| 
71844
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
71814
 | 
     2  | 
  | 
| 
71844
 | 
     3  | 
section "AVL Tree with Balance Factors (1)"
  | 
| 
71814
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory AVL_Bal_Set
  | 
| 
 | 
     6  | 
imports
  | 
| 
 | 
     7  | 
  Cmp
  | 
| 
 | 
     8  | 
  Isin2
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
71844
 | 
    11  | 
text \<open>This version detects height increase/decrease from above via the change in balance factors.\<close>
  | 
| 
 | 
    12  | 
  | 
| 
71814
 | 
    13  | 
datatype bal = Lh | Bal | Rh
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
type_synonym 'a tree_bal = "('a * bal) tree"
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
text \<open>Invariant:\<close>
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
fun avl :: "'a tree_bal \<Rightarrow> bool" where
  | 
| 
 | 
    20  | 
"avl Leaf = True" |
  | 
| 
 | 
    21  | 
"avl (Node l (a,b) r) =
  | 
| 
 | 
    22  | 
  ((case b of
  | 
| 
 | 
    23  | 
    Bal \<Rightarrow> height r = height l |
  | 
| 
 | 
    24  | 
    Lh \<Rightarrow> height l = height r + 1 |
  | 
| 
 | 
    25  | 
    Rh \<Rightarrow> height r = height l + 1)
  | 
| 
 | 
    26  | 
  \<and> avl l \<and> avl r)"
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
subsection \<open>Code\<close>
  | 
| 
 | 
    30  | 
  | 
| 
71844
 | 
    31  | 
fun is_bal where
  | 
| 
 | 
    32  | 
"is_bal (Node l (a,b) r) = (b = Bal)"
  | 
| 
71828
 | 
    33  | 
  | 
| 
71844
 | 
    34  | 
fun incr where
  | 
| 
 | 
    35  | 
"incr t t' = (t = Leaf \<or> is_bal t \<and> \<not> is_bal t')"
  | 
| 
71814
 | 
    36  | 
  | 
| 
71820
 | 
    37  | 
fun rot2 where
  | 
| 
 | 
    38  | 
"rot2 A a B c C = (case B of
  | 
| 
 | 
    39  | 
  (Node B\<^sub>1 (b, bb) B\<^sub>2) \<Rightarrow>
  | 
| 
 | 
    40  | 
    let b\<^sub>1 = if bb = Rh then Lh else Bal;
  | 
| 
 | 
    41  | 
        b\<^sub>2 = if bb = Lh then Rh else Bal
  | 
| 
 | 
    42  | 
    in Node (Node A (a,b\<^sub>1) B\<^sub>1) (b,Bal) (Node B\<^sub>2 (c,b\<^sub>2) C))"
  | 
| 
71814
 | 
    43  | 
  | 
| 
71844
 | 
    44  | 
fun balL :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where
  | 
| 
 | 
    45  | 
"balL AB c bc C = (case bc of
  | 
| 
 | 
    46  | 
     Bal \<Rightarrow> Node AB (c,Lh) C |
  | 
| 
 | 
    47  | 
     Rh \<Rightarrow> Node AB (c,Bal) C |
  | 
| 
71824
 | 
    48  | 
     Lh \<Rightarrow> (case AB of
  | 
| 
71844
 | 
    49  | 
       Node A (a,Lh) B \<Rightarrow> Node A (a,Bal) (Node B (c,Bal) C) |
  | 
| 
 | 
    50  | 
       Node A (a,Bal) B \<Rightarrow> Node A (a,Rh) (Node B (c,Lh) C) |
  | 
| 
 | 
    51  | 
       Node A (a,Rh) B \<Rightarrow> rot2 A a B c C))"
  | 
| 
71814
 | 
    52  | 
  | 
| 
71844
 | 
    53  | 
fun balR :: "'a tree_bal \<Rightarrow> 'a \<Rightarrow> bal \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where
  | 
| 
 | 
    54  | 
"balR A a ba BC = (case ba of
  | 
| 
 | 
    55  | 
     Bal \<Rightarrow> Node A (a,Rh) BC |
