| author | wenzelm | 
| Thu, 05 Jan 2023 21:33:49 +0100 | |
| changeset 76923 | 8a66a88cd5dc | 
| parent 76675 | 0d7a9e4e1d61 | 
| child 80932 | 261cd8722677 | 
| permissions | -rw-r--r-- | 
| 63653 | 1 | (* Title: HOL/Equiv_Relations.thy | 
| 2 | Author: Lawrence C Paulson, 1996 Cambridge University Computer Laboratory | |
| 15300 | 3 | *) | 
| 4 | ||
| 60758 | 5 | section \<open>Equivalence Relations in Higher-Order Set Theory\<close> | 
| 15300 | 6 | |
| 7 | theory Equiv_Relations | |
| 74979 | 8 | imports BNF_Least_Fixpoint | 
| 15300 | 9 | begin | 
| 10 | ||
| 60758 | 11 | subsection \<open>Equivalence relations -- set version\<close> | 
| 15300 | 12 | |
| 63653 | 13 | definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
 | 
| 14 | where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" | |
| 15300 | 15 | |
| 63653 | 16 | lemma equivI: "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r" | 
| 40815 | 17 | by (simp add: equiv_def) | 
| 18 | ||
| 19 | lemma equivE: | |
| 20 | assumes "equiv A r" | |
| 21 | obtains "refl_on A r" and "sym r" and "trans r" | |
| 22 | using assms by (simp add: equiv_def) | |
| 23 | ||
| 60758 | 24 | text \<open> | 
| 63653 | 25 | Suppes, Theorem 70: \<open>r\<close> is an equiv relation iff \<open>r\<inverse> O r = r\<close>. | 
| 15300 | 26 | |
| 63653 | 27 | First half: \<open>equiv A r \<Longrightarrow> r\<inverse> O r = r\<close>. | 
| 60758 | 28 | \<close> | 
| 15300 | 29 | |
| 63653 | 30 | lemma sym_trans_comp_subset: "sym r \<Longrightarrow> trans r \<Longrightarrow> r\<inverse> O r \<subseteq> r" | 
| 31 | unfolding trans_def sym_def converse_unfold by blast | |
| 15300 | 32 | |
| 63653 | 33 | lemma refl_on_comp_subset: "refl_on A r \<Longrightarrow> r \<subseteq> r\<inverse> O r" | 
| 34 | unfolding refl_on_def by blast | |
| 15300 | 35 | |
| 63653 | 36 | lemma equiv_comp_eq: "equiv A r \<Longrightarrow> r\<inverse> O r = r" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 37 | unfolding equiv_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 38 | by (iprover intro: sym_trans_comp_subset refl_on_comp_subset equalityI) | 
| 15300 | 39 | |
| 60758 | 40 | text \<open>Second half.\<close> | 
| 15300 | 41 | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 42 | lemma comp_equivI: | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 43 | assumes "r\<inverse> O r = r" "Domain r = A" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 44 | shows "equiv A r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 45 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 46 | have *: "\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 47 | using assms by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 48 | show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 49 | unfolding equiv_def refl_on_def sym_def trans_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 50 | using assms by (auto intro: *) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 51 | qed | 
| 15300 | 52 | |
| 53 | ||
| 60758 | 54 | subsection \<open>Equivalence classes\<close> | 
| 15300 | 55 | |
| 63653 | 56 | lemma equiv_class_subset: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} \<subseteq> r``{b}"
 | 
| 61799 | 57 | \<comment> \<open>lemma for the next result\<close> | 
| 63653 | 58 | unfolding equiv_def trans_def sym_def by blast | 
| 15300 | 59 | |
| 63653 | 60 | theorem equiv_class_eq: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} = r``{b}"
 | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 61 | by (intro equalityI equiv_class_subset; force simp add: equiv_def sym_def) | 
| 15300 | 62 | |
| 63653 | 63 | lemma equiv_class_self: "equiv A r \<Longrightarrow> a \<in> A \<Longrightarrow> a \<in> r``{a}"
 | 
| 64 | unfolding equiv_def refl_on_def by blast | |
| 15300 | 65 | |
| 63653 | 66 | lemma subset_equiv_class: "equiv A r \<Longrightarrow> r``{b} \<subseteq> r``{a} \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
 | 
| 61799 | 67 | \<comment> \<open>lemma for the next result\<close> | 
| 63653 | 68 | unfolding equiv_def refl_on_def by blast | 
| 15300 | 69 | |
| 63653 | 70 | lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
 | 
| 17589 | 71 | by (iprover intro: equalityD2 subset_equiv_class) | 
| 15300 | 72 | |
| 63653 | 73 | lemma equiv_class_nondisjoint: "equiv A r \<Longrightarrow> x \<in> (r``{a} \<inter> r``{b}) \<Longrightarrow> (a, b) \<in> r"
 | 
| 74 | unfolding equiv_def trans_def sym_def by blast | |
| 15300 | 75 | |
| 63653 | 76 | lemma equiv_type: "equiv A r \<Longrightarrow> r \<subseteq> A \<times> A" | 
| 77 | unfolding equiv_def refl_on_def by blast | |
| 15300 | 78 | |
| 63653 | 79 | lemma equiv_class_eq_iff: "equiv A r \<Longrightarrow> (x, y) \<in> r \<longleftrightarrow> r``{x} = r``{y} \<and> x \<in> A \<and> y \<in> A"
 | 
| 15300 | 80 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | 
| 81 | ||
| 63653 | 82 | lemma eq_equiv_class_iff: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> r``{x} = r``{y} \<longleftrightarrow> (x, y) \<in> r"
 | 
| 15300 | 83 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | 
| 84 | ||
| 74590 
00ffae972fc0
Added / moved some simple set-theoretic lemmas
 paulson <lp15@cam.ac.uk> parents: 
73139diff
changeset | 85 | lemma disjnt_equiv_class: "equiv A r \<Longrightarrow> disjnt (r``{a}) (r``{b}) \<longleftrightarrow> (a, b) \<notin> r"
 | 
| 
00ffae972fc0
Added / moved some simple set-theoretic lemmas
 paulson <lp15@cam.ac.uk> parents: 
73139diff
changeset | 86 | by (auto dest: equiv_class_self simp: equiv_class_eq_iff disjnt_def) | 
