| author | wenzelm | 
| Wed, 01 Mar 2023 19:48:19 +0100 | |
| changeset 77457 | 8c749bbf885c | 
| parent 72805 | 976d656ed31e | 
| child 78199 | d6e6618db929 | 
| permissions | -rw-r--r-- | 
| 61640 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 62130 | 3  | 
section \<open>2-3 Tree Implementation of Sets\<close>  | 
| 61640 | 4  | 
|
5  | 
theory Tree23_Set  | 
|
6  | 
imports  | 
|
7  | 
Tree23  | 
|
8  | 
Cmp  | 
|
| 67965 | 9  | 
Set_Specs  | 
| 61640 | 10  | 
begin  | 
11  | 
||
| 68109 | 12  | 
declare sorted_wrt.simps(2)[simp del]  | 
13  | 
||
| 68431 | 14  | 
definition empty :: "'a tree23" where  | 
15  | 
"empty = Leaf"  | 
|
16  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
17  | 
fun isin :: "'a::linorder tree23 \<Rightarrow> 'a \<Rightarrow> bool" where  | 
| 61640 | 18  | 
"isin Leaf x = False" |  | 
19  | 
"isin (Node2 l a r) x =  | 
|
| 61678 | 20  | 
(case cmp x a of  | 
21  | 
LT \<Rightarrow> isin l x |  | 
|
22  | 
EQ \<Rightarrow> True |  | 
|
23  | 
GT \<Rightarrow> isin r x)" |  | 
|
| 61640 | 24  | 
"isin (Node3 l a m b r) x =  | 
| 61678 | 25  | 
(case cmp x a of  | 
26  | 
LT \<Rightarrow> isin l x |  | 
|
27  | 
EQ \<Rightarrow> True |  | 
|
28  | 
GT \<Rightarrow>  | 
|
29  | 
(case cmp x b of  | 
|
30  | 
LT \<Rightarrow> isin m x |  | 
|
31  | 
EQ \<Rightarrow> True |  | 
|
32  | 
GT \<Rightarrow> isin r x))"  | 
|
| 61640 | 33  | 
|
| 70274 | 34  | 
datatype 'a upI = TI "'a tree23" | OF "'a tree23" 'a "'a tree23"  | 
| 61640 | 35  | 
|
| 70274 | 36  | 
fun treeI :: "'a upI \<Rightarrow> 'a tree23" where  | 
37  | 
"treeI (TI t) = t" |  | 
|
38  | 
"treeI (OF l a r) = Node2 l a r"  | 
|
| 61640 | 39  | 
|
| 70274 | 40  | 
fun ins :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a upI" where  | 
41  | 
"ins x Leaf = OF Leaf x Leaf" |  | 
|
| 61640 | 42  | 
"ins x (Node2 l a r) =  | 
43  | 
(case cmp x a of  | 
|
| 61678 | 44  | 
LT \<Rightarrow>  | 
45  | 
(case ins x l of  | 
|
| 70274 | 46  | 
TI l' => TI (Node2 l' a r) |  | 
47  | 
OF l1 b l2 => TI (Node3 l1 b l2 a r)) |  | 
|
| 72805 | 48  | 
EQ \<Rightarrow> TI (Node2 l a r) |  | 
| 61678 | 49  | 
GT \<Rightarrow>  | 
50  | 
(case ins x r of  | 
|
| 70274 | 51  | 
TI r' => TI (Node2 l a r') |  | 
52  | 
OF r1 b r2 => TI (Node3 l a r1 b r2)))" |  | 
|
| 61640 | 53  | 
"ins x (Node3 l a m b r) =  | 
54  | 
(case cmp x a of  | 
|
| 61678 | 55  | 
LT \<Rightarrow>  | 
56  | 
(case ins x l of  | 
|
| 70274 | 57  | 
TI l' => TI (Node3 l' a m b r) |  | 
58  | 
OF l1 c l2 => OF (Node2 l1 c l2) a (Node2 m b r)) |  | 
|
59  | 
EQ \<Rightarrow> TI (Node3 l a m b r) |  | 
|
| 61678 | 60  | 
GT \<Rightarrow>  | 
61  | 
(case cmp x b of  | 
|
62  | 
GT \<Rightarrow>  | 
|
63  | 
(case ins x r of  | 
|
| 70274 | 64  | 
TI r' => TI (Node3 l a m b r') |  | 
65  | 
OF r1 c r2 => OF (Node2 l a m) b (Node2 r1 c r2)) |  | 
|
66  | 
EQ \<Rightarrow> TI (Node3 l a m b r) |  | 
|
| 61678 | 67  | 
LT \<Rightarrow>  | 
68  | 
(case ins x m of  | 
|
| 70274 | 69  | 
TI m' => TI (Node3 l a m' b r) |  | 
70  | 
