| author | haftmann | 
| Tue, 15 Jan 2008 16:19:23 +0100 | |
| changeset 25919 | 8b1c0d434824 | 
| parent 25481 | aa16cd919dcc | 
| child 27651 | 16a26996c30e | 
| permissions | -rw-r--r-- | 
| 23164 | 1  | 
(* Title: HOL/nat_simprocs.ML  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 2000 University of Cambridge  | 
|
5  | 
||
6  | 
Simprocs for nat numerals.  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
structure Nat_Numeral_Simprocs =  | 
|
10  | 
struct  | 
|
11  | 
||
12  | 
(*Maps n to #n for n = 0, 1, 2*)  | 
|
13  | 
val numeral_syms =  | 
|
| 23471 | 14  | 
       [@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym, @{thm numeral_2_eq_2} RS sym];
 | 
| 23164 | 15  | 
val numeral_sym_ss = HOL_ss addsimps numeral_syms;  | 
16  | 
||
17  | 
fun rename_numerals th =  | 
|
18  | 
simplify numeral_sym_ss (Thm.transfer (the_context ()) th);  | 
|
19  | 
||
20  | 
(*Utilities*)  | 
|
21  | 
||
22  | 
fun mk_number n = HOLogic.number_of_const HOLogic.natT $ HOLogic.mk_numeral n;  | 
|
| 
24630
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
24431 
diff
changeset
 | 
23  | 
fun dest_number t = Int.max (0, snd (HOLogic.dest_number t));  | 
| 23164 | 24  | 
|
25  | 
fun find_first_numeral past (t::terms) =  | 
|
26  | 
((dest_number t, t, rev past @ terms)  | 
|
27  | 
handle TERM _ => find_first_numeral (t::past) terms)  | 
|
28  | 
  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
 | 
|
29  | 
||
30  | 
val zero = mk_number 0;  | 
|
31  | 
val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
 | 
|
32  | 
||
33  | 
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)  | 
|
34  | 
fun mk_sum [] = zero  | 
|
35  | 
| mk_sum [t,u] = mk_plus (t, u)  | 
|
36  | 
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);  | 
|
37  | 
||
38  | 
(*this version ALWAYS includes a trailing zero*)  | 
|
39  | 
fun long_mk_sum [] = HOLogic.zero  | 
|
40  | 
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);  | 
|
41  | 
||
42  | 
val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
 | 
|
43  | 
||
44  | 
||
45  | 
(** Other simproc items **)  | 
|
46  | 
||
47  | 
val trans_tac = Int_Numeral_Simprocs.trans_tac;  | 
|
48  | 
||
49  | 
val bin_simps =  | 
|
| 23471 | 50  | 
     [@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym,
 | 
51  | 
      @{thm add_nat_number_of}, @{thm nat_number_of_add_left}, 
 | 
|
52  | 
      @{thm diff_nat_number_of}, @{thm le_number_of_eq_not_less},
 | 
|
53  | 
      @{thm mult_nat_number_of}, @{thm nat_number_of_mult_left}, 
 | 
|
54  | 
      @{thm less_nat_number_of}, 
 | 
|
55  | 
      @{thm Let_number_of}, @{thm nat_number_of}] @
 | 
|
| 25481 | 56  | 
     @{thms arith_simps} @ @{thms rel_simps};
 | 
| 23164 | 57  | 
|
58  | 
fun prep_simproc (name, pats, proc) =  | 
|
59  | 
Simplifier.simproc (the_context ()) name pats proc;  | 
|
60  | 
||
61  | 
||
62  | 
(*** CancelNumerals simprocs ***)  | 
|
63  | 
||
64  | 
val one = mk_number 1;  | 
|
65  | 
val mk_times = HOLogic.mk_binop @{const_name HOL.times};
 | 
|
66  | 
||
67  | 
fun mk_prod [] = one  | 
|
68  | 
| mk_prod [t] = t  | 
|
69  | 
| mk_prod (t :: ts) = if t = one then mk_prod ts  | 
|
70  | 
else mk_times (t, mk_prod ts);  | 
|
71  | 
||
72  | 
val dest_times = HOLogic.dest_bin @{const_name HOL.times} HOLogic.natT;
 | 
|
73  | 
||
74  | 
fun dest_prod t =  | 
|
75  | 
let val (t,u) = dest_times t  | 
|
76  | 
in dest_prod t @ dest_prod u end  | 
|
77  | 
handle TERM _ => [t];  | 
|
78  | 
||
79  | 
(*DON'T do the obvious simplifications; that would create special cases*)  | 
|
80  | 
fun mk_coeff (k,t) = mk_times (mk_number k, t);  | 
|
81  | 