| 
00ffae972fc0
Added / moved some simple set-theoretic lemmas
 paulson <lp15@cam.ac.uk> parents: 
73139diff
changeset | 87 | |
| 15300 | 88 | |
| 60758 | 89 | subsection \<open>Quotients\<close> | 
| 15300 | 90 | |
| 63653 | 91 | definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90)
 | 
| 92 |   where "A//r = (\<Union>x \<in> A. {r``{x}})"  \<comment> \<open>set of equiv classes\<close>
 | |
| 15300 | 93 | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 94 | lemma quotientI: "x \<in> A \<Longrightarrow> r``{x} \<in> A//r"
 | 
| 63653 | 95 | unfolding quotient_def by blast | 
| 15300 | 96 | |
| 63653 | 97 | lemma quotientE: "X \<in> A//r \<Longrightarrow> (\<And>x. X = r``{x} \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
 | 
| 98 | unfolding quotient_def by blast | |
| 15300 | 99 | |
| 63653 | 100 | lemma Union_quotient: "equiv A r \<Longrightarrow> \<Union>(A//r) = A" | 
| 101 | unfolding equiv_def refl_on_def quotient_def by blast | |
| 15300 | 102 | |
| 63653 | 103 | lemma quotient_disj: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> X = Y \<or> X \<inter> Y = {}"
 | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 104 | unfolding quotient_def equiv_def trans_def sym_def by blast | 
| 15300 | 105 | |
| 106 | lemma quotient_eqI: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 107 | assumes "equiv A r" "X \<in> A//r" "Y \<in> A//r" and xy: "x \<in> X" "y \<in> Y" "(x, y) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 108 | shows "X = Y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 109 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 110 |   obtain a b where "a \<in> A" and a: "X = r `` {a}" and "b \<in> A" and b: "Y = r `` {b}"
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 111 | using assms by (auto elim!: quotientE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 112 | then have "(a,b) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 113 | using xy \<open>equiv A r\<close> unfolding equiv_def sym_def trans_def by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 114 | then show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 115 | unfolding a b by (rule equiv_class_eq [OF \<open>equiv A r\<close>]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 116 | qed | 
| 15300 | 117 | |
| 118 | lemma quotient_eq_iff: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 119 | assumes "equiv A r" "X \<in> A//r" "Y \<in> A//r" and xy: "x \<in> X" "y \<in> Y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 120 | shows "X = Y \<longleftrightarrow> (x, y) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 121 | proof | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 122 | assume L: "X = Y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 123 | with assms show "(x, y) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 124 | unfolding equiv_def sym_def trans_def by (blast elim!: quotientE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 125 | next | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 126 | assume \<section>: "(x, y) \<in> r" show "X = Y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 127 | by (rule quotient_eqI) (use \<section> assms in \<open>blast+\<close>) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 128 | qed | 
| 15300 | 129 | |
| 63653 | 130 | lemma eq_equiv_class_iff2: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> {x}//r = {y}//r \<longleftrightarrow> (x, y) \<in> r"
 | 
| 131 | by (simp add: quotient_def eq_equiv_class_iff) | |
| 15300 | 132 | |
| 133 | lemma quotient_empty [simp]: "{}//r = {}"
 | |
| 63653 | 134 | by (simp add: quotient_def) | 
| 15300 | 135 | |
| 63653 | 136 | lemma quotient_is_empty [iff]: "A//r = {} \<longleftrightarrow> A = {}"
 | 
| 137 | by (simp add: quotient_def) | |
| 15300 | 138 | |
| 63653 | 139 | lemma quotient_is_empty2 [iff]: "{} = A//r \<longleftrightarrow> A = {}"
 | 
| 140 | by (simp add: quotient_def) | |
| 15300 | 141 | |
| 15302 | 142 | lemma singleton_quotient: "{x}//r = {r `` {x}}"
 | 
| 63653 | 143 | by (simp add: quotient_def) | 
| 15302 | 144 | |
| 63653 | 145 | lemma quotient_diff1: "inj_on (\<lambda>a. {a}//r) A \<Longrightarrow> a \<in> A \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
 | 
| 146 | unfolding quotient_def inj_on_def by blast | |
| 147 | ||
| 15302 | 148 | |
| 60758 | 149 | subsection \<open>Refinement of one equivalence relation WRT another\<close> | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 150 | |
| 63653 | 151 | lemma refines_equiv_class_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> R``(S``{a}) = S``{a}"
 | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 152 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 153 | |
| 63653 | 154 | lemma refines_equiv_class_eq2: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> S``(R``{a}) = S``{a}"
 | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 155 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 156 | |
| 63653 | 157 | lemma refines_equiv_image_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S" | 
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 158 | by (auto simp: quotient_def image_UN refines_equiv_class_eq2) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 159 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 160 | lemma finite_refines_finite: | 
| 63653 | 161 | "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> finite (A//S)" | 
| 162 | by (erule finite_surj [where f = "\<lambda>X. S``X"]) (simp add: refines_equiv_image_eq) | |