OF m1 c m2 => OF (Node2 l a m1) c (Node2 m2 b r))))"  | 
|
| 61640 | 71  | 
|
72  | 
hide_const insert  | 
|
73  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
74  | 
definition insert :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where  | 
| 70274 | 75  | 
"insert x t = treeI(ins x t)"  | 
| 61640 | 76  | 
|
| 70274 | 77  | 
datatype 'a upD = TD "'a tree23" | UF "'a tree23"  | 
| 61640 | 78  | 
|
| 70274 | 79  | 
fun treeD :: "'a upD \<Rightarrow> 'a tree23" where  | 
80  | 
"treeD (TD t) = t" |  | 
|
81  | 
"treeD (UF t) = t"  | 
|
| 61640 | 82  | 
|
83  | 
(* Variation: return None to signal no-change *)  | 
|
84  | 
||
| 70274 | 85  | 
fun node21 :: "'a upD \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a upD" where  | 
86  | 
"node21 (TD t1) a t2 = TD(Node2 t1 a t2)" |  | 
|
87  | 
"node21 (UF t1) a (Node2 t2 b t3) = UF(Node3 t1 a t2 b t3)" |  | 
|
88  | 
"node21 (UF t1) a (Node3 t2 b t3 c t4) = TD(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"  | 
|
| 61640 | 89  | 
|
| 70274 | 90  | 
fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a upD \<Rightarrow> 'a upD" where  | 
91  | 
"node22 t1 a (TD t2) = TD(Node2 t1 a t2)" |  | 
|
92  | 
"node22 (Node2 t1 b t2) a (UF t3) = UF(Node3 t1 b t2 a t3)" |  | 
|
93  | 
"node22 (Node3 t1 b t2 c t3) a (UF t4) = TD(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"  | 
|
| 61640 | 94  | 
|
| 70274 | 95  | 
fun node31 :: "'a upD \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a upD" where  | 
96  | 
"node31 (TD t1) a t2 b t3 = TD(Node3 t1 a t2 b t3)" |  | 
|
97  | 
"node31 (UF t1) a (Node2 t2 b t3) c t4 = TD(Node2 (Node3 t1 a t2 b t3) c t4)" |  | 
|
98  | 
"node31 (UF t1) a (Node3 t2 b t3 c t4) d t5 = TD(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"  | 
|
| 61640 | 99  | 
|
| 70274 | 100  | 
fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a upD \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a upD" where  | 
101  | 
"node32 t1 a (TD t2) b t3 = TD(Node3 t1 a t2 b t3)" |  | 
|
102  | 
"node32 t1 a (UF t2) b (Node2 t3 c t4) = TD(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
103  | 
"node32 t1 a (UF t2) b (Node3 t3 c t4 d t5) = TD(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"  | 
|
| 61640 | 104  | 
|
| 70274 | 105  | 
fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a upD \<Rightarrow> 'a upD" where  | 
106  | 
"node33 l a m b (TD r) = TD(Node3 l a m b r)" |  | 
|
107  | 
"node33 t1 a (Node2 t2 b t3) c (UF t4) = TD(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
108  | 
"node33 t1 a (Node3 t2 b t3 c t4) d (UF t5) = TD(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"  | 
|
| 61640 | 109  | 
|
| 70274 | 110  | 
fun split_min :: "'a tree23 \<Rightarrow> 'a * 'a upD" where  | 
111  | 
"split_min (Node2 Leaf a Leaf) = (a, UF Leaf)" |  | 
|
112  | 
"split_min (Node3 Leaf a Leaf b Leaf) = (a, TD(Node2 Leaf b Leaf))" |  | 
|
| 68020 | 113  | 
"split_min (Node2 l a r) = (let (x,l') = split_min l in (x, node21 l' a r))" |  | 
114  | 
"split_min (Node3 l a m b r) = (let (x,l') = split_min l in (x, node31 l' a m b r))"  | 
