author | paulson |
Fri, 29 Oct 2004 15:16:02 +0200 | |
changeset 15270 | 8b3f707a78a7 |
parent 14565 | c6dc17aab88a |
child 16417 | 9bc16273c2d4 |
permissions | -rw-r--r-- |
11376 | 1 |
(* Title: HOL/NanoJava/Equivalence.thy |
2 |
ID: $Id$ |
|
3 |
Author: David von Oheimb |
|
4 |
Copyright 2001 Technische Universitaet Muenchen |
|
5 |
*) |
|
6 |
||
7 |
header "Equivalence of Operational and Axiomatic Semantics" |
|
8 |
||
9 |
theory Equivalence = OpSem + AxSem: |
|
10 |
||
11 |
subsection "Validity" |
|
12 |
||
13 |
constdefs |
|
11476 | 14 |
valid :: "[assn,stmt, assn] => bool" ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) |
15 |
"|= {P} c {Q} \<equiv> \<forall>s t. P s --> (\<exists>n. s -c -n-> t) --> Q t" |
|
16 |
||
17 |
evalid :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) |
|
18 |
"|=e {P} e {Q} \<equiv> \<forall>s v t. P s --> (\<exists>n. s -e>v-n-> t) --> Q v t" |
|
19 |
||
11376 | 20 |
|
11476 | 21 |
nvalid :: "[nat, triple ] => bool" ("|=_: _" [61,61] 60) |
22 |
"|=n: t \<equiv> let (P,c,Q) = t in \<forall>s t. s -c -n-> t --> P s --> Q t" |
|
11376 | 23 |
|
11476 | 24 |
envalid :: "[nat,etriple ] => bool" ("|=_:e _" [61,61] 60) |
25 |
"|=n:e t \<equiv> let (P,e,Q) = t in \<forall>s v t. s -e>v-n-> t --> P s --> Q v t" |
|
26 |
||
27 |
nvalids :: "[nat, triple set] => bool" ("||=_: _" [61,61] 60) |
|
11376 | 28 |
"||=n: T \<equiv> \<forall>t\<in>T. |=n: t" |
29 |
||
11476 | 30 |
cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _" [61,61] 60) |
31 |
"A ||= C \<equiv> \<forall>n. ||=n: A --> ||=n: C" |
|
32 |
||
33 |
cenvalid :: "[triple set,etriple ] => bool" ("_ ||=e/ _" [61,61] 60) |
|
34 |
"A ||=e t \<equiv> \<forall>n. ||=n: A --> |=n:e t" |
|
11376 | 35 |
|
36 |
syntax (xsymbols) |
|
11476 | 37 |
valid :: "[assn,stmt, assn] => bool" ( "\<Turnstile> {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) |
11486 | 38 |
evalid :: "[assn,expr,vassn] => bool" ("\<Turnstile>\<^sub>e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) |
11476 | 39 |
nvalid :: "[nat, triple ] => bool" ("\<Turnstile>_: _" [61,61] 60) |
11486 | 40 |
envalid :: "[nat,etriple ] => bool" ("\<Turnstile>_:\<^sub>e _" [61,61] 60) |
11476 | 41 |
nvalids :: "[nat, triple set] => bool" ("|\<Turnstile>_: _" [61,61] 60) |
11376 | 42 |
cnvalids :: "[triple set,triple set] => bool" ("_ |\<Turnstile>/ _" [61,61] 60) |
11486 | 43 |
cenvalid :: "[triple set,etriple ] => bool" ("_ |\<Turnstile>\<^sub>e/ _"[61,61] 60) |
11376 | 44 |
|
45 |
||
11476 | 46 |
lemma nvalid_def2: "\<Turnstile>n: (P,c,Q) \<equiv> \<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t" |
11376 | 47 |
by (simp add: nvalid_def Let_def) |
48 |
||
11476 | 49 |
lemma valid_def2: "\<Turnstile> {P} c {Q} = (\<forall>n. \<Turnstile>n: (P,c,Q))" |
50 |
apply (simp add: valid_def nvalid_def2) |
|
11376 | 51 |
apply blast |
52 |
done |
|
53 |
||
11486 | 54 |
lemma envalid_def2: "\<Turnstile>n:\<^sub>e (P,e,Q) \<equiv> \<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t" |
11476 | 55 |
by (simp add: envalid_def Let_def) |
56 |
||
11486 | 57 |
lemma evalid_def2: "\<Turnstile>\<^sub>e {P} e {Q} = (\<forall>n. \<Turnstile>n:\<^sub>e (P,e,Q))" |
11476 | 58 |
apply (simp add: evalid_def envalid_def2) |
59 |
apply blast |
|
60 |
done |
|
61 |
||
62 |
lemma cenvalid_def2: |