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 163 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 164 | lemma finite_refines_card_le: | 
| 63653 | 165 | "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> card (A//S) \<le> card (A//R)" | 
| 166 | by (subst refines_equiv_image_eq [of R S A, symmetric]) | |
| 167 | (auto simp: card_image_le [where f = "\<lambda>X. S``X"]) | |
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 168 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 169 | |
| 60758 | 170 | subsection \<open>Defining unary operations upon equivalence classes\<close> | 
| 15300 | 171 | |
| 63653 | 172 | text \<open>A congruence-preserving function.\<close> | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 173 | |
| 63653 | 174 | definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 175 | where "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)" | |
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 176 | |
| 63653 | 177 | lemma congruentI: "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 178 | by (auto simp add: congruent_def) | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 179 | |
| 63653 | 180 | lemma congruentD: "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 181 | by (auto simp add: congruent_def) | 
| 15300 | 182 | |
| 63653 | 183 | abbreviation RESPECTS :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects" 80)
 | 
| 184 | where "f respects r \<equiv> congruent r f" | |
| 15300 | 185 | |
| 186 | ||
| 63653 | 187 | lemma UN_constant_eq: "a \<in> A \<Longrightarrow> \<forall>y \<in> A. f y = c \<Longrightarrow> (\<Union>y \<in> A. f y) = c" | 
| 61799 | 188 | \<comment> \<open>lemma required to prove \<open>UN_equiv_class\<close>\<close> | 
| 15300 | 189 | by auto | 
| 190 | ||
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 191 | lemma UN_equiv_class: | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 192 | assumes "equiv A r" "f respects r" "a \<in> A" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 193 |   shows "(\<Union>x \<in> r``{a}. f x) = f a"
 | 
| 61799 | 194 | \<comment> \<open>Conversion rule\<close> | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 195 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 196 |   have \<section>: "\<forall>x\<in>r `` {a}. f x = f a"
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 197 | using assms unfolding equiv_def congruent_def sym_def by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 198 | show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 199 | by (iprover intro: assms UN_constant_eq [OF equiv_class_self \<section>]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 200 | qed | 
| 15300 | 201 | |
| 202 | lemma UN_equiv_class_type: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 203 | assumes r: "equiv A r" "f respects r" and X: "X \<in> A//r" and AB: "\<And>x. x \<in> A \<Longrightarrow> f x \<in> B" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 204 | shows "(\<Union>x \<in> X. f x) \<in> B" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 205 | using assms unfolding quotient_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 206 | by (auto simp: UN_equiv_class [OF r]) | 
| 15300 | 207 | |
| 60758 | 208 | text \<open> | 
| 15300 | 209 | Sufficient conditions for injectiveness. Could weaken premises! | 
| 63653 | 210 | major premise could be an inclusion; \<open>bcong\<close> could be | 
| 211 | \<open>\<And>y. y \<in> A \<Longrightarrow> f y \<in> B\<close>. | |
| 60758 | 212 | \<close> | 
| 15300 | 213 | |
| 214 | lemma UN_equiv_class_inject: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 215 | assumes "equiv A r" "f respects r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 216 | and eq: "(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y)" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 217 | and X: "X \<in> A//r" and Y: "Y \<in> A//r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 218 | and fr: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> (x, y) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 219 | shows "X = Y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 220 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 221 |   obtain a b where "a \<in> A" and a: "X = r `` {a}" and "b \<in> A" and b: "Y = r `` {b}"
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 222 | using assms by (auto elim!: quotientE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 223 |   then have "\<Union> (f ` r `` {a}) = f a" "\<Union> (f ` r `` {b}) = f b"
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 224 | by (iprover intro: UN_equiv_class [OF \<open>equiv A r\<close>] assms)+ | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 225 | then have "f a = f b" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 226 | using eq unfolding a b by (iprover intro: trans sym) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 227 | then have "(a,b) \<in> r" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 228 | using fr \<open>a \<in> A\<close> \<open>b \<in> A\<close> by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 229 | then show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 230 | unfolding a b by (rule equiv_class_eq [OF \<open>equiv A r\<close>]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 231 | qed | 
| 15300 | 232 | |
| 233 | ||
| 60758 | 234 | subsection \<open>Defining binary operations upon equivalence classes\<close> | 
| 15300 | 235 | |
