| 
7701
 | 
     1  | 
(*  Title:      HOL/Recdef.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Konrad Slind
  | 
| 
5123
 | 
     4  | 
  | 
| 
7701
 | 
     5  | 
TFL: recursive function definitions.
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Recdef = WF_Rel + Datatype
  | 
| 
 | 
     9  | 
files
  | 
| 
 | 
    10  | 
  "../TFL/utils.sml"
  | 
| 
 | 
    11  | 
  "../TFL/usyntax.sml"
  | 
| 
 | 
    12  | 
  "../TFL/thms.sml"
  | 
| 
 | 
    13  | 
  "../TFL/dcterm.sml"
  | 
| 
 | 
    14  | 
  "../TFL/rules.sml"
  | 
| 
 | 
    15  | 
  "../TFL/thry.sml"
  | 
| 
 | 
    16  | 
  "../TFL/tfl.sml"
  | 
| 
 | 
    17  | 
  "../TFL/post.sml"
  | 
| 
8303
 | 
    18  | 
  "Tools/recdef_package.ML":
  | 
| 
6438
 | 
    19  | 
  | 
| 
 | 
    20  | 
setup RecdefPackage.setup
  | 
| 
 | 
    21  | 
  | 
| 
9855
 | 
    22  | 
lemmas [recdef_simp] =
  | 
| 
 | 
    23  | 
  inv_image_def
  | 
| 
 | 
    24  | 
  measure_def
  | 
| 
 | 
    25  | 
  lex_prod_def
  | 
| 
 | 
    26  | 
  less_Suc_eq [THEN iffD2]
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemmas [recdef_cong] =
  | 
| 
 | 
    29  | 
  if_cong
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma let_cong [recdef_cong]:
  | 
| 
 | 
    32  | 
    "M = N ==> (!!x. x = N ==> f x = g x) ==> Let M f = Let N g"
  | 
| 
 | 
    33  | 
  by (unfold Let_def) blast
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemmas [recdef_wf] =
  | 
| 
 | 
    36  | 
  wf_trancl
  | 
| 
 | 
    37  | 
  wf_less_than
  | 
| 
 | 
    38  | 
  wf_lex_prod
  | 
| 
 | 
    39  | 
  wf_inv_image
  | 
| 
 | 
    40  | 
  wf_measure
  | 
| 
 | 
    41  | 
  wf_pred_nat
  | 
| 
 | 
    42  | 
  wf_empty
  | 
| 
 | 
    43  | 
  | 
| 
6438
 | 
    44  | 
end
  |