (auto simp: M.emeasure_space_1)
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
326  | 
finally show "\<mu> (emb I J (Pi\<^sub>E J X)) = \<dots>" .  | 
| 47694 | 327  | 
next  | 
328  | 
let ?F = "\<lambda>j. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j))"  | 
|
329  | 
    have "(\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}. ?F j) = (\<Prod>j\<in>J. ?F j)"
 | 
|
330  | 
      using X `I \<noteq> {}` by (intro setprod_mono_one_right) (auto simp: M.emeasure_space_1)
 | 
|
331  | 
    then show "(\<Prod>j\<in>J \<union> {i \<in> I. emeasure (M i) (space (M i)) \<noteq> 1}. ?F j) =
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
332  | 
emeasure (Pi\<^sub>M J M) (Pi\<^sub>E J X)"  | 
| 47694 | 333  | 
using X by (auto simp add: emeasure_PiM)  | 
334  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
335  | 
show "positive (sets (Pi\<^sub>M I M)) \<mu>" "countably_additive (sets (Pi\<^sub>M I M)) \<mu>"  | 
| 49804 | 336  | 
using \<mu> unfolding sets_PiM_generator by (auto simp: measure_space_def)  | 
| 42147 | 337  | 
qed  | 
338  | 
qed  | 
|
339  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
340  | 
sublocale product_prob_space \<subseteq> P: prob_space "Pi\<^sub>M I M"  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
341  | 
proof  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
342  | 
show "emeasure (Pi\<^sub>M I M) (space (Pi\<^sub>M I M)) = 1"  | 
| 47694 | 343  | 
proof cases  | 
344  | 
    assume "I = {}" then show ?thesis by (simp add: space_PiM_empty)
 | 
|
345  | 
next  | 
|
346  | 
    assume "I \<noteq> {}"
 | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
347  | 
then obtain i where i: "i \<in> I" by auto  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
348  | 
    then have "emb I {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i)) = (space (Pi\<^sub>M I M))"
 | 
| 47694 | 349  | 
by (auto simp: prod_emb_def space_PiM)  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
350  | 
with i show ?thesis  | 
| 47694 | 351  | 
      using emeasure_PiM_emb_not_empty[of "{i}" "\<lambda>i. space (M i)"]
 | 
352  | 
by (simp add: emeasure_PiM emeasure_space_1)  | 
|
353  | 
qed  | 
|
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
354  | 
qed  | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
355  | 
|
| 47694 | 356  | 
lemma (in product_prob_space) emeasure_PiM_emb:  | 
357  | 
assumes X: "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
358  | 
shows "emeasure (Pi\<^sub>M I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. emeasure (M i) (X i))"  | 
| 47694 | 359  | 
proof cases  | 
360  | 
  assume "J = {}"
 | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
361  | 
  moreover have "emb I {} {\<lambda>x. undefined} = space (Pi\<^sub>M I M)"
 | 
| 47694 | 362  | 
by (auto simp: space_PiM prod_emb_def)  | 
363  | 
ultimately show ?thesis  | 
|
364  | 
by (simp add: space_PiM_empty P.emeasure_space_1)  | 
|
365  | 
next  | 
|
366  | 
  assume "J \<noteq> {}" with X show ?thesis
 | 
|
367  | 
by (subst emeasure_PiM_emb_not_empty) (auto simp: emeasure_PiM)  | 
|
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
368  | 
qed  | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
369  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
370  | 
lemma (in product_prob_space) emeasure_PiM_Collect:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
371  | 
assumes X: "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
372  | 
  shows "emeasure (Pi\<^sub>M I M) {x\<in>space (Pi\<^sub>M I M). \<forall>i\<in>J. x i \<in> X i} = (\<Prod> i\<in>J. emeasure (M i) (X i))"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
373  | 
proof -  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
374  | 
  have "{x\<in>space (Pi\<^sub>M I M). \<forall>i\<in>J. x i \<in> X i} = emb I J (Pi\<^sub>E J X)"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
375  | 
unfolding prod_emb_def using assms by (auto simp: space_PiM Pi_iff)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
376  | 
with emeasure_PiM_emb[OF assms] show ?thesis by simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
377  | 
qed  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
378  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
379  | 
lemma (in product_prob_space) emeasure_PiM_Collect_single:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
380  | 
assumes X: "i \<in> I" "A \<in> sets (M i)"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
381  | 
  shows "emeasure (Pi\<^sub>M I M) {x\<in>space (Pi\<^sub>M I M). x i \<in> A} = emeasure (M i) A"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
382  | 
  using emeasure_PiM_Collect[of "{i}" "\<lambda>i. A"] assms