  | 
| 
 | 
    56  | 
     Lh \<Rightarrow> Node A (a,Bal) BC |
  | 
| 
71824
 | 
    57  | 
     Rh \<Rightarrow> (case BC of
  | 
| 
71844
 | 
    58  | 
       Node B (c,Rh) C \<Rightarrow> Node (Node A (a,Bal) B) (c,Bal) C |
  | 
| 
 | 
    59  | 
       Node B (c,Bal) C \<Rightarrow> Node (Node A (a,Rh) B) (c,Lh) C |
  | 
| 
 | 
    60  | 
       Node B (c,Lh) C \<Rightarrow> rot2 A a B c C))"
  | 
| 
71814
 | 
    61  | 
  | 
| 
71844
 | 
    62  | 
fun insert :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where
  | 
| 
 | 
    63  | 
"insert x Leaf = Node Leaf (x, Bal) Leaf" |
  | 
| 
 | 
    64  | 
"insert x (Node l (a, b) r) = (case cmp x a of
  | 
| 
 | 
    65  | 
   EQ \<Rightarrow> Node l (a, b) r |
  | 
| 
 | 
    66  | 
   LT \<Rightarrow> let l' = insert x l in if incr l l' then balL l' a b r else Node l' (a,b) r |
  | 
| 
 | 
    67  | 
   GT \<Rightarrow> let r' = insert x r in if incr r r' then balR l a b r' else Node l (a,b) r')"
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
fun decr where
  | 
| 
 | 
    70  | 
"decr t t' = (t \<noteq> Leaf \<and> (t' = Leaf \<or> \<not> is_bal t \<and> is_bal t'))"
  | 
| 
71814
 | 
    71  | 
  | 
| 
71844
 | 
    72  | 
fun split_max :: "'a tree_bal \<Rightarrow> 'a tree_bal * 'a" where
  | 
| 
71814
 | 
    73  | 
"split_max (Node l (a, ba) r) =
  | 
| 
71844
 | 
    74  | 
  (if r = Leaf then (l,a)
  | 
| 
 | 
    75  | 
   else let (r',a') = split_max r;
  | 
| 
 | 
    76  | 
            t' = if decr r r' then balL l a ba r' else Node l (a,ba) r'
  | 
| 
 | 
    77  | 
        in (t', a'))"
  | 
| 
71814
 | 
    78  | 
  | 
| 
71844
 | 
    79  | 
fun delete :: "'a::linorder \<Rightarrow> 'a tree_bal \<Rightarrow> 'a tree_bal" where
  | 
| 
 | 
    80  | 
"delete _ Leaf = Leaf" |
  | 
| 
 | 
    81  | 
"delete x (Node l (a, ba) r) =
  | 
| 
71814
 | 
    82  | 
  (case cmp x a of
  | 
| 
71844
 | 
    83  | 
     EQ \<Rightarrow> if l = Leaf then r
  | 
| 
 | 
    84  | 
           else let (l', a') = split_max l in
  | 
| 
 | 
    85  | 
                if decr l l' then balR l' a' ba r else Node l' (a',ba) r |
  | 
| 
 | 
    86  | 
     LT \<Rightarrow> let l' = delete x l in if decr l l' then balR l' a ba r else Node l' (a,ba) r |
  | 
| 
 | 
    87  | 
     GT \<Rightarrow> let r' = delete x r in if decr r r' then balL l a ba r' else Node l (a,ba) r')"
  | 
| 
71814
 | 
    88  | 
  | 
| 
71846
 | 
    89  | 
  | 
| 
 | 
    90  | 
subsection \<open>Proofs\<close>
  | 
| 
 | 
    91  | 
  | 
| 
71814
 | 
    92  | 
lemmas split_max_induct = split_max.induct[case_names Node Leaf]
  | 
| 
 | 
    93  | 
  | 
| 
71844
 | 
    94  | 
lemmas splits = if_splits tree.splits bal.splits
  | 
| 
71814
 | 
    95  | 
  | 
| 
71846
 | 
    96  | 
declare Let_def [simp]
  | 
| 
71814
 | 
    97  | 
  | 
| 
71828
 | 
    98  | 
subsubsection "Proofs about insertion"
  | 
| 
71814
 | 
    99  | 
  | 
| 
71844
 | 
   100  | 
lemma avl_insert: "avl t \<Longrightarrow>
  | 
| 
 | 