||
82  | 
(*Express t as a product of (possibly) a numeral with other factors, sorted*)  | 
|
83  | 
fun dest_coeff t =  | 
|
84  | 
let val ts = sort Term.term_ord (dest_prod t)  | 
|
85  | 
val (n, _, ts') = find_first_numeral [] ts  | 
|
86  | 
handle TERM _ => (1, one, ts)  | 
|
87  | 
in (n, mk_prod ts') end;  | 
|
88  | 
||
89  | 
(*Find first coefficient-term THAT MATCHES u*)  | 
|
90  | 
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
 | 
|
91  | 
| find_first_coeff past u (t::terms) =  | 
|
92  | 
let val (n,u') = dest_coeff t  | 
|
93  | 
in if u aconv u' then (n, rev past @ terms)  | 
|
94  | 
else find_first_coeff (t::past) u terms  | 
|
95  | 
end  | 
|
96  | 
handle TERM _ => find_first_coeff (t::past) u terms;  | 
|
97  | 
||
98  | 
||
99  | 
(*Split up a sum into the list of its constituent terms, on the way removing any  | 
|
100  | 
Sucs and counting them.*)  | 
|
101  | 
fun dest_Suc_sum (Const ("Suc", _) $ t, (k,ts)) = dest_Suc_sum (t, (k+1,ts))
 | 
|
102  | 
| dest_Suc_sum (t, (k,ts)) =  | 
|
103  | 
let val (t1,t2) = dest_plus t  | 
|
104  | 
in dest_Suc_sum (t1, dest_Suc_sum (t2, (k,ts))) end  | 
|
105  | 
handle TERM _ => (k, t::ts);  | 
|
106  | 
||
107  | 
(*Code for testing whether numerals are already used in the goal*)  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25481 
diff
changeset
 | 
108  | 
fun is_numeral (Const(@{const_name Int.number_of}, _) $ w) = true
 | 
| 23164 | 109  | 
| is_numeral _ = false;  | 
110  | 
||
111  | 
fun prod_has_numeral t = exists is_numeral (dest_prod t);  | 
|
112  | 
||
113  | 
(*The Sucs found in the term are converted to a binary numeral. If relaxed is false,  | 
|
114  | 
an exception is raised unless the original expression contains at least one  | 
|
115  | 
numeral in a coefficient position. This prevents nat_combine_numerals from  | 
|
116  | 
introducing numerals to goals.*)  | 
|
117  | 
fun dest_Sucs_sum relaxed t =  | 
|
118  | 
let val (k,ts) = dest_Suc_sum (t,(0,[]))  | 
|
119  | 
in  | 
|
120  | 
if relaxed orelse exists prod_has_numeral ts then  | 
|
121  | 
if k=0 then ts  | 
|
| 
24630
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
24431 
diff
changeset
 | 
122  | 
else mk_number k :: ts  | 
| 23164 | 123  | 
     else raise TERM("Nat_Numeral_Simprocs.dest_Sucs_sum", [t])
 | 
124  | 
end;  | 
|
125  | 
||
126  | 
||
127  | 
(*Simplify 1*n and n*1 to n*)  | 
|
| 23881 | 128  | 
val add_0s  = map rename_numerals [@{thm add_0}, @{thm add_0_right}];
 | 
| 23164 | 129  | 
val mult_1s = map rename_numerals [@{thm nat_mult_1}, @{thm nat_mult_1_right}];
 | 
130  | 
||
131  | 
(*Final simplification: cancel + and *; replace Numeral0 by 0 and Numeral1 by 1*)  | 
|
132  | 
||
133  | 
(*And these help the simproc return False when appropriate, which helps  | 
|
134  | 
the arith prover.*)  | 
|
| 23881 | 135  | 
val contra_rules = [@{thm add_Suc}, @{thm add_Suc_right}, @{thm Zero_not_Suc},
 | 
136  | 
  @{thm Suc_not_Zero}, @{thm le_0_eq}];
 | 
|
| 23164 | 137  | 
|
138  | 
val simplify_meta_eq =  | 
|
139  | 
Int_Numeral_Simprocs.simplify_meta_eq  | 
|
| 23471 | 140  | 
        ([@{thm nat_numeral_0_eq_0}, @{thm numeral_1_eq_Suc_0}, @{thm add_0}, @{thm add_0_right},
 | 
141  | 
          @{thm mult_0}, @{thm mult_0_right}, @{thm mult_1}, @{thm mult_1_right}] @ contra_rules);
 | 
|
| 23164 | 142  | 
|
143  | 
||
144  | 
(*Like HOL_ss but with an ordering that brings numerals to the front  | 
|
145  | 
under AC-rewriting.*)  | 
|
146  | 
val num_ss = Int_Numeral_Simprocs.num_ss;  | 
|
147  | 
||
148  | 
(*** Applying CancelNumeralsFun ***)  | 
|
149  | 
||
150  | 
structure CancelNumeralsCommon =  | 