|
11486 | 63 |
"A|\<Turnstile>\<^sub>e (P,e,Q) = (\<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t))" |
11476 | 64 |
by(simp add: cenvalid_def envalid_def2) |
65 |
||
11376 | 66 |
|
67 |
subsection "Soundness" |
|
68 |
||
11476 | 69 |
declare exec_elim_cases [elim!] eval_elim_cases [elim!] |
11376 | 70 |
|
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
71 |
lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl M,Q)" |
11476 | 72 |
by (clarsimp simp add: nvalid_def2) |
11376 | 73 |
|
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
74 |
lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body M,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl M,Q)" |
11476 | 75 |
by (clarsimp simp add: nvalid_def2) |
11376 | 76 |
|
77 |
lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t" |
|
11476 | 78 |
by (force simp add: split_paired_all nvalid_def2 intro: exec_mono) |
11376 | 79 |
|
80 |
lemma nvalids_SucD: "Ball A (nvalid (Suc n)) \<Longrightarrow> Ball A (nvalid n)" |
|
81 |
by (fast intro: nvalid_SucD) |
|
82 |
||
83 |
lemma Loop_sound_lemma [rule_format (no_asm)]: |
|
11476 | 84 |
"\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<and> s<x> \<noteq> Null \<longrightarrow> P t \<Longrightarrow> |
85 |
(s -c0-n0\<rightarrow> t \<longrightarrow> P s \<longrightarrow> c0 = While (x) c \<longrightarrow> n0 = n \<longrightarrow> P t \<and> t<x> = Null)" |
|
14174
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
ballarin
parents:
12934
diff
changeset
|
86 |
apply (rule_tac ?P2.1="%s e v n t. True" in exec_eval.induct [THEN conjunct1]) |
11376 | 87 |
apply clarsimp+ |
88 |
done |
|
89 |
||
90 |
lemma Impl_sound_lemma: |
|
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
91 |
"\<lbrakk>\<forall>z n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (f z ` Ms) (nvalid n); |
12742 | 92 |
Cm\<in>Ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z Cm)" |
11376 | 93 |
by blast |
94 |
||
11476 | 95 |
lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l" |
96 |
by fast |
|
97 |
||
98 |
lemma all3_conjunct2: |
|
99 |
"\<forall>a p l. (P' a p l \<and> P a p l) \<Longrightarrow> \<forall>a p l. P a p l" |
|
100 |
by fast |
|
101 |
||
102 |
lemma cnvalid1_eq: |
|
103 |
"A |\<Turnstile> {(P,c,Q)} \<equiv> \<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t)" |
|
104 |
by(simp add: cnvalids_def nvalids_def nvalid_def2) |
|
105 |
||
11486 | 106 |
lemma hoare_sound_main:"\<And>t. (A |\<turnstile> C \<longrightarrow> A |\<Turnstile> C) \<and> (A |\<turnstile>\<^sub>e t \<longrightarrow> A |\<Turnstile>\<^sub>e t)" |
11476 | 107 |
apply (tactic "split_all_tac 1", rename_tac P e Q) |
108 |
apply (rule hoare_ehoare.induct) |
|
12524
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
109 |
(*18*) |
11476 | 110 |
apply (tactic {* ALLGOALS (REPEAT o dresolve_tac [thm "all_conjunct2", thm "all3_conjunct2"]) *}) |
111 |
apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x : hoare") *}) |
|
112 |
apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x : ehoare") *}) |
|
113 |
apply (simp_all only: cnvalid1_eq cenvalid_def2) |
|
12524
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
114 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
115 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
