0
|
1 |
(* Title: ZF/wf.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow and Lawrence C Paulson
|
435
|
4 |
Copyright 1994 University of Cambridge
|
0
|
5 |
|
|
6 |
Well-founded Recursion
|
|
7 |
*)
|
|
8 |
|
435
|
9 |
WF = Trancl + "mono" + "equalities" +
|
0
|
10 |
consts
|
435
|
11 |
wf :: "i=>o"
|
|
12 |
wf_on :: "[i,i]=>o" ("wf[_]'(_')")
|
|
13 |
|
|
14 |
wftrec,wfrec :: "[i, i, [i,i]=>i] =>i"
|
|
15 |
wfrec_on :: "[i, i, i, [i,i]=>i] =>i" ("wfrec[_]'(_,_,_')")
|
|
16 |
is_recfun :: "[i, i, [i,i]=>i, i] =>o"
|
|
17 |
the_recfun :: "[i, i, [i,i]=>i] =>i"
|
0
|
18 |
|
930
|
19 |
defs
|
0
|
20 |
(*r is a well-founded relation*)
|
|
21 |
wf_def "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
|
|
22 |
|
435
|
23 |
(*r is well-founded relation over A*)
|
|
24 |
wf_on_def "wf_on(A,r) == wf(r Int A*A)"
|
|
25 |
|
0
|
26 |
is_recfun_def "is_recfun(r,a,H,f) == \
|
|
27 |
\ (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
|
|
28 |
|
|
29 |
the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
|
|
30 |
|
|
31 |
wftrec_def "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
|
|
32 |
|
|
33 |
(*public version. Does not require r to be transitive*)
|
|
34 |
wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
|
|
35 |
|
435
|
36 |
wfrec_on_def "wfrec[A](r,a,H) == wfrec(r Int A*A, a, H)"
|
|
37 |
|
0
|
38 |
end
|