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
383  | 
by simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
384  | 
|
| 47694 | 385  | 
lemma (in product_prob_space) measure_PiM_emb:  | 
386  | 
assumes "J \<subseteq> I" "finite J" "\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
387  | 
shows "measure (PiM I M) (emb I J (Pi\<^sub>E J X)) = (\<Prod> i\<in>J. measure (M i) (X i))"  | 
| 47694 | 388  | 
using emeasure_PiM_emb[OF assms]  | 
389  | 
unfolding emeasure_eq_measure M.emeasure_eq_measure by (simp add: setprod_ereal)  | 
|
| 42865 | 390  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
391  | 
lemma sets_Collect_single':  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
392  | 
  "i \<in> I \<Longrightarrow> {x\<in>space (M i). P x} \<in> sets (M i) \<Longrightarrow> {x\<in>space (PiM I M). P (x i)} \<in> sets (PiM I M)"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
393  | 
  using sets_Collect_single[of i I "{x\<in>space (M i). P x}" M]
 | 
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
394  | 
by (simp add: space_PiM PiE_iff cong: conj_cong)  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
395  | 
|
| 47694 | 396  | 
lemma (in finite_product_prob_space) finite_measure_PiM_emb:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
397  | 
"(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> measure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. measure (M i) (A i))"  | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
398  | 
using measure_PiM_emb[of I A] finite_index prod_emb_PiE_same_index[OF sets.sets_into_space, of I A M]  | 
| 47694 | 399  | 
by auto  | 
| 42865 | 400  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
401  | 
lemma (in product_prob_space) PiM_component:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
402  | 
assumes "i \<in> I"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
403  | 
shows "distr (PiM I M) (M i) (\<lambda>\<omega>. \<omega> i) = M i"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
404  | 
proof (rule measure_eqI[symmetric])  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
405  | 
fix A assume "A \<in> sets (M i)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
406  | 
  moreover have "((\<lambda>\<omega>. \<omega> i) -` A \<inter> space (PiM I M)) = {x\<in>space (PiM I M). x i \<in> A}"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
407  | 
by auto  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
408  | 
ultimately show "emeasure (M i) A = emeasure (distr (PiM I M) (M i) (\<lambda>\<omega>. \<omega> i)) A"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
409  | 
by (auto simp: `i\<in>I` emeasure_distr measurable_component_singleton emeasure_PiM_Collect_single)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
410  | 
qed simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
411  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
412  | 
lemma (in product_prob_space) PiM_eq:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
413  | 
  assumes "I \<noteq> {}"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
414  | 
assumes "sets M' = sets (PiM I M)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
415  | 
assumes eq: "\<And>J F. finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>j. j \<in> J \<Longrightarrow> F j \<in> sets (M j)) \<Longrightarrow>  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
416  | 
emeasure M' (prod_emb I M J (\<Pi>\<^sub>E j\<in>J. F j)) = (\<Prod>j\<in>J. emeasure (M j) (F j))"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
417  | 
shows "M' = (PiM I M)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
418  | 
proof (rule measure_eqI_generator_eq[symmetric, OF Int_stable_prod_algebra prod_algebra_sets_into_space])  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
419  | 
show "sets (PiM I M) = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) (prod_algebra I M)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
420  | 
by (rule sets_PiM)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
421  | 
then show "sets M' = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) (prod_algebra I M)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
422  | 
unfolding `sets M' = sets (PiM I M)` by simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
423  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
424  | 
def i \<equiv> "SOME i. i \<in> I"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
425  | 
  with `I \<noteq> {}` have i: "i \<in> I"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
426  | 
by (auto intro: someI_ex)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