|
151  | 
struct  | 
|
152  | 
val mk_sum = (fn T:typ => mk_sum)  | 
|
153  | 
val dest_sum = dest_Sucs_sum true  | 
|
154  | 
val mk_coeff = mk_coeff  | 
|
155  | 
val dest_coeff = dest_coeff  | 
|
156  | 
val find_first_coeff = find_first_coeff []  | 
|
157  | 
val trans_tac = fn _ => trans_tac  | 
|
158  | 
||
159  | 
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @  | 
|
| 23881 | 160  | 
    [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
 | 
161  | 
  val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | 
|
| 23164 | 162  | 
fun norm_tac ss =  | 
163  | 
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))  | 
|
164  | 
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))  | 
|
165  | 
||
166  | 
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;  | 
|
167  | 
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss));  | 
|
168  | 
val simplify_meta_eq = simplify_meta_eq  | 
|
169  | 
end;  | 
|
170  | 
||
171  | 
||
172  | 
structure EqCancelNumerals = CancelNumeralsFun  | 
|
173  | 
(open CancelNumeralsCommon  | 
|
174  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
175  | 
val mk_bal = HOLogic.mk_eq  | 
|
176  | 
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT  | 
|
| 23471 | 177  | 
  val bal_add1 = @{thm nat_eq_add_iff1} RS trans
 | 
178  | 
  val bal_add2 = @{thm nat_eq_add_iff2} RS trans
 | 
|
| 23164 | 179  | 
);  | 
180  | 
||
181  | 
structure LessCancelNumerals = CancelNumeralsFun  | 
|
182  | 
(open CancelNumeralsCommon  | 
|
183  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 184  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
185  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | 
|
| 23471 | 186  | 
  val bal_add1 = @{thm nat_less_add_iff1} RS trans
 | 
187  | 
  val bal_add2 = @{thm nat_less_add_iff2} RS trans
 | 
|
| 23164 | 188  | 
);  | 
189  | 
||
190  | 
structure LeCancelNumerals = CancelNumeralsFun  | 
|
191  | 
(open CancelNumeralsCommon  | 
|
192  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 193  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
194  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | 
|
| 23471 | 195  | 
  val bal_add1 = @{thm nat_le_add_iff1} RS trans
 | 
196  | 
  val bal_add2 = @{thm nat_le_add_iff2} RS trans
 | 
|
| 23164 | 197  | 
);  | 
198  | 
||
199  | 
structure DiffCancelNumerals = CancelNumeralsFun  | 
|
200  | 
(open CancelNumeralsCommon  | 
|
201  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
202  | 
  val mk_bal   = HOLogic.mk_binop @{const_name HOL.minus}
 | 
|
203  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.minus} HOLogic.natT
 | 
|
| 23471 | 204  | 
  val bal_add1 = @{thm nat_diff_add_eq1} RS trans
 | 
205  | 
  val bal_add2 = @{thm nat_diff_add_eq2} RS trans
 | 
|
| 23164 | 206  | 
);  | 
207  | 
||
208  | 
||
209  | 
val cancel_numerals =  | 
|
210  | 
map prep_simproc  | 
|
211  | 
   [("nateq_cancel_numerals",
 | 
|
212  | 
["(l::nat) + m = n", "(l::nat) = m + n",  | 
|
213  | 
"(l::nat) * m = n", "(l::nat) = m * n",  | 
|
214  | 
"Suc m = n", "m = Suc n"],  | 
|
215  | 
K EqCancelNumerals.proc),  | 
|
216  | 
    ("natless_cancel_numerals",
 | 
|
217  | 
["(l::nat) + m < n", "(l::nat) < m + n",  | 
|
218  | 
"(l::nat) * m < n", "(l::nat) < m * n",  | 
|
219  | 
"Suc m < n", "m < Suc n"],  | 
|
220  | 
K LessCancelNumerals.proc),  | 
|
221  | 
    ("natle_cancel_numerals",
 | 
|
222  | 
["(l::nat) + m <= n", "(l::nat) <= m + n",  | 
|
223  | 
"(l::nat) * m <= n", "(l::nat) <= m * n",  | 
|
224  | 
"Suc m <= n", "m <= Suc n"],  | 
|
225  | 
K LeCancelNumerals.proc),  | 
|
226  | 
    ("natdiff_cancel_numerals",