| 63653 | 236 | text \<open>A congruence-preserving function of two arguments.\<close> | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 237 | |
| 63653 | 238 | definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool"
 | 
| 239 | where "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)" | |
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 240 | |
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 241 | lemma congruent2I': | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 242 | assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 243 | shows "congruent2 r1 r2 f" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 244 | using assms by (auto simp add: congruent2_def) | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 245 | |
| 63653 | 246 | lemma congruent2D: "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 63092 | 247 | by (auto simp add: congruent2_def) | 
| 15300 | 248 | |
| 63653 | 249 | text \<open>Abbreviation for the common case where the relations are identical.\<close> | 
| 250 | abbreviation RESPECTS2:: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects2" 80)
 | |
| 251 | where "f respects2 r \<equiv> congruent2 r r f" | |
| 19979 | 252 | |
| 15300 | 253 | |
| 254 | lemma congruent2_implies_congruent: | |
| 63653 | 255 | "equiv A r1 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A \<Longrightarrow> congruent r2 (f a)" | 
| 256 | unfolding congruent_def congruent2_def equiv_def refl_on_def by blast | |
| 15300 | 257 | |
| 258 | lemma congruent2_implies_congruent_UN: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 259 | assumes "equiv A1 r1" "equiv A2 r2" "congruent2 r1 r2 f" "a \<in> A2" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 260 |   shows "congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 261 | unfolding congruent_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 262 | proof clarify | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 263 | fix c d | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 264 | assume cd: "(c,d) \<in> r1" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 265 | then have "c \<in> A1" "d \<in> A1" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 266 | using \<open>equiv A1 r1\<close> by (auto elim!: equiv_type [THEN subsetD, THEN SigmaE2]) | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 267 | moreover have "f c a = f d a" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 268 | using assms cd unfolding congruent2_def equiv_def refl_on_def by blast | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 269 |   ultimately show "\<Union> (f c ` r2 `` {a}) = \<Union> (f d ` r2 `` {a})"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 270 | using assms by (simp add: UN_equiv_class congruent2_implies_congruent) | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 271 | qed | 
| 15300 | 272 | |
| 273 | lemma UN_equiv_class2: | |
| 63653 | 274 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a1 \<in> A1 \<Longrightarrow> a2 \<in> A2 \<Longrightarrow> | 
| 275 |     (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | |
| 276 | by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN) | |
| 15300 | 277 | |
| 278 | lemma UN_equiv_class_type2: | |
| 63653 | 279 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f | 
| 280 | \<Longrightarrow> X1 \<in> A1//r1 \<Longrightarrow> X2 \<in> A2//r2 | |
| 281 | \<Longrightarrow> (\<And>x1 x2. x1 \<in> A1 \<Longrightarrow> x2 \<in> A2 \<Longrightarrow> f x1 x2 \<in> B) | |
| 282 | \<Longrightarrow> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 283 | unfolding quotient_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 284 | by (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 285 | congruent2_implies_congruent quotientI) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 286 | |
| 15300 | 287 | |
| 288 | lemma UN_UN_split_split_eq: | |
| 289 | "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = | |
| 290 | (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" | |
| 61799 | 291 | \<comment> \<open>Allows a natural expression of binary operators,\<close> | 
| 292 | \<comment> \<open>without explicit calls to \<open>split\<close>\<close> | |
| 15300 | 293 | by auto | 
| 294 | ||
| 295 | lemma congruent2I: | |
| 63653 | 296 | "equiv A1 r1 \<Longrightarrow> equiv A2 r2 | 
| 297 | \<Longrightarrow> (\<And>y z w. w \<in> A2 \<Longrightarrow> (y,z) \<in> r1 \<Longrightarrow> f y w = f z w) | |
| 298 | \<Longrightarrow> (\<And>y z w. w \<in> A1 \<Longrightarrow> (y,z) \<in> r2 \<Longrightarrow> f w y = f w z) | |
| 299 | \<Longrightarrow> congruent2 r1 r2 f" | |
| 61799 | 300 | \<comment> \<open>Suggested by John Harrison -- the two subproofs may be\<close> | 
| 63653 | 301 | \<comment> \<open>\<^emph>\<open>much\<close> simpler than the direct proof.\<close> | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 302 | unfolding congruent2_def equiv_def refl_on_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 303 | by (blast intro: trans) | 
| 15300 | 304 | |
| 305 | lemma congruent2_commuteI: | |
| 306 | assumes equivA: "equiv A r" | |
| 63653 | 307 | and commute: "\<And>y z. y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> f y z = f z y" | 
| 308 | and congt: "\<And>y z w. w \<in> A \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> f w y = f w z" | |