427  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
428  | 
  def A \<equiv> "\<lambda>n::nat. prod_emb I M {i} (\<Pi>\<^sub>E j\<in>{i}. space (M i))"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
429  | 
then show "range A \<subseteq> prod_algebra I M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
430  | 
by (auto intro!: prod_algebraI i)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
431  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
432  | 
have A_eq: "\<And>i. A i = space (PiM I M)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
433  | 
by (auto simp: prod_emb_def space_PiM Pi_iff A_def i)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
434  | 
show "(\<Union>i. A i) = (\<Pi>\<^sub>E i\<in>I. space (M i))"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
435  | 
unfolding A_eq by (auto simp: space_PiM)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
436  | 
show "\<And>i. emeasure (PiM I M) (A i) \<noteq> \<infinity>"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
437  | 
unfolding A_eq P.emeasure_space_1 by simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
438  | 
next  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
439  | 
fix X assume X: "X \<in> prod_algebra I M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
440  | 
then obtain J E where X: "X = prod_emb I M J (PIE j:J. E j)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
441  | 
and J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
442  | 
by (force elim!: prod_algebraE)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
443  | 
from eq[OF J] have "emeasure M' X = (\<Prod>j\<in>J. emeasure (M j) (E j))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
444  | 
by (simp add: X)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
445  | 
also have "\<dots> = emeasure (PiM I M) X"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
446  | 
unfolding X using J by (intro emeasure_PiM_emb[symmetric]) auto  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
447  | 
finally show "emeasure (PiM I M) X = emeasure M' X" ..  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
448  | 
qed  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
449  | 
|
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
450  | 
subsection {* Sequence space *}
 | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
451  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
452  | 
definition comb_seq :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)" where  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
453  | 
"comb_seq i \<omega> \<omega>' j = (if j < i then \<omega> j else \<omega>' (j - i))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
454  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
455  | 
lemma split_comb_seq: "P (comb_seq i \<omega> \<omega>' j) \<longleftrightarrow> (j < i \<longrightarrow> P (\<omega> j)) \<and> (\<forall>k. j = i + k \<longrightarrow> P (\<omega>' k))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
456  | 
by (auto simp: comb_seq_def not_less)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
457  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
458  | 
lemma split_comb_seq_asm: "P (comb_seq i \<omega> \<omega>' j) \<longleftrightarrow> \<not> ((j < i \<and> \<not> P (\<omega> j)) \<or> (\<exists>k. j = i + k \<and> \<not> P (\<omega>' k)))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
459  | 
by (auto simp: comb_seq_def)  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
460  | 
|
| 50099 | 461  | 
lemma measurable_comb_seq:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
462  | 
"(\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') \<in> measurable ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)) (\<Pi>\<^sub>M i\<in>UNIV. M)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
463  | 
proof (rule measurable_PiM_single)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
464  | 
show "(\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)) \<rightarrow> (UNIV \<rightarrow>\<^sub>E space M)"  | 
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
465  | 
by (auto simp: space_pair_measure space_PiM PiE_iff split: split_comb_seq)  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
466  | 
fix j :: nat and A assume A: "A \<in> sets M"  | 
| 
55414
 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 
blanchet 
parents: 
53374 
diff
changeset
 | 
467  | 
  then have *: "{\<omega> \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)). case_prod (comb_seq i) \<omega> j \<in> A} =
 | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
468  | 
    (if j < i then {\<omega> \<in> space (\<Pi>\<^sub>M i\<in>UNIV. M). \<omega> j \<in> A} \<times> space (\<Pi>\<^sub>M i\<in>UNIV. M)
 | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
469  | 
              else space (\<Pi>\<^sub>M i\<in>UNIV. M) \<times> {\<omega> \<in> space (\<Pi>\<^sub>M i\<in>UNIV. M). \<omega> (j - i) \<in> A})"
 | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
470  | 
by (auto simp: space_PiM space_pair_measure comb_seq_def dest: sets.sets_into_space)  | 
| 
55414
 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 
blanchet 
parents: 
53374 
diff
changeset
 | 
471  | 
  show "{\<omega> \<in> space ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M)). case_prod (comb_seq i) \<omega> j \<in> A} \<in> sets ((\<Pi>\<^sub>M i\<in>UNIV. M) \<Otimes>\<^sub>M (\<Pi>\<^sub>M i\<in>UNIV. M))"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
472  | 
unfolding * by (auto simp: A intro!: sets_Collect_single)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
473  | 
qed  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
474  | 
|
| 50099 | 475  | 
lemma measurable_comb_seq'[measurable (raw)]:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
476  | 
assumes f: "f \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" and g: "g \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
477  | 
shows "(\<lambda>x. comb_seq i (f x) (g x)) \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
478  | 
using measurable_compose[OF measurable_Pair[OF f g] measurable_comb_seq] by simp  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
479  | 
|
| 50099 | 480  | 
lemma comb_seq_0: "comb_seq 0 \<omega> \<omega>' = \<omega>'"  | 
481  | 
by (auto simp add: comb_seq_def)  | 
|
482  | 
||
| 55415 | 483  | 
lemma comb_seq_Suc: "comb_seq (Suc n) \<omega> \<omega>' = comb_seq n \<omega> (case_nat (\<omega> n) \<omega>')"  | 
| 50099 | 484  | 
by (auto simp add: comb_seq_def not_less less_Suc_eq le_imp_diff_is_add intro!: ext split: nat.split)  | 
485  | 
||
| 55415 | 486  | 
lemma comb_seq_Suc_0[simp]: "comb_seq (Suc 0) \<omega> = case_nat (\<omega> 0)"  | 
| 50099 | 487  | 
by (intro ext) (simp add: comb_seq_Suc comb_seq_0)  | 
488  | 
||
489  | 
lemma comb_seq_less: "i < n \<Longrightarrow> comb_seq n \<omega> \<omega>' i = \<omega> i"  | 
|
490  | 
by (auto split: split_comb_seq)  | 
|
491  | 
||
492  | 
lemma comb_seq_add: "comb_seq n \<omega> \<omega>' (i + n) = \<omega>' i"  | 
|
493  | 
by (auto split: nat.split split_comb_seq)  | 
|
494  | 
||
| 55415 | 495  | 
lemma case_nat_comb_seq: "case_nat s' (comb_seq n \<omega> \<omega>') (i + n) = case_nat (case_nat s' \<omega> n) \<omega>' i"  | 
| 50099 | 496  | 
by (auto split: nat.split split_comb_seq)  | 
497  | 
||
| 55415 | 498  | 
lemma case_nat_comb_seq':  | 
499  | 
"case_nat s (comb_seq i \<omega> \<omega>') = comb_seq (Suc i) (case_nat s \<omega>) \<omega>'"  | 
|
| 50099 | 500  | 
by (auto split: split_comb_seq nat.split)  | 
501  | 
||
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
502  | 
locale sequence_space = product_prob_space "\<lambda>i. M" "UNIV :: nat set" for M  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
503  | 
begin  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
504  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
505  | 
abbreviation "S \<equiv> \<Pi>\<^sub>M i\<in>UNIV::nat set. M"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
506  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
507  | 
lemma infprod_in_sets[intro]:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
508  | 
fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
509  | 
shows "Pi UNIV E \<in> sets S"  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
510  | 
proof -  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
511  | 
  have "Pi UNIV E = (\<Inter>i. emb UNIV {..i} (\<Pi>\<^sub>E j\<in>{..i}. E j))"
 | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
512  | 
using E E[THEN sets.sets_into_space]  | 
| 47694 | 513  | 
by (auto simp: prod_emb_def Pi_iff extensional_def) blast  | 
514  | 
with E show ?thesis by auto  | 
|
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
515  | 
qed  | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
516  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
517  | 
lemma measure_PiM_countable:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
518  | 
fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
519  | 
shows "(\<lambda>n. \<Prod>i\<le>n. measure M (E i)) ----> measure S (Pi UNIV E)"  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
520  | 
proof -  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
521  | 
  let ?E = "\<lambda>n. emb UNIV {..n} (Pi\<^sub>E {.. n} E)"
 | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
522  | 