 | 
|
227  | 
["((l::nat) + m) - n", "(l::nat) - (m + n)",  | 
|
228  | 
"(l::nat) * m - n", "(l::nat) - m * n",  | 
|
229  | 
"Suc m - n", "m - Suc n"],  | 
|
230  | 
K DiffCancelNumerals.proc)];  | 
|
231  | 
||
232  | 
||
233  | 
(*** Applying CombineNumeralsFun ***)  | 
|
234  | 
||
235  | 
structure CombineNumeralsData =  | 
|
236  | 
struct  | 
|
| 
24630
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
24431 
diff
changeset
 | 
237  | 
type coeff = int  | 
| 
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
24431 
diff
changeset
 | 
238  | 
val iszero = (fn x => x = 0)  | 
| 
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
24431 
diff
changeset
 | 
239  | 
val add = op +  | 
| 23164 | 240  | 
val mk_sum = (fn T:typ => long_mk_sum) (*to work for 2*x + 3*x *)  | 
241  | 
val dest_sum = dest_Sucs_sum false  | 
|
242  | 
val mk_coeff = mk_coeff  | 
|
243  | 
val dest_coeff = dest_coeff  | 
|
| 23471 | 244  | 
  val left_distrib      = @{thm left_add_mult_distrib} RS trans
 | 
| 23164 | 245  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps  | 
246  | 
val trans_tac = fn _ => trans_tac  | 
|
247  | 
||
| 23881 | 248  | 
  val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1}] @ @{thms add_ac}
 | 
249  | 
  val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | 
|
| 23164 | 250  | 
fun norm_tac ss =  | 
251  | 
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))  | 
|
252  | 
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))  | 
|
253  | 
||
254  | 
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;  | 
|
255  | 
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))  | 
|
256  | 
val simplify_meta_eq = simplify_meta_eq  | 
|
257  | 
end;  | 
|
258  | 
||
259  | 
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);  | 
|
260  | 
||
261  | 
val combine_numerals =  | 
|
262  | 
  prep_simproc ("nat_combine_numerals", ["(i::nat) + j", "Suc (i + j)"], K CombineNumerals.proc);
 | 
|
263  | 
||
264  | 
||
265  | 
(*** Applying CancelNumeralFactorFun ***)  | 
|
266  | 
||
267  | 
structure CancelNumeralFactorCommon =  | 
|
268  | 
struct  | 
|
269  | 
val mk_coeff = mk_coeff  | 
|
270  | 
val dest_coeff = dest_coeff  | 
|
271  | 
val trans_tac = fn _ => trans_tac  | 
|
272  | 
||
273  | 
val norm_ss1 = num_ss addsimps  | 
|
| 23881 | 274  | 
    numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
 | 
275  | 
  val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | 
|
| 23164 | 276  | 
fun norm_tac ss =  | 
277  | 
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))  | 
|
278  | 
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))  | 
|
279  | 
||
280  | 
val numeral_simp_ss = HOL_ss addsimps bin_simps  | 
|
281  | 
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))  | 
|
282  | 
val simplify_meta_eq = simplify_meta_eq  | 
|
283  | 
end  | 
|
284  | 
||
285  | 
structure DivCancelNumeralFactor = CancelNumeralFactorFun  | 
|
286  | 
(open CancelNumeralFactorCommon  | 
|
287  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
288  | 
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | 
|
289  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
 | 
|
| 23471 | 290  | 
  val cancel = @{thm nat_mult_div_cancel1} RS trans
 | 
| 23164 | 291  | 
val neg_exchanges = false  | 
292  | 
)  | 
|
293  | 
||
| 23969 | 294  | 
structure DvdCancelNumeralFactor = CancelNumeralFactorFun  | 
295  | 
(open CancelNumeralFactorCommon  | 
|
296  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
297  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name Divides.dvd}
 | 
|
298  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