| 15300 | 309 | shows "f respects2 r" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 310 | proof (rule congruent2I [OF equivA equivA]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 311 | note eqv = equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2] | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 312 | show "\<And>y z w. \<lbrakk>w \<in> A; (y, z) \<in> r\<rbrakk> \<Longrightarrow> f y w = f z w" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 313 | by (iprover intro: commute [THEN trans] sym congt elim: eqv) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 314 | show "\<And>y z w. \<lbrakk>w \<in> A; (y, z) \<in> r\<rbrakk> \<Longrightarrow> f w y = f w z" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 315 | by (iprover intro: congt elim: eqv) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 316 | qed | 
| 15300 | 317 | |
| 24728 | 318 | |
| 60758 | 319 | subsection \<open>Quotients and finiteness\<close> | 
| 24728 | 320 | |
| 60758 | 321 | text \<open>Suggested by Florian Kammüller\<close> | 
| 24728 | 322 | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 323 | lemma finite_quotient: | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 324 | assumes "finite A" "r \<subseteq> A \<times> A" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 325 | shows "finite (A//r)" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 326 |     \<comment> \<open>recall @{thm equiv_type}\<close>
 | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 327 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 328 | have "A//r \<subseteq> Pow A" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 329 | using assms unfolding quotient_def by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 330 | moreover have "finite (Pow A)" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 331 | using assms by simp | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 332 | ultimately show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 333 | by (iprover intro: finite_subset) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 334 | qed | 
| 24728 | 335 | |
| 63653 | 336 | lemma finite_equiv_class: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> X \<in> A//r \<Longrightarrow> finite X" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 337 | unfolding quotient_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 338 | by (erule rev_finite_subset) blast | 
| 24728 | 339 | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 340 | lemma equiv_imp_dvd_card: | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 341 | assumes "finite A" "equiv A r" "\<And>X. X \<in> A//r \<Longrightarrow> k dvd card X" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 342 | shows "k dvd card A" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 343 | proof (rule Union_quotient [THEN subst]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 344 | show "k dvd card (\<Union> (A // r))" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 345 | apply (rule dvd_partition) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 346 | using assms | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 347 | by (auto simp: Union_quotient dest: quotient_disj) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71393diff
changeset | 348 | qed (use assms in blast) | 
| 24728 | 349 | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 350 | |
| 60758 | 351 | subsection \<open>Projection\<close> | 
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 352 | |
| 63653 | 353 | definition proj :: "('b \<times> 'a) set \<Rightarrow> 'b \<Rightarrow> 'a set"
 | 
| 354 |   where "proj r x = r `` {x}"
 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 355 | |
| 63653 | 356 | lemma proj_preserves: "x \<in> A \<Longrightarrow> proj r x \<in> A//r" | 
| 357 | unfolding proj_def by (rule quotientI) | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 358 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 359 | lemma proj_in_iff: | 
| 63653 | 360 | assumes "equiv A r" | 
| 361 | shows "proj r x \<in> A//r \<longleftrightarrow> x \<in> A" | |
| 362 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 363 | proof | |
| 364 | assume ?rhs | |
| 365 | then show ?lhs by (simp add: proj_preserves) | |
| 366 | next | |
| 367 | assume ?lhs | |
| 368 | then show ?rhs | |
| 369 | unfolding proj_def quotient_def | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 370 | proof safe | 
| 63653 | 371 | fix y | 
| 372 |     assume y: "y \<in> A" and "r `` {x} = r `` {y}"
 | |
| 373 |     moreover have "y \<in> r `` {y}"
 | |
| 374 | using assms y unfolding equiv_def refl_on_def by blast | |
| 375 | ultimately have "(x, y) \<in> r" by blast | |
| 376 | then show "x \<in> A" | |
| 377 | using assms unfolding equiv_def refl_on_def by blast | |
| 378 | qed | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 379 | qed | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 380 | |
| 63653 | 381 | lemma proj_iff: "equiv A r \<Longrightarrow> {x, y} \<subseteq> A \<Longrightarrow> proj r x = proj r y \<longleftrightarrow> (x, y) \<in> r"
 | 
| 382 | by (simp add: proj_def eq_equiv_class_iff) | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 383 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 384 | (* | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 385 | lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 386 | unfolding proj_def equiv_def refl_on_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 387 | *) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 388 | |
| 63653 | 389 | lemma proj_image: "proj r ` A = A//r" | 
| 390 | unfolding proj_def[abs_def] quotient_def by blast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 391 | |