have "\<And>n. (\<Prod>i\<le>n. measure M (E i)) = measure S (?E n)"  | 
| 47694 | 523  | 
using E by (simp add: measure_PiM_emb)  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
524  | 
moreover have "Pi UNIV E = (\<Inter>n. ?E n)"  | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
525  | 
using E E[THEN sets.sets_into_space]  | 
| 47694 | 526  | 
by (auto simp: prod_emb_def extensional_def Pi_iff) blast  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
527  | 
moreover have "range ?E \<subseteq> sets S"  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
528  | 
using E by auto  | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
529  | 
moreover have "decseq ?E"  | 
| 47694 | 530  | 
by (auto simp: prod_emb_def Pi_iff decseq_def)  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
531  | 
ultimately show ?thesis  | 
| 47694 | 532  | 
by (simp add: finite_Lim_measure_decseq)  | 
| 
42257
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
533  | 
qed  | 
| 
 
08d717c82828
prove measurable_into_infprod_algebra and measure_infprod
 
hoelzl 
parents: 
42166 
diff
changeset
 | 
534  | 
|
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
535  | 
lemma nat_eq_diff_eq:  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
536  | 
fixes a b c :: nat  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
537  | 
shows "c \<le> b \<Longrightarrow> a = b - c \<longleftrightarrow> a + c = b"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
538  | 
by auto  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
539  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
540  | 
lemma PiM_comb_seq:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
541  | 
"distr (S \<Otimes>\<^sub>M S) S (\<lambda>(\<omega>, \<omega>'). comb_seq i \<omega> \<omega>') = S" (is "?D = _")  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
542  | 
proof (rule PiM_eq)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
543  | 
let ?I = "UNIV::nat set" and ?M = "\<lambda>n. M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
544  | 
let "distr _ _ ?f" = "?D"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
545  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
546  | 
fix J E assume J: "finite J" "J \<subseteq> ?I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets M"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
547  | 
let ?X = "prod_emb ?I ?M J (\<Pi>\<^sub>E j\<in>J. E j)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
548  | 
have "\<And>j x. j \<in> J \<Longrightarrow> x \<in> E j \<Longrightarrow> x \<in> space M"  | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
549  | 
using J(3)[THEN sets.sets_into_space] by (auto simp: space_PiM Pi_iff subset_eq)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
550  | 
with J have "?f -` ?X \<inter> space (S \<Otimes>\<^sub>M S) =  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
551  | 
    (prod_emb ?I ?M (J \<inter> {..<i}) (PIE j:J \<inter> {..<i}. E j)) \<times>
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
552  | 
(prod_emb ?I ?M ((op + i) -` J) (PIE j:(op + i) -` J. E (i + j)))" (is "_ = ?E \<times> ?F")  | 
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
553  | 
by (auto simp: space_pair_measure space_PiM prod_emb_def all_conj_distrib PiE_iff  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
554  | 
split: split_comb_seq split_comb_seq_asm)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
555  | 
then have "emeasure ?D ?X = emeasure (S \<Otimes>\<^sub>M S) (?E \<times> ?F)"  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
556  | 
by (subst emeasure_distr[OF measurable_comb_seq])  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
557  | 
(auto intro!: sets_PiM_I simp: split_beta' J)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
558  | 
also have "\<dots> = emeasure S ?E * emeasure S ?F"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
559  | 
using J by (intro P.emeasure_pair_measure_Times) (auto intro!: sets_PiM_I finite_vimageI simp: inj_on_def)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
560  | 
also have "emeasure S ?F = (\<Prod>j\<in>(op + i) -` J. emeasure M (E (i + j)))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
561  | 
using J by (intro emeasure_PiM_emb) (simp_all add: finite_vimageI inj_on_def)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
562  | 
  also have "\<dots> = (\<Prod>j\<in>J - (J \<inter> {..<i}). emeasure M (E j))"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
563  | 
by (rule strong_setprod_reindex_cong[where f="\<lambda>x. x - i"])  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
564  | 