 | 
|
299  | 
  val cancel = @{thm nat_mult_dvd_cancel1} RS trans
 | 
|
300  | 
val neg_exchanges = false  | 
|
301  | 
)  | 
|
302  | 
||
| 23164 | 303  | 
structure EqCancelNumeralFactor = CancelNumeralFactorFun  | 
304  | 
(open CancelNumeralFactorCommon  | 
|
305  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
306  | 
val mk_bal = HOLogic.mk_eq  | 
|
307  | 
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT  | 
|
| 23471 | 308  | 
  val cancel = @{thm nat_mult_eq_cancel1} RS trans
 | 
| 23164 | 309  | 
val neg_exchanges = false  | 
310  | 
)  | 
|
311  | 
||
312  | 
structure LessCancelNumeralFactor = CancelNumeralFactorFun  | 
|
313  | 
(open CancelNumeralFactorCommon  | 
|
314  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 315  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
316  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | 
|
| 23471 | 317  | 
  val cancel = @{thm nat_mult_less_cancel1} RS trans
 | 
| 23164 | 318  | 
val neg_exchanges = true  | 
319  | 
)  | 
|
320  | 
||
321  | 
structure LeCancelNumeralFactor = CancelNumeralFactorFun  | 
|
322  | 
(open CancelNumeralFactorCommon  | 
|
323  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 324  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
325  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | 
|
| 23471 | 326  | 
  val cancel = @{thm nat_mult_le_cancel1} RS trans
 | 
| 23164 | 327  | 
val neg_exchanges = true  | 
328  | 
)  | 
|
329  | 
||
330  | 
val cancel_numeral_factors =  | 
|
331  | 
map prep_simproc  | 
|
332  | 
   [("nateq_cancel_numeral_factors",
 | 
|
333  | 
["(l::nat) * m = n", "(l::nat) = m * n"],  | 
|
334  | 
K EqCancelNumeralFactor.proc),  | 
|
335  | 
    ("natless_cancel_numeral_factors",
 | 
|
336  | 
["(l::nat) * m < n", "(l::nat) < m * n"],  | 
|
337  | 
K LessCancelNumeralFactor.proc),  | 
|
338  | 
    ("natle_cancel_numeral_factors",
 | 
|
339  | 
["(l::nat) * m <= n", "(l::nat) <= m * n"],  | 
|
340  | 
K LeCancelNumeralFactor.proc),  | 
|
341  | 
    ("natdiv_cancel_numeral_factors",
 | 
|
342  | 
["((l::nat) * m) div n", "(l::nat) div (m * n)"],  | 
|
| 23969 | 343  | 
K DivCancelNumeralFactor.proc),  | 
344  | 
    ("natdvd_cancel_numeral_factors",
 | 
|
345  | 
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],  | 
|
346  | 
K DvdCancelNumeralFactor.proc)];  | 
|
| 23164 | 347  | 
|
348  | 
||
349  | 
||
350  | 
(*** Applying ExtractCommonTermFun ***)  | 
|
351  | 
||
352  | 
(*this version ALWAYS includes a trailing one*)  | 
|
353  | 
fun long_mk_prod [] = one  | 
|
354  | 
| long_mk_prod (t :: ts) = mk_times (t, mk_prod ts);  | 
|
355  | 
||
356  | 
(*Find first term that matches u*)  | 
|
357  | 
fun find_first_t past u []         = raise TERM("find_first_t", [])
 | 
|
358  | 
| find_first_t past u (t::terms) =  | 
|
359  | 
if u aconv t then (rev past @ terms)  | 
|
360  | 
else find_first_t (t::past) u terms  | 
|
361  | 
handle TERM _ => find_first_t (t::past) u terms;  | 
|
362  | 
||
363  | 
(** Final simplification for the CancelFactor simprocs **)  | 
|
364  | 
val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq  | 
|
365  | 
  [@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_1}, @{thm numeral_1_eq_Suc_0}];
 | 
|
366  | 
||
367  | 
fun cancel_simplify_meta_eq cancel_th ss th =  | 
|
368  | 
simplify_one ss (([th, cancel_th]) MRS trans);  | 
|
369  | 
||
370  | 
structure CancelFactorCommon =  | 
|
371  | 
struct  | 
|
372  | 
val mk_sum = (fn T:typ => long_mk_prod)  | 
|
373  | 
val dest_sum = dest_prod  | 
|
374  | 
val mk_coeff = mk_coeff  | 
|
375  | 
val dest_coeff = dest_coeff  | 
|
376  | 