| 63653 | 392 | lemma in_quotient_imp_non_empty: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<noteq> {}"
 | 
| 393 | unfolding quotient_def using equiv_class_self by fast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 394 | |
| 63653 | 395 | lemma in_quotient_imp_in_rel: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> {x, y} \<subseteq> X \<Longrightarrow> (x, y) \<in> r"
 | 
| 396 | using quotient_eq_iff[THEN iffD1] by fastforce | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 397 | |
| 63653 | 398 | lemma in_quotient_imp_closed: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> X" | 
| 399 | unfolding quotient_def equiv_def trans_def by blast | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 400 | |
| 63653 | 401 | lemma in_quotient_imp_subset: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<subseteq> A" | 
| 402 | using in_quotient_imp_in_rel equiv_type by fastforce | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 403 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 404 | |
| 60758 | 405 | subsection \<open>Equivalence relations -- predicate version\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 406 | |
| 63653 | 407 | text \<open>Partial equivalences.\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 408 | |
| 63653 | 409 | definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 410 | where "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)" | |
| 61799 | 411 | \<comment> \<open>John-Harrison-style characterization\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 412 | |
| 63653 | 413 | lemma part_equivpI: "\<exists>x. R x x \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R" | 
| 45969 | 414 | by (auto simp add: part_equivp_def) (auto elim: sympE transpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 415 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 416 | lemma part_equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 417 | assumes "part_equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 418 | obtains x where "R x x" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 419 | proof - | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 420 | from assms have 1: "\<exists>x. R x x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 421 | and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y" | 
| 63653 | 422 | unfolding part_equivp_def by blast+ | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 423 | from 1 obtain x where "R x x" .. | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 424 | moreover have "symp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 425 | proof (rule sympI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 426 | fix x y | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 427 | assume "R x y" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 428 | with 2 [of x y] show "R y x" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 429 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 430 | moreover have "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 431 | proof (rule transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 432 | fix x y z | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 433 | assume "R x y" and "R y z" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 434 | with 2 [of x y] 2 [of y z] show "R x z" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 435 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 436 | ultimately show thesis by (rule that) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 437 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 438 | |
| 63653 | 439 | lemma part_equivp_refl_symp_transp: "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 440 | by (auto intro: part_equivpI elim: part_equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 441 | |
| 63653 | 442 | lemma part_equivp_symp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 443 | by (erule part_equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 444 | |
| 63653 | 445 | lemma part_equivp_transp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 446 | by (erule part_equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 447 | |
| 63653 | 448 | lemma part_equivp_typedef: "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}"
 | 
| 44204 
3cdc4176638c
Quotient Package: make quotient_type work with separate set type
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
40945diff
changeset | 449 | by (auto elim: part_equivpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 450 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 451 | |
| 63653 | 452 | text \<open>Total equivalences.\<close> | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 453 | |
| 63653 | 454 | definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 455 | where "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" \<comment> \<open>John-Harrison-style characterization\<close> | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 456 | |
| 63653 | 457 | lemma equivpI: "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R" | 
| 45969 | 458 | by (auto elim: reflpE sympE transpE simp add: equivp_def) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 459 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 460 | lemma equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 461 | assumes "equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 462 | obtains "reflp R" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 463 | using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 464 | |
