7093
|
1 |
(* Title: LK/LK0
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Tactics and lemmas for LK (thanks also to Philippe de Groote)
|
|
7 |
|
|
8 |
Structural rules by Soren Heilmann
|
|
9 |
*)
|
|
10 |
|
|
11 |
(** Structural Rules on formulas **)
|
|
12 |
|
|
13 |
(*contraction*)
|
|
14 |
|
|
15 |
Goal "$H |- $E, P, P, $F ==> $H |- $E, P, $F";
|
|
16 |
by (etac contRS 1);
|
|
17 |
qed "contR";
|
|
18 |
|
|
19 |
Goal "$H, P, P, $G |- $E ==> $H, P, $G |- $E";
|
|
20 |
by (etac contLS 1);
|
|
21 |
qed "contL";
|
|
22 |
|
|
23 |
(*thinning*)
|
|
24 |
|
|
25 |
Goal "$H |- $E, $F ==> $H |- $E, P, $F";
|
|
26 |
by (etac thinRS 1);
|
|
27 |
qed "thinR";
|
|
28 |
|
|
29 |
Goal "$H, $G |- $E ==> $H, P, $G |- $E";
|
|
30 |
by (etac thinLS 1);
|
|
31 |
qed "thinL";
|
|
32 |
|
|
33 |
(*exchange*)
|
|
34 |
|
|
35 |
Goal "$H |- $E, Q, P, $F ==> $H |- $E, P, Q, $F";
|
|
36 |
by (etac exchRS 1);
|
|
37 |
qed "exchR";
|
|
38 |
|
|
39 |
Goal "$H, Q, P, $G |- $E ==> $H, P, Q, $G |- $E";
|
|
40 |
by (etac exchLS 1);
|
|
41 |
qed "exchL";
|
|
42 |
|
|
43 |
(*Cut and thin, replacing the right-side formula*)
|
|
44 |
fun cutR_tac (sP: string) i =
|
|
45 |
res_inst_tac [ ("P",sP) ] cut i THEN rtac thinR i;
|
|
46 |
|
|
47 |
(*Cut and thin, replacing the left-side formula*)
|
|
48 |
fun cutL_tac (sP: string) i =
|
|
49 |
res_inst_tac [ ("P",sP) ] cut i THEN rtac thinL (i+1);
|
|
50 |
|
|
51 |
|
|
52 |
(** If-and-only-if rules **)
|
7122
|
53 |
Goalw [iff_def]
|
|
54 |
"[| $H,P |- $E,Q,$F; $H,Q |- $E,P,$F |] ==> $H |- $E, P <-> Q, $F";
|
|
55 |
by (REPEAT (ares_tac [conjR,impR] 1));
|
|
56 |
qed "iffR";
|
|
57 |
|
|
58 |
Goalw [iff_def]
|
|
59 |
"[| $H,$G |- $E,P,Q; $H,Q,P,$G |- $E |] ==> $H, P <-> Q, $G |- $E";
|
|
60 |
by (REPEAT (ares_tac [conjL,impL,basic] 1));
|
|
61 |
qed "iffL";
|
|
62 |
|
|
63 |
Goal "$H |- $E, (P <-> P), $F";
|
|
64 |
by (REPEAT (resolve_tac [iffR,basic] 1));
|
|
65 |
qed "iff_refl";
|
7093
|
66 |
|
7122
|
67 |
Goalw [True_def] "$H |- $E, True, $F";
|
|
68 |
by (rtac impR 1);
|
|
69 |
by (rtac basic 1);
|
|
70 |
qed "TrueR";
|
7093
|
71 |
|
7122
|
72 |
(*Descriptions*)
|
|
73 |
val [p1,p2] = Goal
|
|
74 |
"[| $H |- $E, P(a), $F; !!x. $H, P(x) |- $E, x=a, $F |] \
|
|
75 |
\ ==> $H |- $E, (THE x. P(x)) = a, $F";
|
|
76 |
by (rtac cut 1);
|
|
77 |
by (rtac p2 2);
|
|
78 |
by (rtac The 1 THEN rtac thinR 1 THEN rtac exchRS 1 THEN rtac p1 1);
|
|
79 |
by (rtac thinR 1 THEN rtac exchRS 1 THEN rtac p2 1);
|
|
80 |
qed "the_equality";
|
7093
|
81 |
|
|
82 |
(** Weakened quantifier rules. Incomplete, they let the search terminate.**)
|
|
83 |
|
|
84 |
Goal "$H, P(x), $G |- $E ==> $H, ALL x. P(x), $G |- $E";
|
|
85 |
by (rtac allL 1);
|
|
86 |
by (etac thinL 1);
|
|
87 |
qed "allL_thin";
|
|
88 |
|
|
89 |
Goal "$H |- $E, P(x), $F ==> $H |- $E, EX x. P(x), $F";
|
|
90 |
by (rtac exR 1);
|
|
91 |
by (etac thinR 1);
|
|
92 |
qed "exR_thin";
|
|
93 |
|
|
94 |
|
|
95 |
(*The rules of LK*)
|
|
96 |
val prop_pack = empty_pack add_safes
|
|
97 |
[basic, refl, TrueR, FalseL,
|
|
98 |
conjL, conjR, disjL, disjR, impL, impR,
|
|
99 |
notL, notR, iffL, iffR];
|
|
100 |
|
|
101 |
val LK_pack = prop_pack add_safes [allR, exL]
|
7122
|
102 |
add_unsafes [allL_thin, exR_thin, the_equality];
|
7093
|
103 |
|
|
104 |
val LK_dup_pack = prop_pack add_safes [allR, exL]
|
7122