val find_first = find_first_t []  | 
|
377  | 
val trans_tac = fn _ => trans_tac  | 
|
| 23881 | 378  | 
  val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
 | 
| 23164 | 379  | 
fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))  | 
380  | 
end;  | 
|
381  | 
||
382  | 
structure EqCancelFactor = ExtractCommonTermFun  | 
|
383  | 
(open CancelFactorCommon  | 
|
384  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
385  | 
val mk_bal = HOLogic.mk_eq  | 
|
386  | 
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT  | 
|
| 23471 | 387  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_eq_cancel_disj}
 | 
| 23164 | 388  | 
);  | 
389  | 
||
390  | 
structure LessCancelFactor = ExtractCommonTermFun  | 
|
391  | 
(open CancelFactorCommon  | 
|
392  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 393  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
394  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | 
|
| 23471 | 395  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_less_cancel_disj}
 | 
| 23164 | 396  | 
);  | 
397  | 
||
398  | 
structure LeCancelFactor = ExtractCommonTermFun  | 
|
399  | 
(open CancelFactorCommon  | 
|
400  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 401  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
402  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | 
|
| 23471 | 403  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_le_cancel_disj}
 | 
| 23164 | 404  | 
);  | 
405  | 
||
406  | 
structure DivideCancelFactor = ExtractCommonTermFun  | 
|
407  | 
(open CancelFactorCommon  | 
|
408  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
409  | 
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | 
|
410  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
 | 
|
| 23471 | 411  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_div_cancel_disj}
 | 
| 23164 | 412  | 
);  | 
413  | 
||
| 23969 | 414  | 
structure DvdCancelFactor = ExtractCommonTermFun  | 
415  | 
(open CancelFactorCommon  | 
|
416  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
417  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name Divides.dvd}
 | 
|
418  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
 | 
|
419  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_dvd_cancel_disj}
 | 
|
420  | 
);  | 
|
421  | 
||
| 23164 | 422  | 
val cancel_factor =  | 
423  | 
map prep_simproc  | 
|
424  | 
   [("nat_eq_cancel_factor",
 | 
|
425  | 
["(l::nat) * m = n", "(l::nat) = m * n"],  | 
|
426  | 
K EqCancelFactor.proc),  | 
|
427  | 
    ("nat_less_cancel_factor",
 | 
|
428  | 
["(l::nat) * m < n", "(l::nat) < m * n"],  | 
|
429  | 
K LessCancelFactor.proc),  | 
|
430  | 
    ("nat_le_cancel_factor",
 | 
|
431  | 
["(l::nat) * m <= n", "(l::nat) <= m * n"],  | 
|
432  | 
K LeCancelFactor.proc),  | 
|
433  | 
    ("nat_divide_cancel_factor",
 | 
|
434  | 
["((l::nat) * m) div n", "(l::nat) div (m * n)"],  | 
|
| 23969 | 435  | 
K DivideCancelFactor.proc),  | 
436  | 
    ("nat_dvd_cancel_factor",
 | 
|
437  | 
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],  | 
|
438  | 
K DvdCancelFactor.proc)];  | 
|
| 23164 | 439  | 
|
440  | 
end;  | 
|
441  | 
||
442  | 
||
443  | 
Addsimprocs Nat_Numeral_Simprocs.cancel_numerals;  | 
|
444  | 
Addsimprocs [Nat_Numeral_Simprocs.combine_numerals];  | 
|
445  | 
Addsimprocs Nat_Numeral_Simprocs.cancel_numeral_factors;  | 
|
446  | 
Addsimprocs Nat_Numeral_Simprocs.cancel_factor;  | 
|
447  | 
||
448  | 
||
449  | 
(*examples:  | 
|
450  | 
print_depth 22;  | 
|
451  | 
set timing;  | 
|
452  | 
set trace_simp;  | 
|
453  | 
fun test s = (Goal s; by (Simp_tac 1));  | 
