| 
43141
 | 
     1  | 
theory BExp imports AExp begin
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
subsection "Boolean Expressions"
  | 
| 
 | 
     4  | 
  | 
| 
49191
 | 
     5  | 
text_raw{*\snip{BExpbexpdef}{0}{1}{% *}
 | 
| 
45200
 | 
     6  | 
datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp
  | 
| 
49191
 | 
     7  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
     8  | 
  | 
| 
49191
 | 
     9  | 
text_raw{*\snip{BExpbvaldef}{1}{2}{% *}
 | 
| 
43141
 | 
    10  | 
fun bval :: "bexp \<Rightarrow> state \<Rightarrow> bool" where
  | 
| 
45216
 | 
    11  | 
"bval (Bc v) s = v" |
  | 
| 
43141
 | 
    12  | 
"bval (Not b) s = (\<not> bval b s)" |
  | 
| 
45255
 | 
    13  | 
"bval (And b\<^isub>1 b\<^isub>2) s = (bval b\<^isub>1 s \<and> bval b\<^isub>2 s)" |
  | 
| 
 | 
    14  | 
"bval (Less a\<^isub>1 a\<^isub>2) s = (aval a\<^isub>1 s < aval a\<^isub>2 s)"
  | 
| 
49191
 | 
    15  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    16  | 
  | 
| 
 | 
    17  | 
value "bval (Less (V ''x'') (Plus (N 3) (V ''y'')))
  | 
| 
44036
 | 
    18  | 
            <''x'' := 3, ''y'' := 1>"
  | 
| 
43141
 | 
    19  | 
  | 
| 
 | 
    20  | 
  | 
| 
45255
 | 
    21  | 
text{* To improve automation: *}
 | 
| 
43141
 | 
    22  | 
  | 
| 
45255
 | 
    23  | 
lemma bval_And_if[simp]:
  | 
| 
 | 
    24  | 
  "bval (And b1 b2) s = (if bval b1 s then bval b2 s else False)"
  | 
| 
 | 
    25  | 
by(simp)
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
declare bval.simps(3)[simp del]  --"remove the original eqn"
  | 
| 
 | 
    28  | 
  | 
| 
43141
 | 
    29  | 
  | 
| 
45255
 | 
    30  | 
subsection "Constant Folding"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
text{* Optimizing constructors: *}
 | 
| 
 | 
    33  | 
  | 
| 
49191
 | 
    34  | 
text_raw{*\snip{BExplessdef}{0}{2}{% *}
 | 
| 
43141
 | 
    35  | 
fun less :: "aexp \<Rightarrow> aexp \<Rightarrow> bexp" where
  | 
| 
45255
 | 
    36  | 
"less (N n\<^isub>1) (N n\<^isub>2) = Bc(n\<^isub>1 < n\<^isub>2)" |
  | 
| 
 | 
    37  | 
"less a\<^isub>1 a\<^isub>2 = Less a\<^isub>1 a\<^isub>2"
  | 
| 
49191
 | 
    38  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma [simp]: "bval (less a1 a2) s = (aval a1 s < aval a2 s)"
  | 
| 
45015
 | 
    41  | 
apply(induction a1 a2 rule: less.induct)
  | 
| 
43141
 | 
    42  | 
apply simp_all
  | 
| 
 | 
    43  | 
done
  | 
| 
 | 
    44  | 
  | 
| 
49191
 | 
    45  | 
text_raw{*\snip{BExpanddef}{2}{2}{% *}
 | 
| 
43141
 | 
    46  | 
fun "and" :: "bexp \<Rightarrow> bexp \<Rightarrow> bexp" where
  | 
| 
45200
 | 
    47  | 
"and (Bc True) b = b" |
  | 
| 
 | 
    48  | 
"and b (Bc True) = b" |
  | 
| 
 | 
    49  | 
"and (Bc False) b = Bc False" |
  | 
| 
 | 
    50  | 
"and b (Bc False) = Bc False" |
  | 
| 
45255
 | 
    51  | 
"and b\<^isub>1 b\<^isub>2 = And b\<^isub>1 b\<^isub>2"
  | 
| 
49191
 | 
    52  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma bval_and[simp]: "bval (and b1 b2) s = (bval b1 s \<and> bval b2 s)"
  | 
| 
45015
 | 
    55  | 
apply(induction b1 b2 rule: and.induct)
  | 
| 
43141
 | 
    56  | 
apply simp_all
  | 
| 
 | 
    57  | 
done
  | 
| 
 | 
    58  | 
  | 
| 
49191
 | 
    59  | 
text_raw{*\snip{BExpnotdef}{2}{2}{% *}
 | 
| 
43141
 | 
    60  | 
fun not :: "bexp \<Rightarrow> bexp" where
  | 
| 
45200
 | 
    61  | 
"not (Bc True) = Bc False" |
  | 
| 
 | 
    62  | 
"not (Bc False) = Bc True" |
  | 
| 
43141
 | 
    63  | 
"not b = Not b"
  | 
| 
49191
 | 
    64  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    65  | 
  | 
| 
45255
 | 
    66  | 
lemma bval_not[simp]: "bval (not b) s = (\<not> bval b s)"
  | 
| 
45015
 | 
    67  | 
apply(induction b rule: not.induct)
  | 
| 
43141
 | 
    68  | 
apply simp_all
  | 
| 
 | 
    69  | 
done
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
text{* Now the overall optimizer: *}
 | 
| 
 | 
    72  | 
  | 
| 
49191
 | 
    73  | 
text_raw{*\snip{BExpbsimpdef}{0}{2}{% *}
 | 
| 
43141
 | 
    74  | 
fun bsimp :: "bexp \<Rightarrow> bexp" where
  | 
| 
45256
 | 
    75  | 
"bsimp (Bc v) = Bc v" |
  | 
| 
 | 
    76  | 
"bsimp (Not b) = not(bsimp b)" |
  | 
| 
45255
 | 
    77  | 
"bsimp (And b\<^isub>1 b\<^isub>2) = and (bsimp b\<^isub>1) (bsimp b\<^isub>2)" |
  | 
| 
45256
 | 
    78  | 
"bsimp (Less a\<^isub>1 a\<^isub>2) = less (asimp a\<^isub>1) (asimp a\<^isub>2)"
  | 
| 
49191
 | 
    79  | 
text_raw{*}%endsnip*}
 | 
| 
43141
 | 
    80  | 
  | 
| 
 | 
    81  | 
value "bsimp (And (Less (N 0) (N 1)) b)"
  | 
| 
 | 
    82  | 
  | 
| 
49920
 | 
    83  | 
value "bsimp (And (Less (N 1) (N 0)) (Bc True))"
  | 
| 
43141
 | 
    84  | 
  | 
| 
 | 
    85  | 
theorem "bval (bsimp b) s = bval b s"
  | 
| 
45015
 | 
    86  | 
apply(induction b)
  | 
| 
43141
 | 
    87  | 
apply simp_all
  | 
| 
 | 
    88  | 
done
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
end
  |