author | wenzelm |
Thu, 08 Aug 2019 12:18:27 +0200 | |
changeset 70491 | 8cac53925407 |
parent 67613 | ce654b0e6d69 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26806
diff
changeset
|
1 |
(* Title: HOL/UNITY/ELT.thy |
8044 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1999 University of Cambridge |
|
4 |
||
5 |
leadsTo strengthened with a specification of the allowable sets transient parts |
|
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
6 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
7 |
TRY INSTEAD (to get rid of the {} and to gain strong induction) |
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
8 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
9 |
elt :: "['a set set, 'a program, 'a set] => ('a set) set" |
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
10 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
11 |
inductive "elt CC F B" |
13790 | 12 |
intros |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
13 |
|
13790 | 14 |
Weaken: "A <= B ==> A : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
15 |
|
13790 | 16 |
ETrans: "[| F : A ensures A'; A-A' : CC; A' : elt CC F B |] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
26806
diff
changeset
|
17 |
==> A : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
18 |
|
13790 | 19 |
Union: "{A. A: S} : Pow (elt CC F B) ==> (Union S) : elt CC F B" |
8122
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
20 |
|
b43ad07660b9
working version, with Alloc now working on the same state space as the whole
paulson
parents:
8072
diff
changeset
|
21 |
monos Pow_mono |
8044 | 22 |
*) |
23 |
||
63146 | 24 |
section\<open>Progress Under Allowable Sets\<close> |
13798 | 25 |
|
16417 | 26 |
theory ELT imports Project begin |
8044 | 27 |
|
23767 | 28 |
inductive_set |
8044 | 29 |
(*LEADS-TO constant for the inductive definition*) |
30 |
elt :: "['a set set, 'a program] => ('a set * 'a set) set" |
|
23767 | 31 |
for CC :: "'a set set" and F :: "'a program" |
32 |
where |
|
8044 | 33 |
|
67613 | 34 |
Basis: "[| F \<in> A ensures B; A-B \<in> (insert {} CC) |] ==> (A,B) \<in> elt CC F" |
8044 | 35 |
|
67613 | 36 |
| Trans: "[| (A,B) \<in> elt CC F; (B,C) \<in> elt CC F |] ==> (A,C) \<in> elt CC F" |
8044 | 37 |
|
67613 | 38 |
| Union: "\<forall>A\<in>S. (A,B) \<in> elt CC F ==> (Union S, B) \<in> elt CC F" |
8044 | 39 |
|
40 |
||
36866 | 41 |
definition |
8128 | 42 |
(*the set of all sets determined by f alone*) |
43 |
givenBy :: "['a => 'b] => 'a set set" |
|
36866 | 44 |
where "givenBy f = range (%B. f-` B)" |
8044 | 45 |
|
36866 | 46 |
definition |
8044 | 47 |
(*visible version of the LEADS-TO relation*) |
48 |
leadsETo :: "['a set, 'a set set, 'a set] => 'a program set" |
|
49 |
("(3_/ leadsTo[_]/ _)" [80,0,80] 80) |
|
67613 | 50 |
where "leadsETo A CC B = {F. (A,B) \<in> elt CC F}" |
8044 | 51 |