(auto simp: image_iff Bex_def not_less nat_eq_diff_eq ac_simps cong: conj_cong intro!: inj_onI)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
565  | 
  also have "emeasure S ?E = (\<Prod>j\<in>J \<inter> {..<i}. emeasure M (E j))"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
566  | 
using J by (intro emeasure_PiM_emb) simp_all  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
567  | 
  also have "(\<Prod>j\<in>J \<inter> {..<i}. emeasure M (E j)) * (\<Prod>j\<in>J - (J \<inter> {..<i}). emeasure M (E j)) = (\<Prod>j\<in>J. emeasure M (E j))"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
568  | 
by (subst mult_commute) (auto simp: J setprod_subset_diff[symmetric])  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
569  | 
finally show "emeasure ?D ?X = (\<Prod>j\<in>J. emeasure M (E j))" .  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
570  | 
qed simp_all  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
571  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
572  | 
lemma PiM_iter:  | 
| 55415 | 573  | 
"distr (M \<Otimes>\<^sub>M S) S (\<lambda>(s, \<omega>). case_nat s \<omega>) = S" (is "?D = _")  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
574  | 
proof (rule PiM_eq)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
575  | 
let ?I = "UNIV::nat set" and ?M = "\<lambda>n. M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
576  | 
let "distr _ _ ?f" = "?D"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
577  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
578  | 
fix J E assume J: "finite J" "J \<subseteq> ?I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets M"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
579  | 
let ?X = "prod_emb ?I ?M J (PIE j:J. E j)"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
580  | 
have "\<And>j x. j \<in> J \<Longrightarrow> x \<in> E j \<Longrightarrow> x \<in> space M"  | 
| 
50244
 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 
immler 
parents: 
50123 
diff
changeset
 | 
581  | 
using J(3)[THEN sets.sets_into_space] by (auto simp: space_PiM Pi_iff subset_eq)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
582  | 
with J have "?f -` ?X \<inter> space (M \<Otimes>\<^sub>M S) = (if 0 \<in> J then E 0 else space M) \<times>  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
583  | 
(prod_emb ?I ?M (Suc -` J) (PIE j:Suc -` J. E (Suc j)))" (is "_ = ?E \<times> ?F")  | 
| 
50123
 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 
hoelzl 
parents: 
50099 
diff
changeset
 | 
584  | 
by (auto simp: space_pair_measure space_PiM PiE_iff prod_emb_def all_conj_distrib  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
585  | 
split: nat.split nat.split_asm)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
51351 
diff
changeset
 | 
586  | 
then have "emeasure ?D ?X = emeasure (M \<Otimes>\<^sub>M S) (?E \<times> ?F)"  | 
| 50099 | 587  | 
by (subst emeasure_distr)  | 
| 
50000
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
588  | 
(auto intro!: sets_PiM_I simp: split_beta' J)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
589  | 
also have "\<dots> = emeasure M ?E * emeasure S ?F"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
590  | 
using J by (intro P.emeasure_pair_measure_Times) (auto intro!: sets_PiM_I finite_vimageI)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
591  | 
also have "emeasure S ?F = (\<Prod>j\<in>Suc -` J. emeasure M (E (Suc j)))"  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
592  | 
using J by (intro emeasure_PiM_emb) (simp_all add: finite_vimageI)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
593  | 
  also have "\<dots> = (\<Prod>j\<in>J - {0}. emeasure M (E j))"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
594  | 
by (rule strong_setprod_reindex_cong[where f="\<lambda>x. x - 1"])  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
595  | 
(auto simp: image_iff Bex_def not_less nat_eq_diff_eq ac_simps cong: conj_cong intro!: inj_onI)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
596  | 
  also have "emeasure M ?E * (\<Prod>j\<in>J - {0}. emeasure M (E j)) = (\<Prod>j\<in>J. emeasure M (E j))"
 | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
597  | 
by (auto simp: M.emeasure_space_1 setprod.remove J)  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
598  | 
finally show "emeasure ?D ?X = (\<Prod>j\<in>J. emeasure M (E j))" .  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
599  | 
qed simp_all  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
600  | 
|
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
601  | 
end  | 
| 
 
cfe8ee8a1371
infinite product measure is invariant under adding prefixes
 
hoelzl 
parents: 
49804 
diff
changeset
 | 
602  | 
|
| 42147 | 603  | 
end  |