|
| 61640 | 115  | 
|
| 68020 | 116  | 
text \<open>In the base cases of \<open>split_min\<close> and \<open>del\<close> it is enough to check if one subtree is a \<open>Leaf\<close>,  | 
| 
72566
 
831f17da1aab
renamed "balanced" -> "acomplete" because balanced has other meanings in the literature
 
nipkow 
parents: 
70628 
diff
changeset
 | 
117  | 
in which case completeness implies that so are the others. Exercise.\<close>  | 
| 67038 | 118  | 
|
| 70274 | 119  | 
fun del :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a upD" where  | 
120  | 
"del x Leaf = TD Leaf" |  | 
|
| 61678 | 121  | 
"del x (Node2 Leaf a Leaf) =  | 
| 70274 | 122  | 
(if x = a then UF Leaf else TD(Node2 Leaf a Leaf))" |  | 
| 61678 | 123  | 
"del x (Node3 Leaf a Leaf b Leaf) =  | 
| 70274 | 124  | 
TD(if x = a then Node2 Leaf b Leaf else  | 
| 61678 | 125  | 
if x = b then Node2 Leaf a Leaf  | 
126  | 
else Node3 Leaf a Leaf b Leaf)" |  | 
|
127  | 
"del x (Node2 l a r) =  | 
|
128  | 
(case cmp x a of  | 
|
129  | 
LT \<Rightarrow> node21 (del x l) a r |  | 
|
130  | 
GT \<Rightarrow> node22 l a (del x r) |  | 
|
| 70272 | 131  | 
EQ \<Rightarrow> let (a',r') = split_min r in node22 l a' r')" |  | 
| 61678 | 132  | 
"del x (Node3 l a m b r) =  | 
133  | 
(case cmp x a of  | 
|
134  | 
LT \<Rightarrow> node31 (del x l) a m b r |  | 
|
| 68020 | 135  | 
EQ \<Rightarrow> let (a',m') = split_min m in node32 l a' m' b r |  | 
| 61678 | 136  | 
GT \<Rightarrow>  | 
137  | 
(case cmp x b of  | 
|
| 61640 | 138  | 
LT \<Rightarrow> node32 l a (del x m) b r |  | 
| 68020 | 139  | 
EQ \<Rightarrow> let (b',r') = split_min r in node33 l a m b' r' |  | 
| 61640 | 140  | 
GT \<Rightarrow> node33 l a m b (del x r)))"  | 
141  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
142  | 
definition delete :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where  | 
| 70274 | 143  | 
"delete x t = treeD(del x t)"  | 
| 61640 | 144  | 
|
145  | 
||
146  | 
subsection "Functional Correctness"  | 
|
147  | 
||
148  | 
subsubsection "Proofs for isin"  | 
|
149  | 
||
| 67929 | 150  | 
lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> set (inorder t))"  | 
| 70628 | 151  | 
by (induction t) (auto simp: isin_simps)  | 
| 61640 | 152  | 
|
153  | 
||
154  | 
subsubsection "Proofs for insert"  | 
|
155  | 
||
156  | 
lemma inorder_ins:  | 
|
| 70274 | 157  | 
"sorted(inorder t) \<Longrightarrow> inorder(treeI(ins x t)) = ins_list x (inorder t)"  | 
158  | 
by(induction t) (auto simp: ins_list_simps split: upI.splits)  | 
|
| 61640 | 159  | 
|
160  | 
lemma inorder_insert:  | 
|
161  | 
"sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"  | 
|
162  | 
by(simp add: insert_def inorder_ins)  | 
|
163  | 
||
164  | 
||
165  | 
subsubsection "Proofs for delete"  | 
|
166  | 
||
167  | 
lemma inorder_node21: "height r > 0 \<Longrightarrow>  | 
|
| 70274 | 168  | 
inorder (treeD (node21 l' a r)) = inorder (treeD l') @ a # inorder r"  | 
| 61640 | 169  | 
by(induct l' a r rule: node21.induct) auto  | 