| 63653 | 465 | lemma equivp_implies_part_equivp: "equivp R \<Longrightarrow> part_equivp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 466 | by (auto intro: part_equivpI elim: equivpE reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 467 | |
| 63653 | 468 | lemma equivp_equiv: "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
45969diff
changeset | 469 | by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set]) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 470 | |
| 63653 | 471 | lemma equivp_reflp_symp_transp: "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 472 | by (auto intro: equivpI elim: equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 473 | |
| 67399 | 474 | lemma identity_equivp: "equivp (=)" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 475 | by (auto intro: equivpI reflpI sympI transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 476 | |
| 63653 | 477 | lemma equivp_reflp: "equivp R \<Longrightarrow> R x x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 478 | by (erule equivpE, erule reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 479 | |
| 63653 | 480 | lemma equivp_symp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 481 | by (erule equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 482 | |
| 63653 | 483 | lemma equivp_transp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 484 | by (erule equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 485 | |
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 486 | lemma equivp_rtranclp: "symp r \<Longrightarrow> equivp r\<^sup>*\<^sup>*" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 487 | by(intro equivpI reflpI sympI transpI)(auto dest: sympD[OF symp_rtranclp]) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 488 | |
| 76675 | 489 | lemmas equivp_rtranclp_symclp [simp] = equivp_rtranclp[OF symp_on_symclp] | 
| 71393 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 490 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 491 | lemma equivp_vimage2p: "equivp R \<Longrightarrow> equivp (vimage2p f f R)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 492 | by(auto simp add: equivp_def vimage2p_def dest: fun_cong) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 493 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 494 | lemma equivp_imp_transp: "equivp R \<Longrightarrow> transp R" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 495 | by(simp add: equivp_reflp_symp_transp) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 496 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 497 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 498 | subsection \<open>Equivalence closure\<close> | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 499 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 500 | definition equivclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 501 | "equivclp r = (symclp r)\<^sup>*\<^sup>*" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 502 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 503 | lemma transp_equivclp [simp]: "transp (equivclp r)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 504 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 505 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 506 | lemma reflp_equivclp [simp]: "reflp (equivclp r)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 507 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 508 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 509 | lemma symp_equivclp [simp]: "symp (equivclp r)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 510 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 511 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 512 | lemma equivp_evquivclp [simp]: "equivp (equivclp r)" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 513 | by(simp add: equivpI) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 514 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 515 | lemma tranclp_equivclp [simp]: "(equivclp r)\<^sup>+\<^sup>+ = equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 516 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 517 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 518 | lemma rtranclp_equivclp [simp]: "(equivclp r)\<^sup>*\<^sup>* = equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 519 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 520 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 521 | lemma symclp_equivclp [simp]: "symclp (equivclp r) = equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 522 | by(simp add: equivclp_def symp_symclp_eq) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 523 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 524 | lemma equivclp_symclp [simp]: "equivclp (symclp r) = equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 525 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 526 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 527 | lemma equivclp_conversep [simp]: "equivclp (conversep r) = equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 528 | by(simp add: equivclp_def) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 529 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 530 | lemma equivclp_sym [sym]: "equivclp r x y \<Longrightarrow> equivclp r y x" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 531 | by(rule sympD[OF symp_equivclp]) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 