|
36866 | 52 |
definition |
8044 | 53 |
LeadsETo :: "['a set, 'a set set, 'a set] => 'a program set" |
54 |
("(3_/ LeadsTo[_]/ _)" [80,0,80] 80) |
|
36866 | 55 |
where "LeadsETo A CC B = |
67613 | 56 |
{F. F \<in> (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC] B}" |
8044 | 57 |
|
13790 | 58 |
|
59 |
(*** givenBy ***) |
|
60 |
||
61 |
lemma givenBy_id [simp]: "givenBy id = UNIV" |
|
62 |
by (unfold givenBy_def, auto) |
|
63 |
||
67613 | 64 |
lemma givenBy_eq_all: "(givenBy v) = {A. \<forall>x\<in>A. \<forall>y. v x = v y \<longrightarrow> y \<in> A}" |
13790 | 65 |
apply (unfold givenBy_def, safe) |
59807 | 66 |
apply (rule_tac [2] x = "v ` _" in image_eqI, auto) |
13790 | 67 |
done |
68 |
||
67613 | 69 |
lemma givenByI: "(\<And>x y. [| x \<in> A; v x = v y |] ==> y \<in> A) ==> A \<in> givenBy v" |
13790 | 70 |
by (subst givenBy_eq_all, blast) |
71 |
||
67613 | 72 |
lemma givenByD: "[| A \<in> givenBy v; x \<in> A; v x = v y |] ==> y \<in> A" |
13790 | 73 |
by (unfold givenBy_def, auto) |
74 |
||
67613 | 75 |
lemma empty_mem_givenBy [iff]: "{} \<in> givenBy v" |
13790 | 76 |
by (blast intro!: givenByI) |
77 |
||
67613 | 78 |
lemma givenBy_imp_eq_Collect: "A \<in> givenBy v ==> \<exists>P. A = {s. P(v s)}" |
79 |
apply (rule_tac x = "\<lambda>n. \<exists>s. v s = n \<and> s \<in> A" in exI) |
|
13790 | 80 |
apply (simp (no_asm_use) add: givenBy_eq_all) |
81 |
apply blast |
|
82 |
done |
|
83 |
||
67613 | 84 |
lemma Collect_mem_givenBy: "{s. P(v s)} \<in> givenBy v" |
13790 | 85 |
by (unfold givenBy_def, best) |
86 |
||
67613 | 87 |
lemma givenBy_eq_Collect: "givenBy v = {A. \<exists>P. A = {s. P(v s)}}" |
13790 | 88 |
by (blast intro: Collect_mem_givenBy givenBy_imp_eq_Collect) |
89 |
||
90 |
(*preserving v preserves properties given by v*) |
|
91 |
lemma preserves_givenBy_imp_stable: |
|
67613 | 92 |
"[| F \<in> preserves v; D \<in> givenBy v |] ==> F \<in> stable D" |
13798 | 93 |
by (force simp add: preserves_subset_stable [THEN subsetD] givenBy_eq_Collect) |
13790 | 94 |
|
95 |
lemma givenBy_o_subset: "givenBy (w o v) <= givenBy v" |
|
96 |
apply (simp (no_asm) add: givenBy_eq_Collect) |
|
97 |
apply best |
|
98 |
done |
|
99 |
||
100 |
lemma givenBy_DiffI: |
|
67613 | 101 |
"[| A \<in> givenBy v; B \<in> givenBy v |] ==> A-B \<in> givenBy v" |
13790 | 102 |
apply (simp (no_asm_use) add: givenBy_eq_Collect) |
103 |
apply safe |
|
59807 | 104 |
apply (rule_tac x = "%z. R z & ~ Q z" for R Q in exI) |
26806 | 105 |
unfolding set_diff_eq |
26349 | 106 |
apply auto |
13790 | 107 |
done |
108 |
||
109 |
||
110 |
(** Standard leadsTo rules **) |
|
111 |
||
112 |
lemma leadsETo_Basis [intro]: |
|
67613 | 113 |
"[| F \<in> A ensures B; A-B \<in> insert {} CC |] ==> F \<in> A leadsTo[CC] B" |
13790 | 114 |
apply (unfold leadsETo_def) |
115 |
apply (blast intro: elt.Basis) |
|
116 |
done |
|
117 |