170  | 
||
171  | 
lemma inorder_node22: "height l > 0 \<Longrightarrow>  | 
|
| 70274 | 172  | 
inorder (treeD (node22 l a r')) = inorder l @ a # inorder (treeD r')"  | 
| 61640 | 173  | 
by(induct l a r' rule: node22.induct) auto  | 
174  | 
||
175  | 
lemma inorder_node31: "height m > 0 \<Longrightarrow>  | 
|
| 70274 | 176  | 
inorder (treeD (node31 l' a m b r)) = inorder (treeD l') @ a # inorder m @ b # inorder r"  | 
| 61640 | 177  | 
by(induct l' a m b r rule: node31.induct) auto  | 
178  | 
||
179  | 
lemma inorder_node32: "height r > 0 \<Longrightarrow>  | 
|
| 70274 | 180  | 
inorder (treeD (node32 l a m' b r)) = inorder l @ a # inorder (treeD m') @ b # inorder r"  | 
| 61640 | 181  | 
by(induct l a m' b r rule: node32.induct) auto  | 
182  | 
||
183  | 
lemma inorder_node33: "height m > 0 \<Longrightarrow>  | 
|
| 70274 | 184  | 
inorder (treeD (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (treeD r')"  | 
| 61640 | 185  | 
by(induct l a m b r' rule: node33.induct) auto  | 
186  | 
||
187  | 
lemmas inorder_nodes = inorder_node21 inorder_node22  | 
|
188  | 
inorder_node31 inorder_node32 inorder_node33  | 
|
189  | 
||
| 68020 | 190  | 
lemma split_minD:  | 
| 70273 | 191  | 
"split_min t = (x,t') \<Longrightarrow> complete t \<Longrightarrow> height t > 0 \<Longrightarrow>  | 
| 70274 | 192  | 
x # inorder(treeD t') = inorder t"  | 
| 68020 | 193  | 
by(induction t arbitrary: t' rule: split_min.induct)  | 
| 61640 | 194  | 
(auto simp: inorder_nodes split: prod.splits)  | 
195  | 
||
| 70273 | 196  | 
lemma inorder_del: "\<lbrakk> complete t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
| 70274 | 197  | 
inorder(treeD (del x t)) = del_list x (inorder t)"  | 
| 61640 | 198  | 
by(induction t rule: del.induct)  | 
| 68020 | 199  | 
(auto simp: del_list_simps inorder_nodes split_minD split!: if_split prod.splits)  | 
| 61640 | 200  | 
|
| 70273 | 201  | 
lemma inorder_delete: "\<lbrakk> complete t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
| 61640 | 202  | 
inorder(delete x t) = del_list x (inorder t)"  | 
203  | 
by(simp add: delete_def inorder_del)  | 
|
204  | 
||
205  | 
||
| 
72566
 
831f17da1aab
renamed "balanced" -> "acomplete" because balanced has other meanings in the literature
 
nipkow 
parents: 
70628 
diff
changeset
 | 
206  | 
subsection \<open>Completeness\<close>  | 
| 61640 | 207  | 
|
208  | 
||
209  | 
subsubsection "Proofs for insert"  | 
|
210  | 
||
| 70273 | 211  | 
text\<open>First a standard proof that \<^const>\<open>ins\<close> preserves \<^const>\<open>complete\<close>.\<close>  | 
| 61640 | 212  | 
|
| 72805 | 213  | 
fun hI :: "'a upI \<Rightarrow> nat" where  | 
214  | 
"hI (TI t) = height t" |  | 
|
215  | 
"hI (OF l a r) = height l"  | 
|
| 61640 | 216  | 
|
| 72805 | 217  | 
lemma complete_ins: "complete t \<Longrightarrow> complete (treeI(ins a t)) \<and> hI(ins a t) = height t"  | 
| 70274 | 218  | 
by (induct t) (auto split!: if_split upI.split) (* 15 secs in 2015 *)  | 
| 61640 | 219  | 
|
| 67406 | 220  | 