|
454  | 
||
455  | 
(*cancel_numerals*)  | 
|
456  | 
test "l +( 2) + (2) + 2 + (l + 2) + (oo + 2) = (uu::nat)";  | 
|
457  | 
test "(2*length xs < 2*length xs + j)";  | 
|
458  | 
test "(2*length xs < length xs * 2 + j)";  | 
|
459  | 
test "2*u = (u::nat)";  | 
|
460  | 
test "2*u = Suc (u)";  | 
|
461  | 
test "(i + j + 12 + (k::nat)) - 15 = y";  | 
|
462  | 
test "(i + j + 12 + (k::nat)) - 5 = y";  | 
|
463  | 
test "Suc u - 2 = y";  | 
|
464  | 
test "Suc (Suc (Suc u)) - 2 = y";  | 
|
465  | 
test "(i + j + 2 + (k::nat)) - 1 = y";  | 
|
466  | 
test "(i + j + 1 + (k::nat)) - 2 = y";  | 
|
467  | 
||
468  | 
test "(2*x + (u*v) + y) - v*3*u = (w::nat)";  | 
|
469  | 
test "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = (w::nat)";  | 
|
470  | 
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::nat)";  | 
|
471  | 
test "Suc (Suc (2*x*u*v + u*4 + y)) - u = w";  | 
|
472  | 
test "Suc ((u*v)*4) - v*3*u = w";  | 
|
473  | 
test "Suc (Suc ((u*v)*3)) - v*3*u = w";  | 
|
474  | 
||
475  | 
test "(i + j + 12 + (k::nat)) = u + 15 + y";  | 
|
476  | 
test "(i + j + 32 + (k::nat)) - (u + 15 + y) = zz";  | 
|
477  | 
test "(i + j + 12 + (k::nat)) = u + 5 + y";  | 
|
478  | 
(*Suc*)  | 
|
479  | 
test "(i + j + 12 + k) = Suc (u + y)";  | 
|
480  | 
test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + 41 + k)";  | 
|
481  | 
test "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))";  | 
|
482  | 
test "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v";  | 
|
483  | 
test "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))";  | 
|
484  | 
test "2*y + 3*z + 2*u = Suc (u)";  | 
|
485  | 
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)";  | 
|
486  | 
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::nat)";  | 
|
487  | 
test "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)";  | 
|
488  | 
test "(2*n*m) < (3*(m*n)) + (u::nat)";  | 
|
489  | 
||
490  | 
test "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) <= Suc 0)";  | 
|
491  | 
||
492  | 
test "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) <= length l1";  | 
|
493  | 
||
494  | 
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) <= length (compT P E A ST mxr e))";  | 
|
495  | 
||
496  | 
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un \<A> e) ST mxr c))))))) <= length (compT P E A ST mxr e))";  | 
|
497  | 
||
498  | 
||
499  | 
(*negative numerals: FAIL*)  | 
|
500  | 
test "(i + j + -23 + (k::nat)) < u + 15 + y";  | 
|
501  | 
test "(i + j + 3 + (k::nat)) < u + -15 + y";  | 
|
502  | 
test "(i + j + -12 + (k::nat)) - 15 = y";  | 
|
503  | 
test "(i + j + 12 + (k::nat)) - -15 = y";  | 
|
504  | 
test "(i + j + -12 + (k::nat)) - -15 = y";  | 
|
505  | 
||
506  | 
(*combine_numerals*)  | 
|
507  | 
test "k + 3*k = (u::nat)";  | 
|
508  | 
test "Suc (i + 3) = u";  | 
|
509  | 
test "Suc (i + j + 3 + k) = u";  | 
|
510  | 
test "k + j + 3*k + j = (u::nat)";  | 
|
511  | 
test "Suc (j*i + i + k + 5 + 3*k + i*j*4) = (u::nat)";  | 
|
512  | 
test "(2*n*m) + (3*(m*n)) = (u::nat)";  | 
|
513  | 
(*negative numerals: FAIL*)  | 
|
514  | 
test "Suc (i + j + -3 + k) = u";  | 
|
515  | 
||
516  | 
(*cancel_numeral_factors*)  | 
|
517  | 
test "9*x = 12 * (y::nat)";  | 
|
518  | 
test "(9*x) div (12 * (y::nat)) = z";  | 
|
519  | 
test "9*x < 12 * (y::nat)";  | 
|
520  | 
test "9*x <= 12 * (y::nat)";  | 
|
521  | 
||
522  | 
(*cancel_factor*)  | 
|
523  | 
test "x*k = k*(y::nat)";  | 
|
524  | 
test "k = k*(y::nat)";  | 
|
525  | 
test "a*(b*c) = (b::nat)";  | 
|
526  | 
test "a*(b*c) = d*(b::nat)*(x*a)";  | 
|
527  | 
||
528  | 
test "x*k < k*(y::nat)";  | 