116 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
117 |
apply (clarify,tactic "smp_tac 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
118 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
119 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
120 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
121 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
122 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
123 |
apply fast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
124 |
apply (clarsimp del: Meth_elim_cases) (* Call *) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
125 |
apply (force del: Impl_elim_cases) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
126 |
defer |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
127 |
prefer 4 apply blast (* Conseq *) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
128 |
prefer 4 apply blast (* eConseq *) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
129 |
apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def) |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
130 |
apply blast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
131 |
apply blast |
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
132 |
apply blast |
11376 | 133 |
apply (rule allI) |
11565 | 134 |
apply (rule_tac x=Z in spec) |
11376 | 135 |
apply (induct_tac "n") |
12524
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
136 |
apply (clarify intro!: Impl_nvalid_0) |
11376 | 137 |
apply (clarify intro!: Impl_nvalid_Suc) |
138 |
apply (drule nvalids_SucD) |
|
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
139 |
apply (simp only: all_simps) |
11376 | 140 |
apply (erule (1) impE) |
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
141 |
apply (drule (2) Impl_sound_lemma) |
12524
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
nipkow
parents:
11565
diff
changeset
|
142 |
apply blast |
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
143 |
apply assumption |
11376 | 144 |
done |
145 |
||
146 |
theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}" |
|
147 |
apply (simp only: valid_def2) |
|
11476 | 148 |
apply (drule hoare_sound_main [THEN conjunct1, rule_format]) |
11376 | 149 |
apply (unfold cnvalids_def nvalids_def) |
150 |
apply fast |
|
151 |
done |
|
152 |
||
11486 | 153 |
theorem ehoare_sound: "{} \<turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q}" |
11476 | 154 |
apply (simp only: evalid_def2) |
155 |
apply (drule hoare_sound_main [THEN conjunct2, rule_format]) |
|
156 |
apply (unfold cenvalid_def nvalids_def) |
|
157 |
apply fast |
|
158 |
done |
|
159 |
||
11376 | 160 |
|
161 |
subsection "(Relative) Completeness" |
|
162 |
||
11476 | 163 |
constdefs MGT :: "stmt => state => triple" |
11565 | 164 |
"MGT c Z \<equiv> (\<lambda>s. Z = s, c, \<lambda> t. \<exists>n. Z -c- n-> t)" |
11486 | 165 |
MGTe :: "expr => state => etriple" |
11565 | 166 |
"MGTe e Z \<equiv> (\<lambda>s. Z = s, e, \<lambda>v t. \<exists>n. Z -e>v-n-> t)" |
11486 | 167 |
syntax (xsymbols) |
168 |
MGTe :: "expr => state => etriple" ("MGT\<^sub>e") |
|
14565 | 169 |
syntax (HTML output) |
170 |
MGTe :: "expr => state => etriple" ("MGT\<^sub>e") |
|
11376 | 171 |
|
172 |
lemma MGF_implies_complete: |
|
11565 | 173 |