text\<open>Now an alternative proof (by Brian Huffman) that runs faster because  | 
| 
72566
 
831f17da1aab
renamed "balanced" -> "acomplete" because balanced has other meanings in the literature
 
nipkow 
parents: 
70628 
diff
changeset
 | 
221  | 
two properties (completeness and height) are combined in one predicate.\<close>  | 
| 61640 | 222  | 
|
223  | 
inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where  | 
|
224  | 
"full 0 Leaf" |  | 
|
225  | 
"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |  | 
|
226  | 
"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"  | 
|
227  | 
||
228  | 
inductive_cases full_elims:  | 
|
229  | 
"full n Leaf"  | 
|
230  | 
"full n (Node2 l p r)"  | 
|
231  | 
"full n (Node3 l p m q r)"  | 
|
232  | 
||
233  | 
inductive_cases full_0_elim: "full 0 t"  | 
|
234  | 
inductive_cases full_Suc_elim: "full (Suc n) t"  | 
|
235  | 
||
236  | 
lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"  | 
|
237  | 
by (auto elim: full_0_elim intro: full.intros)  | 
|
238  | 
||
239  | 
lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"  | 
|
240  | 
by (auto elim: full_elims intro: full.intros)  | 
|
241  | 
||
242  | 
lemma full_Suc_Node2_iff [simp]:  | 
|
243  | 
"full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
244  | 
by (auto elim: full_elims intro: full.intros)  | 
|
245  | 
||
246  | 
lemma full_Suc_Node3_iff [simp]:  | 
|
247  | 
"full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"  | 
|
248  | 
by (auto elim: full_elims intro: full.intros)  | 
|
249  | 
||
250  | 
lemma full_imp_height: "full n t \<Longrightarrow> height t = n"  | 
|
251  | 
by (induct set: full, simp_all)  | 
|
252  | 
||
| 70273 | 253  | 
lemma full_imp_complete: "full n t \<Longrightarrow> complete t"  | 
| 61640 | 254  | 
by (induct set: full, auto dest: full_imp_height)  | 
255  | 
||
| 70273 | 256  | 
lemma complete_imp_full: "complete t \<Longrightarrow> full (height t) t"  | 
| 61640 | 257  | 
by (induct t, simp_all)  | 
258  | 
||
| 70273 | 259  | 
lemma complete_iff_full: "complete t \<longleftrightarrow> (\<exists>n. full n t)"  | 
260  | 
by (auto elim!: complete_imp_full full_imp_complete)  | 
|
| 61640 | 261  | 
|
| 69597 | 262  | 
text \<open>The \<^const>\<open>insert\<close> function either preserves the height of the  | 
| 70274 | 263  | 
tree, or increases it by one. The constructor returned by the \<^term>\<open>insert\<close> function determines which: A return value of the form \<^term>\<open>TI t\<close> indicates that the height will be the same. A value of the  | 
264  | 
form \<^term>\<open>OF l p r\<close> indicates an increase in height.\<close>  | 
|
| 61640 | 265  | 
|
| 70274 | 266  | 
fun full\<^sub>i :: "nat \<Rightarrow> 'a upI \<Rightarrow> bool" where  | 
267  | 
"full\<^sub>i n (TI t) \<longleftrightarrow> full n t" |  | 
|
268  | 
"full\<^sub>i n (OF l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
| 61640 | 269  | 
|
270  | 
lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"  | 
|
| 70274 | 271  | 
by (induct rule: full.induct) (auto split: upI.split)  | 