   101  | 
  avl(insert x t) \<and>
  | 
| 
 | 
   102  | 
  height(insert x t) = height t + (if incr t (insert x t) then 1 else 0)"
  | 
| 
 | 
   103  | 
apply(induction x t rule: insert.induct)
  | 
| 
 | 
   104  | 
apply(auto split!: splits)
  | 
| 
71814
 | 
   105  | 
done
  | 
| 
 | 
   106  | 
  | 
| 
71844
 | 
   107  | 
text \<open>The following two auxiliary lemma merely simplify the proof of \<open>inorder_insert\<close>.\<close>
  | 
| 
71814
 | 
   108  | 
  | 
| 
71844
 | 
   109  | 
lemma [simp]: "[] \<noteq> ins_list x xs"
  | 
| 
 | 
   110  | 
by(cases xs) auto
  | 
| 
71824
 | 
   111  | 
  | 
| 
71844
 | 
   112  | 
lemma [simp]: "avl t \<Longrightarrow> insert x t \<noteq> \<langle>l, (a, Rh), \<langle>\<rangle>\<rangle> \<and> insert x t \<noteq> \<langle>\<langle>\<rangle>, (a, Lh), r\<rangle>"
  | 
| 
 | 
   113  | 
by(drule avl_insert[of _ x]) (auto split: splits)
  | 
| 
71824
 | 
   114  | 
  | 
| 
71844
 | 
   115  | 
theorem inorder_insert:
  | 
| 
 | 
   116  | 
  "\<lbrakk> avl t;  sorted(inorder t) \<rbrakk> \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)"
  | 
| 
71824
 | 
   117  | 
apply(induction t)
  | 
| 
71846
 | 
   118  | 
apply (auto simp: ins_list_simps split!: splits)
  | 
| 
71824
 | 
   119  | 
done
  | 
| 
 | 
   120  | 
  | 
| 
71814
 | 
   121  | 
  | 
| 
71828
 | 
   122  | 
subsubsection "Proofs about deletion"
  | 
| 
71814
 | 
   123  | 
  | 
| 
71844
 | 
   124  | 
lemma inorder_balR:
  | 
| 
71814
 | 
   125  | 
  "\<lbrakk> ba = Rh \<longrightarrow> r \<noteq> Leaf; avl r \<rbrakk>
  | 
| 
71844
 | 
   126  | 
  \<Longrightarrow> inorder (balR l a ba r) = inorder l @ a # inorder r"
  | 
| 
71814
 | 
   127  | 
by (auto split: splits)
  | 
| 
 | 
   128  | 
  | 
| 
71844
 | 
   129  | 
lemma inorder_balL:
  | 
| 
71814
 | 
   130  | 
  "\<lbrakk> ba = Lh \<longrightarrow> l \<noteq> Leaf; avl l \<rbrakk>
  | 
| 
71844
 | 
   131  | 
   \<Longrightarrow> inorder (balL l a ba r) = inorder l @ a # inorder r"
  | 
| 
71814
 | 
   132  | 
by (auto split: splits)
  | 
| 
 | 
   133  | 
  | 
| 
71844
 | 
   134  | 
lemma height_1_iff: "avl t \<Longrightarrow> height t = Suc 0 \<longleftrightarrow> (\<exists>x. t = Node Leaf (x,Bal) Leaf)"
  | 
| 
 | 
   135  | 
by(cases t) (auto split: splits prod.splits)
  | 
| 
 | 
   136  | 
  | 
| 
71814
 | 
   137  | 
lemma avl_split_max:
  | 
| 
71844
 | 
   138  | 
  "\<lbrakk> split_max t = (t',a); avl t; t \<noteq> Leaf \<rbrakk> \<Longrightarrow>
  | 
| 
 | 
   139  | 
   avl t' \<and> height t = height t' + (if decr t t' then 1 else 0)"
  | 
| 
71814
 | 
   140  | 
apply(induction t arbitrary: t' a rule: split_max_induct)
  | 
| 
71844
 | 
   141  | 
 apply(auto simp: max_absorb1 max_absorb2 height_1_iff split!: splits prod.splits)
  | 
| 
71814
 | 
   142  | 
done
  | 
| 
 | 
   143  | 
  | 
| 
71844
 | 
   144  | 
lemma avl_delete: "avl t \<Longrightarrow>
  | 
| 
 | 
   145  | 
  avl (delete x t) \<and>
  | 
| 
 | 
   146  | 
  height t = height (delete x t) + (if decr t (delete x t) then 1 else 0)"