532 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 533 | lemma equivclp_OO_equivclp_le_equivclp: "equivclp r OO equivclp r \<le> equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 534 | by(rule transp_relcompp_less_eq transp_equivclp)+ | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 535 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 536 | lemma rtranlcp_le_equivclp: "r\<^sup>*\<^sup>* \<le> equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 537 | unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 538 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 539 | lemma rtranclp_conversep_le_equivclp: "r\<inverse>\<inverse>\<^sup>*\<^sup>* \<le> equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 540 | unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 541 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 542 | lemma symclp_rtranclp_le_equivclp: "symclp r\<^sup>*\<^sup>* \<le> equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 543 | unfolding symclp_pointfree | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 544 | by(rule le_supI)(simp_all add: rtranclp_conversep[symmetric] rtranlcp_le_equivclp rtranclp_conversep_le_equivclp) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 545 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 546 | lemma r_OO_conversep_into_equivclp: | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 547 | "r\<^sup>*\<^sup>* OO r\<inverse>\<inverse>\<^sup>*\<^sup>* \<le> equivclp r" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 548 | by(blast intro: order_trans[OF _ equivclp_OO_equivclp_le_equivclp] relcompp_mono rtranlcp_le_equivclp rtranclp_conversep_le_equivclp del: predicate2I) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 549 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 550 | lemma equivclp_induct [consumes 1, case_names base step, induct pred: equivclp]: | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 551 | assumes a: "equivclp r a b" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 552 | and cases: "P a" "\<And>y z. equivclp r a y \<Longrightarrow> r y z \<or> r z y \<Longrightarrow> P y \<Longrightarrow> P z" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 553 | shows "P b" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 554 | using a unfolding equivclp_def | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 555 | by(induction rule: rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 556 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 557 | lemma converse_equivclp_induct [consumes 1, case_names base step]: | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 558 | assumes major: "equivclp r a b" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 559 | and cases: "P b" "\<And>y z. r y z \<or> r z y \<Longrightarrow> equivclp r z b \<Longrightarrow> P z \<Longrightarrow> P y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 560 | shows "P a" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 561 | using major unfolding equivclp_def | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 562 | by(induction rule: converse_rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 563 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 564 | lemma equivclp_refl [simp]: "equivclp r x x" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 565 | by(rule reflpD[OF reflp_equivclp]) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 566 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 567 | lemma r_into_equivclp [intro]: "r x y \<Longrightarrow> equivclp r x y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 568 | unfolding equivclp_def by(blast intro: symclpI) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 569 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 570 | lemma converse_r_into_equivclp [intro]: "r y x \<Longrightarrow> equivclp r x y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 571 | unfolding equivclp_def by(blast intro: symclpI) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 572 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 573 | lemma rtranclp_into_equivclp: "r\<^sup>*\<^sup>* x y \<Longrightarrow> equivclp r x y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 574 | using rtranlcp_le_equivclp[of r] by blast | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 575 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 576 | lemma converse_rtranclp_into_equivclp: "r\<^sup>*\<^sup>* y x \<Longrightarrow> equivclp r x y" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 577 | by(blast intro: equivclp_sym rtranclp_into_equivclp) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 578 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 579 | lemma equivclp_into_equivclp: "\<lbrakk> equivclp r a b; r b c \<or> r c b \<rbrakk> \<Longrightarrow> equivclp r a c" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 580 | unfolding equivclp_def by(erule rtranclp.rtrancl_into_rtrancl)(auto intro: symclpI) | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 581 | |
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 582 | lemma equivclp_trans [trans]: "\<lbrakk> equivclp r a b; equivclp r b c \<rbrakk> \<Longrightarrow> equivclp r a c" | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 583 | using equivclp_OO_equivclp_le_equivclp[of r] by blast | 
| 
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
 traytel parents: 
67399diff
changeset | 584 | |
| 55024 | 585 | hide_const (open) proj | 
| 586 | ||
| 15300 | 587 | end |