| 61640 | 272  | 
|
| 70273 | 273  | 
text \<open>The \<^const>\<open>insert\<close> operation preserves completeance.\<close>  | 
| 61640 | 274  | 
|
| 70273 | 275  | 
lemma complete_insert: "complete t \<Longrightarrow> complete (insert a t)"  | 
276  | 
unfolding complete_iff_full insert_def  | 
|
| 61640 | 277  | 
apply (erule exE)  | 
278  | 
apply (drule full\<^sub>i_ins [of _ _ a])  | 
|
279  | 
apply (cases "ins a t")  | 
|
280  | 
apply (auto intro: full.intros)  | 
|
281  | 
done  | 
|
282  | 
||
283  | 
||
284  | 
subsection "Proofs for delete"  | 
|
285  | 
||
| 72805 | 286  | 
fun hD :: "'a upD \<Rightarrow> nat" where  | 
287  | 
"hD (TD t) = height t" |  | 
|
288  | 
"hD (UF t) = height t + 1"  | 
|
| 61640 | 289  | 
|
| 70274 | 290  | 
lemma complete_treeD_node21:  | 
| 72805 | 291  | 
"\<lbrakk>complete r; complete (treeD l'); height r = hD l' \<rbrakk> \<Longrightarrow> complete (treeD (node21 l' a r))"  | 
| 61640 | 292  | 
by(induct l' a r rule: node21.induct) auto  | 
293  | 
||
| 70274 | 294  | 
lemma complete_treeD_node22:  | 
| 72805 | 295  | 
"\<lbrakk>complete(treeD r'); complete l; hD r' = height l \<rbrakk> \<Longrightarrow> complete (treeD (node22 l a r'))"  | 
| 61640 | 296  | 
by(induct l a r' rule: node22.induct) auto  | 
297  | 
||
| 70274 | 298  | 
lemma complete_treeD_node31:  | 
| 72805 | 299  | 
"\<lbrakk> complete (treeD l'); complete m; complete r; hD l' = height r; height m = height r \<rbrakk>  | 
| 70274 | 300  | 
\<Longrightarrow> complete (treeD (node31 l' a m b r))"  | 
| 61640 | 301  | 
by(induct l' a m b r rule: node31.induct) auto  | 
302  | 
||
| 70274 | 303  | 
lemma complete_treeD_node32:  | 
| 72805 | 304  | 
"\<lbrakk> complete l; complete (treeD m'); complete r; height l = height r; hD m' = height r \<rbrakk>  | 
| 70274 | 305  | 
\<Longrightarrow> complete (treeD (node32 l a m' b r))"  | 
| 61640 | 306  | 
by(induct l a m' b r rule: node32.induct) auto  | 
307  | 
||
| 70274 | 308  | 
lemma complete_treeD_node33:  | 
| 72805 | 309  | 
"\<lbrakk> complete l; complete m; complete(treeD r'); height l = hD r'; height m = hD r' \<rbrakk>  | 
| 70274 | 310  | 
\<Longrightarrow> complete (treeD (node33 l a m b r'))"  | 
| 61640 | 311  | 
by(induct l a m b r' rule: node33.induct) auto  | 
312  | 
||
| 70274 | 313  | 
lemmas completes = complete_treeD_node21 complete_treeD_node22  | 
314  | 
complete_treeD_node31 complete_treeD_node32 complete_treeD_node33  | 
|
| 61640 | 315  | 
|
316  | 
lemma height'_node21:  | 
|
| 72805 | 317  | 
"height r > 0 \<Longrightarrow> hD(node21 l' a r) = max (hD l') (height r) + 1"  | 
| 61640 | 318  | 
by(induct l' a r rule: node21.induct)(simp_all)  | 
319  | 
||
320  | 
lemma height'_node22:  | 
|
| 72805 | 321  | 
"height l > 0 \<Longrightarrow> hD(node22 l a r') = max (height l) (hD r') + 1"  | 
| 61640 | 322  | 
by(induct l a r' rule: node22.induct)(simp_all)  | 
323  | 
||
324  | 
lemma height'_node31:  | 
|
| 72805 | 325  | 
"height m > 0 \<Longrightarrow> hD(node31 l a m b r) =  | 
326  | 