|
529  | 
test "k < k*(y::nat)";  | 
|
530  | 
test "a*(b*c) < (b::nat)";  | 
|
531  | 
test "a*(b*c) < d*(b::nat)*(x*a)";  | 
|
532  | 
||
533  | 
test "x*k <= k*(y::nat)";  | 
|
534  | 
test "k <= k*(y::nat)";  | 
|
535  | 
test "a*(b*c) <= (b::nat)";  | 
|
536  | 
test "a*(b*c) <= d*(b::nat)*(x*a)";  | 
|
537  | 
||
538  | 
test "(x*k) div (k*(y::nat)) = (uu::nat)";  | 
|
539  | 
test "(k) div (k*(y::nat)) = (uu::nat)";  | 
|
540  | 
test "(a*(b*c)) div ((b::nat)) = (uu::nat)";  | 
|
541  | 
test "(a*(b*c)) div (d*(b::nat)*(x*a)) = (uu::nat)";  | 
|
542  | 
*)  | 
|
543  | 
||
544  | 
||
545  | 
(*** Prepare linear arithmetic for nat numerals ***)  | 
|
546  | 
||
547  | 
local  | 
|
548  | 
||
549  | 
(* reduce contradictory <= to False *)  | 
|
| 
24431
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
550  | 
val add_rules = @{thms ring_distribs} @
 | 
| 23471 | 551  | 
  [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1}, @{thm nat_0}, @{thm nat_1},
 | 
552  | 
   @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
 | 
|
553  | 
   @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
 | 
|
554  | 
   @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
 | 
|
555  | 
   @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
 | 
|
556  | 
   @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
 | 
|
557  | 
   @{thm mult_Suc}, @{thm mult_Suc_right},
 | 
|
| 
24431
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
558  | 
   @{thm add_Suc}, @{thm add_Suc_right},
 | 
| 23471 | 559  | 
   @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
 | 
560  | 
   @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of}, @{thm if_True}, @{thm if_False}];
 | 
|
| 23164 | 561  | 
|
| 
24431
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
562  | 
(* Products are multiplied out during proof (re)construction via  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
563  | 
ring_distribs. Ideally they should remain atomic. But that is  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
564  | 
currently not possible because 1 is replaced by Suc 0, and then some  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
565  | 
simprocs start to mess around with products like (n+1)*m. The rule  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
566  | 
1 == Suc 0 is necessary for early parts of HOL where numerals and  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
567  | 
simprocs are not yet available. But then it is difficult to remove  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
568  | 
that rule later on, because it may find its way back in when theories  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
569  | 
(and thus lin-arith simpsets) are merged. Otherwise one could turn the  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
570  | 
rule around (Suc n = n+1) and see if that helps products being left  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
571  | 
alone. *)  | 
| 
 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 
nipkow 
parents: 
24093 
diff
changeset
 | 
572  | 
|
| 23164 | 573  | 
val simprocs = Nat_Numeral_Simprocs.combine_numerals  | 
574  | 
:: Nat_Numeral_Simprocs.cancel_numerals;  | 
|
575  | 
||
576  | 
in  | 
|
577  | 
||
578  | 
val nat_simprocs_setup =  | 
|
| 24093 | 579  | 
  LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
 | 
| 23164 | 580  | 
   {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
 | 
581  | 
inj_thms = inj_thms, lessD = lessD, neqE = neqE,  | 
|
582  | 
simpset = simpset addsimps add_rules  | 
|
583  | 
addsimprocs simprocs});  | 
|
584  | 
||
585  | 
end;  |