||
118 |
lemma leadsETo_Trans: |
|
67613 | 119 |
"[| F \<in> A leadsTo[CC] B; F \<in> B leadsTo[CC] C |] ==> F \<in> A leadsTo[CC] C" |
13790 | 120 |
apply (unfold leadsETo_def) |
121 |
apply (blast intro: elt.Trans) |
|
122 |
done |
|
123 |
||
124 |
||
125 |
(*Useful with cancellation, disjunction*) |
|
126 |
lemma leadsETo_Un_duplicate: |
|
67613 | 127 |
"F \<in> A leadsTo[CC] (A' \<union> A') \<Longrightarrow> F \<in> A leadsTo[CC] A'" |
13819 | 128 |
by (simp add: Un_ac) |
13790 | 129 |
|
130 |
lemma leadsETo_Un_duplicate2: |
|
67613 | 131 |
"F \<in> A leadsTo[CC] (A' \<union> C \<union> C) ==> F \<in> A leadsTo[CC] (A' Un C)" |
13790 | 132 |
by (simp add: Un_ac) |
133 |
||
134 |
(*The Union introduction rule as we should have liked to state it*) |
|
135 |
lemma leadsETo_Union: |
|
67613 | 136 |
"(\<And>A. A \<in> S \<Longrightarrow> F \<in> A leadsTo[CC] B) \<Longrightarrow> F \<in> (\<Union>S) leadsTo[CC] B" |
13790 | 137 |
apply (unfold leadsETo_def) |
138 |
apply (blast intro: elt.Union) |
|
139 |
done |
|
140 |
||
141 |
lemma leadsETo_UN: |
|
67613 | 142 |
"(\<And>i. i \<in> I \<Longrightarrow> F \<in> (A i) leadsTo[CC] B) |
143 |
==> F \<in> (UN i:I. A i) leadsTo[CC] B" |
|
13790 | 144 |
apply (blast intro: leadsETo_Union) |
145 |
done |
|
146 |
||
147 |
(*The INDUCTION rule as we should have liked to state it*) |
|
148 |
lemma leadsETo_induct: |
|
67613 | 149 |
"[| F \<in> za leadsTo[CC] zb; |
150 |
!!A B. [| F \<in> A ensures B; A-B \<in> insert {} CC |] ==> P A B; |
|
151 |
!!A B C. [| F \<in> A leadsTo[CC] B; P A B; F \<in> B leadsTo[CC] C; P B C |] |
|
13790 | 152 |
==> P A C; |
67613 | 153 |
!!B S. \<forall>A\<in>S. F \<in> A leadsTo[CC] B & P A B ==> P (\<Union>S) B |
13790 | 154 |
|] ==> P za zb" |
155 |
apply (unfold leadsETo_def) |
|
156 |
apply (drule CollectD) |
|
157 |
apply (erule elt.induct, blast+) |
|
158 |
done |
|
159 |
||
160 |
||
161 |
(** New facts involving leadsETo **) |
|
162 |
||
163 |
lemma leadsETo_mono: "CC' <= CC ==> (A leadsTo[CC'] B) <= (A leadsTo[CC] B)" |
|
164 |
apply safe |
|
165 |
apply (erule leadsETo_induct) |
|
166 |
prefer 3 apply (blast intro: leadsETo_Union) |
|
167 |
prefer 2 apply (blast intro: leadsETo_Trans) |
|
46577 | 168 |
apply blast |
13790 | 169 |
done |
170 |
||
171 |
lemma leadsETo_Trans_Un: |
|
67613 | 172 |
"[| F \<in> A leadsTo[CC] B; F \<in> B leadsTo[DD] C |] |
173 |
==> F \<in> A leadsTo[CC Un DD] C" |
|
13790 | 174 |
by (blast intro: leadsETo_mono [THEN subsetD] leadsETo_Trans) |
175 |
||
176 |
lemma leadsETo_Union_Int: |
|
67613 | 177 |
"(!!A. A \<in> S ==> F \<in> (A Int C) leadsTo[CC] B) |
178 |
==> F \<in> (\<Union>S Int C) leadsTo[CC] B" |
|
13790 | 179 |
apply (unfold leadsETo_def) |
180 |
apply (simp only: Int_Union_Union) |
|
181 |
apply (blast intro: elt.Union) |
|
182 |
done |
|
183 |
||
184 |
(*Binary union introduction rule*) |