max (hD l) (max (height m) (height r)) + 1"  | 
|
| 61640 | 327  | 
by(induct l a m b r rule: node31.induct)(simp_all add: max_def)  | 
328  | 
||
329  | 
lemma height'_node32:  | 
|
| 72805 | 330  | 
"height r > 0 \<Longrightarrow> hD(node32 l a m b r) =  | 
331  | 
max (height l) (max (hD m) (height r)) + 1"  | 
|
| 61640 | 332  | 
by(induct l a m b r rule: node32.induct)(simp_all add: max_def)  | 
333  | 
||
334  | 
lemma height'_node33:  | 
|
| 72805 | 335  | 
"height m > 0 \<Longrightarrow> hD(node33 l a m b r) =  | 
336  | 
max (height l) (max (height m) (hD r)) + 1"  | 
|
| 61640 | 337  | 
by(induct l a m b r rule: node33.induct)(simp_all add: max_def)  | 
338  | 
||
339  | 
lemmas heights = height'_node21 height'_node22  | 
|
340  | 
height'_node31 height'_node32 height'_node33  | 
|
341  | 
||
| 68020 | 342  | 
lemma height_split_min:  | 
| 72805 | 343  | 
"split_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> complete t \<Longrightarrow> hD t' = height t"  | 
| 68020 | 344  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
| 61640 | 345  | 
(auto simp: heights split: prod.splits)  | 
346  | 
||
| 72805 | 347  | 
lemma height_del: "complete t \<Longrightarrow> hD(del x t) = height t"  | 
| 61640 | 348  | 
by(induction x t rule: del.induct)  | 
| 68020 | 349  | 
(auto simp: heights max_def height_split_min split: prod.splits)  | 
| 61640 | 350  | 
|
| 70273 | 351  | 
lemma complete_split_min:  | 
| 70274 | 352  | 
"\<lbrakk> split_min t = (x, t'); complete t; height t > 0 \<rbrakk> \<Longrightarrow> complete (treeD t')"  | 
| 68020 | 353  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
| 70273 | 354  | 
(auto simp: heights height_split_min completes split: prod.splits)  | 
| 61640 | 355  | 
|
| 70274 | 356  | 
lemma complete_treeD_del: "complete t \<Longrightarrow> complete(treeD(del x t))"  | 
| 61640 | 357  | 
by(induction x t rule: del.induct)  | 
| 70273 | 358  | 
(auto simp: completes complete_split_min height_del height_split_min split: prod.splits)  | 
| 61640 | 359  | 
|
| 70273 | 360  | 
corollary complete_delete: "complete t \<Longrightarrow> complete(delete x t)"  | 
| 70274 | 361  | 
by(simp add: delete_def complete_treeD_del)  | 
| 61640 | 362  | 
|
363  | 
||
364  | 
subsection \<open>Overall Correctness\<close>  | 
|
365  | 
||
| 68440 | 366  | 
interpretation S: Set_by_Ordered  | 
| 68431 | 367  | 
where empty = empty and isin = isin and insert = insert and delete = delete  | 
| 70273 | 368  | 
and inorder = inorder and inv = complete  | 
| 61640 | 369  | 
proof (standard, goal_cases)  | 
370  | 
case 2 thus ?case by(simp add: isin_set)  | 
|
371  | 
next  | 
|
372  | 
case 3 thus ?case by(simp add: inorder_insert)  | 
|
373  | 
next  | 
|
374  | 
case 4 thus ?case by(simp add: inorder_delete)  | 
|
375  | 
next  | 
|
| 70273 | 376  | 
case 6 thus ?case by(simp add: complete_insert)  | 
| 61640 | 377  | 
next  | 
| 70273 | 378  | 
case 7 thus ?case by(simp add: complete_delete)  | 
| 68431 | 379  | 
qed (simp add: empty_def)+  | 
| 61640 | 380  | 
|
381  | 
end  |