"\<forall>Z. {} |\<turnstile> { MGT c Z} \<Longrightarrow> \<Turnstile> {P} c {Q} \<Longrightarrow> {} \<turnstile> {P} c {Q}" |
11376 | 174 |
apply (simp only: valid_def2) |
175 |
apply (unfold MGT_def) |
|
11476 | 176 |
apply (erule hoare_ehoare.Conseq) |
177 |
apply (clarsimp simp add: nvalid_def2) |
|
11376 | 178 |
done |
179 |
||
11476 | 180 |
lemma eMGF_implies_complete: |
11565 | 181 |
"\<forall>Z. {} |\<turnstile>\<^sub>e MGT\<^sub>e e Z \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}" |
11476 | 182 |
apply (simp only: evalid_def2) |
11486 | 183 |
apply (unfold MGTe_def) |
11476 | 184 |
apply (erule hoare_ehoare.eConseq) |
185 |
apply (clarsimp simp add: envalid_def2) |
|
186 |
done |
|
11376 | 187 |
|
11476 | 188 |
declare exec_eval.intros[intro!] |
11376 | 189 |
|
11565 | 190 |
lemma MGF_Loop: "\<forall>Z. A \<turnstile> {op = Z} c {\<lambda>t. \<exists>n. Z -c-n\<rightarrow> t} \<Longrightarrow> |
191 |
A \<turnstile> {op = Z} While (x) c {\<lambda>t. \<exists>n. Z -While (x) c-n\<rightarrow> t}" |
|
192 |
apply (rule_tac P' = "\<lambda>Z s. (Z,s) \<in> ({(s,t). \<exists>n. s<x> \<noteq> Null \<and> s -c-n\<rightarrow> t})^*" |
|
11476 | 193 |
in hoare_ehoare.Conseq) |
11376 | 194 |
apply (rule allI) |
11476 | 195 |
apply (rule hoare_ehoare.Loop) |
196 |
apply (erule hoare_ehoare.Conseq) |
|
11376 | 197 |
apply clarsimp |
198 |
apply (blast intro:rtrancl_into_rtrancl) |
|
199 |
apply (erule thin_rl) |
|
200 |
apply clarsimp |
|
11565 | 201 |
apply (erule_tac x = Z in allE) |
11376 | 202 |
apply clarsimp |
203 |
apply (erule converse_rtrancl_induct) |
|
204 |
apply blast |
|
205 |
apply clarsimp |
|
11476 | 206 |
apply (drule (1) exec_exec_max) |
11376 | 207 |
apply (blast del: exec_elim_cases) |
208 |
done |
|
209 |
||
11565 | 210 |
lemma MGF_lemma: "\<forall>M Z. A |\<turnstile> {MGT (Impl M) Z} \<Longrightarrow> |
211 |
(\<forall>Z. A |\<turnstile> {MGT c Z}) \<and> (\<forall>Z. A |\<turnstile>\<^sub>e MGT\<^sub>e e Z)" |
|
11486 | 212 |
apply (simp add: MGT_def MGTe_def) |
11476 | 213 |
apply (rule stmt_expr.induct) |
214 |
apply (rule_tac [!] allI) |
|
11376 | 215 |
|
11476 | 216 |
apply (rule Conseq1 [OF hoare_ehoare.Skip]) |
11376 | 217 |
apply blast |
218 |
||
11476 | 219 |
apply (rule hoare_ehoare.Comp) |
11376 | 220 |
apply (erule spec) |
11476 | 221 |
apply (erule hoare_ehoare.Conseq) |
11376 | 222 |
apply clarsimp |
11476 | 223 |
apply (drule (1) exec_exec_max) |
11376 | 224 |
apply blast |
225 |
||
11476 | 226 |
apply (erule thin_rl) |
227 |
apply (rule hoare_ehoare.Cond) |
|
228 |
apply (erule spec) |
|
229 |
apply (rule allI) |
|
230 |
apply (simp) |
|
231 |
apply (rule conjI) |
|
232 |
apply (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max, |
|
233 |
erule thin_rl, erule thin_rl, force)+ |
|
11376 | 234 |
|
235 |
apply (erule MGF_Loop) |
|
236 |
||
11476 | 237 |
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss]) |
238 |
apply fast |
|
11376 | 239 |
|
11476 | 240 |
apply (erule thin_rl) |
11565 | 241 |
apply (rule_tac Q = "\<lambda>a s. \<exists>n. Z -expr1\<succ>Addr a-n\<rightarrow> s" in hoare_ehoare.FAss) |
11476 | 242 |
apply (drule spec) |
243 |
apply (erule eConseq2) |
|
244 |
apply fast |
|
245 |
apply (rule allI) |
|
246 |
apply (erule hoare_ehoare.eConseq) |
|
247 |