|
105 |
add_unsafes [allL, exR, the_equality];
|
7093
|
106 |
|
|
107 |
|
7122
|
108 |
pack_ref() := LK_pack;
|
7093
|
109 |
|
|
110 |
fun lemma_tac th i =
|
|
111 |
rtac (thinR RS cut) i THEN REPEAT (rtac thinL i) THEN rtac th i;
|
|
112 |
|
|
113 |
val [major,minor] = goal thy
|
|
114 |
"[| $H |- $E, $F, P --> Q; $H |- $E, $F, P |] ==> $H |- $E, Q, $F";
|
|
115 |
by (rtac (thinRS RS cut) 1 THEN rtac major 1);
|
|
116 |
by (Step_tac 1);
|
|
117 |
by (rtac thinR 1 THEN rtac minor 1);
|
|
118 |
qed "mp_R";
|
|
119 |
|
|
120 |
val [major,minor] = goal thy
|
|
121 |
"[| $H, $G |- $E, P --> Q; $H, $G, Q |- $E |] ==> $H, P, $G |- $E";
|
|
122 |
by (rtac (thinL RS cut) 1 THEN rtac major 1);
|
|
123 |
by (Step_tac 1);
|
|
124 |
by (rtac thinL 1 THEN rtac minor 1);
|
|
125 |
qed "mp_L";
|
|
126 |
|
|
127 |
|
|
128 |
(** Two rules to generate left- and right- rules from implications **)
|
|
129 |
|
|
130 |
val [major,minor] = goal thy
|
|
131 |
"[| |- P --> Q; $H |- $E, $F, P |] ==> $H |- $E, Q, $F";
|
|
132 |
by (rtac mp_R 1);
|
|
133 |
by (rtac minor 2);
|
|
134 |
by (rtac thinRS 1 THEN rtac (major RS thinLS) 1);
|
|
135 |
qed "R_of_imp";
|
|
136 |
|
|
137 |
val [major,minor] = goal thy
|
|
138 |
"[| |- P --> Q; $H, $G, Q |- $E |] ==> $H, P, $G |- $E";
|
|
139 |
by (rtac mp_L 1);
|
|
140 |
by (rtac minor 2);
|
|
141 |
by (rtac thinRS 1 THEN rtac (major RS thinLS) 1);
|
|
142 |
qed "L_of_imp";
|
|
143 |
|
|
144 |
(*Can be used to create implications in a subgoal*)
|
|
145 |
val [prem] = goal thy
|
|
146 |
"[| $H, $G |- $E, $F, P --> Q |] ==> $H, P, $G |- $E, Q, $F";
|
|
147 |
by (rtac mp_L 1);
|
|
148 |
by (rtac basic 2);
|
|
149 |
by (rtac thinR 1 THEN rtac prem 1);
|
|
150 |
qed "backwards_impR";
|
|
151 |
|
|
152 |
|
|
153 |
qed_goal "conjunct1" thy "|-P&Q ==> |-P"
|
|
154 |
(fn [major] => [lemma_tac major 1, Fast_tac 1]);
|
|
155 |
|
|
156 |
qed_goal "conjunct2" thy "|-P&Q ==> |-Q"
|
|
157 |
(fn [major] => [lemma_tac major 1, Fast_tac 1]);
|
|
158 |
|
|
159 |
qed_goal "spec" thy "|- (ALL x. P(x)) ==> |- P(x)"
|
|
160 |
(fn [major] => [lemma_tac major 1, Fast_tac 1]);
|
|
161 |
|
|
162 |
(** Equality **)
|
|
163 |
|
|
164 |
Goal "|- a=b --> b=a";
|
|
165 |
by (safe_tac (LK_pack add_safes [subst]) 1);
|
|
166 |
qed "sym";
|
|
167 |
|
|
168 |
Goal "|- a=b --> b=c --> a=c";
|
|
169 |
by (safe_tac (LK_pack add_safes [subst]) 1);
|
|
170 |
qed "trans";
|
|
171 |
|
|
172 |
(* Symmetry of equality in hypotheses *)
|
|
173 |
bind_thm ("symL", sym RS L_of_imp);
|
|
174 |
|
|
175 |
(* Symmetry of equality in hypotheses *)
|
|
176 |
bind_thm ("symR", sym RS R_of_imp);
|
|
177 |
|
|
178 |
Goal "[| $H|- $E, $F, a=b; $H|- $E, $F, b=c |] ==> $H|- $E, a=c, $F";
|
|
179 |
by (rtac (trans RS R_of_imp RS mp_R) 1);
|
|
180 |
by (ALLGOALS assume_tac);
|
|
181 |
qed "transR";
|
7122
|
182 |
|
|
183 |
|
|
184 |
(* Two theorms for rewriting only one instance of a definition:
|
|
185 |
the first for definitions of formulae and the second for terms *)
|
|
186 |
|
|
187 |
val prems = goal thy "(A == B) ==> |- A <-> B";
|
|
188 |
by (rewrite_goals_tac prems);
|
|
189 |
by (rtac iff_refl 1);
|
|
190 |
qed "def_imp_iff";
|
|
191 |
|
|
192 |
val prems = goal thy "(A == B) ==> |- A = B";
|
|
193 |
by (rewrite_goals_tac prems);
|
|
194 |
by (rtac refl 1);
|
|
195 |
qed "meta_eq_to_obj_eq";
|