  | 
| 
 | 
   147  | 
apply(induction x t rule: delete.induct)
  | 
| 
71846
 | 
   148  | 
 apply(auto simp: max_absorb1 max_absorb2 height_1_iff dest: avl_split_max split!: splits prod.splits)
  | 
| 
71814
 | 
   149  | 
done
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
lemma inorder_split_maxD:
  | 
| 
 | 
   152  | 
  "\<lbrakk> split_max t = (t',a); t \<noteq> Leaf; avl t \<rbrakk> \<Longrightarrow>
  | 
| 
71844
 | 
   153  | 
   inorder t' @ [a] = inorder t"
  | 
| 
71814
 | 
   154  | 
apply(induction t arbitrary: t' rule: split_max.induct)
  | 
| 
 | 
   155  | 
 apply(fastforce split!: splits prod.splits)
  | 
| 
 | 
   156  | 
apply simp
  | 
| 
 | 
   157  | 
done
  | 
| 
 | 
   158  | 
  | 
| 
71844
 | 
   159  | 
lemma neq_Leaf_if_height_neq_0: "height t \<noteq> 0 \<Longrightarrow> t \<noteq> Leaf"
  | 
| 
71814
 | 
   160  | 
by auto
  | 
| 
 | 
   161  | 
  | 
| 
71844
 | 
   162  | 
lemma split_max_Leaf: "\<lbrakk> t \<noteq> Leaf; avl t \<rbrakk> \<Longrightarrow> split_max t = (\<langle>\<rangle>, x) \<longleftrightarrow> t = Node Leaf (x,Bal) Leaf"
  | 
| 
 | 
   163  | 
by(cases t) (auto split: splits prod.splits)
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
theorem inorder_delete:
  | 
| 
 | 
   166  | 
  "\<lbrakk> avl t; sorted(inorder t) \<rbrakk>  \<Longrightarrow> inorder (delete x t) = del_list x (inorder t)"
  | 
| 
71814
 | 
   167  | 
apply(induction t rule: tree2_induct)
  | 
| 
71846
 | 
   168  | 
apply(auto simp: del_list_simps inorder_balR inorder_balL avl_delete inorder_split_maxD
  | 
| 
71844
 | 
   169  | 
                 split_max_Leaf neq_Leaf_if_height_neq_0
  | 
| 
 | 
   170  | 
           simp del: balL.simps balR.simps split!: splits prod.splits)
  | 
| 
71814
 | 
   171  | 
done
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
subsubsection \<open>Set Implementation\<close>
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
interpretation S: Set_by_Ordered
  | 
| 
 | 
   177  | 
where empty = Leaf and isin = isin
  | 
| 
71828
 | 
   178  | 
  and insert = insert
  | 
| 
 | 
   179  | 
  and delete = delete
  | 
| 
71814
 | 
   180  | 
  and inorder = inorder and inv = avl
  | 
| 
 | 
   181  | 
proof (standard, goal_cases)
  | 
| 
 | 
   182  | 
  case 1 show ?case by (simp)
  | 
| 
 | 
   183  | 
next
  | 
| 
 | 
   184  | 
  case 2 thus ?case by(simp add: isin_set_inorder)
  | 
| 
 | 
   185  | 
next
  | 
| 
71844
 | 
   186  | 
  case 3 thus ?case by(simp add: inorder_insert)
  | 
| 
71814
 | 
   187  | 
next
  | 
| 
71844
 | 
   188  | 
  case 4 thus ?case by(simp add: inorder_delete)
  | 
| 
71814
 | 
   189  | 
next
  | 
| 
71828
 | 
   190  | 
  case 5 thus ?case by (simp)
  | 
| 
71814
 | 
   191  | 
next
  | 
| 
 | 
   192  | 
  case 6 thus ?case by (simp add: avl_insert)
  | 
| 
 | 
   193  | 
next
  | 
| 
 | 
   194  | 
  case 7 thus ?case by (simp add: avl_delete)
  | 
| 
 | 
   195  | 
qed
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
end
  |