apply clarsimp |
|
248 |
apply (drule (1) eval_eval_max) |
|
11376 | 249 |
apply blast |
250 |
||
11507 | 251 |
apply (simp only: split_paired_all) |
11476 | 252 |
apply (rule hoare_ehoare.Meth) |
11376 | 253 |
apply (rule allI) |
11476 | 254 |
apply (drule spec, drule spec, erule hoare_ehoare.Conseq) |
11376 | 255 |
apply blast |
256 |
||
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
257 |
apply (simp add: split_paired_all) |
11476 | 258 |
|
259 |
apply (rule eConseq1 [OF hoare_ehoare.NewC]) |
|
260 |
apply blast |
|
261 |
||
262 |
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast]) |
|
263 |
apply fast |
|
264 |
||
265 |
apply (rule eConseq1 [OF hoare_ehoare.LAcc]) |
|
266 |
apply blast |
|
267 |
||
268 |
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc]) |
|
269 |
apply fast |
|
270 |
||
11565 | 271 |
apply (rule_tac R = "\<lambda>a v s. \<exists>n1 n2 t. Z -expr1\<succ>a-n1\<rightarrow> t \<and> t -expr2\<succ>v-n2\<rightarrow> s" in |
11476 | 272 |
hoare_ehoare.Call) |
273 |
apply (erule spec) |
|
274 |
apply (rule allI) |
|
275 |
apply (erule hoare_ehoare.eConseq) |
|
276 |
apply clarsimp |
|
277 |
apply blast |
|
278 |
apply (rule allI)+ |
|
279 |
apply (rule hoare_ehoare.Meth) |
|
280 |
apply (rule allI) |
|
281 |
apply (drule spec, drule spec, erule hoare_ehoare.Conseq) |
|
282 |
apply (erule thin_rl, erule thin_rl) |
|
283 |
apply (clarsimp del: Impl_elim_cases) |
|
284 |
apply (drule (2) eval_eval_exec_max) |
|
11565 | 285 |
apply (force del: Impl_elim_cases) |
11376 | 286 |
done |
287 |
||
11565 | 288 |
lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl M) Z}" |
11376 | 289 |
apply (unfold MGT_def) |
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
290 |
apply (rule Impl1') |
11376 | 291 |
apply (rule_tac [2] UNIV_I) |
292 |
apply clarsimp |
|
11476 | 293 |
apply (rule hoare_ehoare.ConjI) |
11376 | 294 |
apply clarsimp |
295 |
apply (rule ssubst [OF Impl_body_eq]) |
|
296 |
apply (fold MGT_def) |
|
11476 | 297 |
apply (rule MGF_lemma [THEN conjunct1, rule_format]) |
298 |
apply (rule hoare_ehoare.Asm) |
|
11376 | 299 |
apply force |
300 |
done |
|
301 |
||
302 |
theorem hoare_relative_complete: "\<Turnstile> {P} c {Q} \<Longrightarrow> {} \<turnstile> {P} c {Q}" |
|
303 |
apply (rule MGF_implies_complete) |
|
304 |
apply (erule_tac [2] asm_rl) |
|
305 |
apply (rule allI) |
|
11476 | 306 |
apply (rule MGF_lemma [THEN conjunct1, rule_format]) |
307 |
apply (rule MGF_Impl) |
|
308 |
done |
|
309 |
||
11486 | 310 |
theorem ehoare_relative_complete: "\<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}" |
11476 | 311 |
apply (rule eMGF_implies_complete) |
312 |
apply (erule_tac [2] asm_rl) |
|
313 |
apply (rule allI) |
|
314 |
apply (rule MGF_lemma [THEN conjunct2, rule_format]) |
|
11376 | 315 |
apply (rule MGF_Impl) |
316 |
done |
|
317 |
||
11565 | 318 |
lemma cFalse: "A \<turnstile> {\<lambda>s. False} c {Q}" |
319 |
apply (rule cThin) |
|
320 |
apply (rule hoare_relative_complete) |
|
321 |
apply (auto simp add: valid_def) |
|
322 |
done |
|
323 |
||
324 |
lemma eFalse: "A \<turnstile>\<^sub>e {\<lambda>s. False} e {Q}" |
|
325 |
apply (rule eThin) |
|
326 |
apply (rule ehoare_relative_complete) |
|
327 |
apply (auto simp add: evalid_def) |
|
328 |
done |
|
329 |
||
11376 | 330 |
end |