|
185 |
lemma leadsETo_Un: |
|
67613 | 186 |
"[| F \<in> A leadsTo[CC] C; F \<in> B leadsTo[CC] C |] |
187 |
==> F \<in> (A Un B) leadsTo[CC] C" |
|
44106 | 188 |
using leadsETo_Union [of "{A, B}" F CC C] by auto |
13790 | 189 |
|
190 |
lemma single_leadsETo_I: |
|
67613 | 191 |
"(\<And>x. x \<in> A ==> F \<in> {x} leadsTo[CC] B) \<Longrightarrow> F \<in> A leadsTo[CC] B" |
13819 | 192 |
by (subst UN_singleton [symmetric], rule leadsETo_UN, blast) |
13790 | 193 |
|
194 |
||
67613 | 195 |
lemma subset_imp_leadsETo: "A<=B \<Longrightarrow> F \<in> A leadsTo[CC] B" |
13819 | 196 |
by (simp add: subset_imp_ensures [THEN leadsETo_Basis] |
197 |
Diff_eq_empty_iff [THEN iffD2]) |
|
13790 | 198 |
|
199 |
lemmas empty_leadsETo = empty_subsetI [THEN subset_imp_leadsETo, simp] |
|
200 |
||
201 |
||
202 |
||
203 |
(** Weakening laws **) |
|
204 |
||
205 |
lemma leadsETo_weaken_R: |
|
67613 | 206 |
"[| F \<in> A leadsTo[CC] A'; A'<=B' |] ==> F \<in> A leadsTo[CC] B'" |
13819 | 207 |
by (blast intro: subset_imp_leadsETo leadsETo_Trans) |
13790 | 208 |
|
46911 | 209 |
lemma leadsETo_weaken_L: |
67613 | 210 |
"[| F \<in> A leadsTo[CC] A'; B<=A |] ==> F \<in> B leadsTo[CC] A'" |
13819 | 211 |
by (blast intro: leadsETo_Trans subset_imp_leadsETo) |
13790 | 212 |
|
213 |
(*Distributes over binary unions*) |
|
214 |
lemma leadsETo_Un_distrib: |
|
67613 | 215 |
"F \<in> (A Un B) leadsTo[CC] C = |
216 |
(F \<in> A leadsTo[CC] C \<and> F \<in> B leadsTo[CC] C)" |
|
13819 | 217 |
by (blast intro: leadsETo_Un leadsETo_weaken_L) |
13790 | 218 |
|
219 |
lemma leadsETo_UN_distrib: |
|
67613 | 220 |
"F \<in> (UN i:I. A i) leadsTo[CC] B = |
221 |
(\<forall>i\<in>I. F \<in> (A i) leadsTo[CC] B)" |
|
13819 | 222 |
by (blast intro: leadsETo_UN leadsETo_weaken_L) |
13790 | 223 |
|
224 |
lemma leadsETo_Union_distrib: |
|
67613 | 225 |
"F \<in> (\<Union>S) leadsTo[CC] B = (\<forall>A\<in>S. F \<in> A leadsTo[CC] B)" |
13819 | 226 |
by (blast intro: leadsETo_Union leadsETo_weaken_L) |
13790 | 227 |
|
228 |
lemma leadsETo_weaken: |
|
67613 | 229 |
"[| F \<in> A leadsTo[CC'] A'; B<=A; A'<=B'; CC' <= CC |] |
230 |
==> F \<in> B leadsTo[CC] B'" |
|
13790 | 231 |
apply (drule leadsETo_mono [THEN subsetD], assumption) |
13819 | 232 |
apply (blast del: subsetCE |
233 |
intro: leadsETo_weaken_R leadsETo_weaken_L leadsETo_Trans) |
|
13790 | 234 |
done |
235 |
||
236 |
lemma leadsETo_givenBy: |
|
67613 | 237 |
"[| F \<in> A leadsTo[CC] A'; CC <= givenBy v |] |
238 |
==> F \<in> A leadsTo[givenBy v] A'" |
|
46577 | 239 |
by (blast intro: leadsETo_weaken) |
13790 | 240 |
|
241 |
||
242 |
(*Set difference*) |
|
243 |
lemma leadsETo_Diff: |
|
67613 | 244 |
"[| F \<in> (A-B) leadsTo[CC] C; F \<in> B leadsTo[CC] C |] |
245 |
==> F \<in> A leadsTo[CC] C" |
|
13790 | 246 |
by (blast intro: leadsETo_Un leadsETo_weaken) |
247 |
||
248 |
||
249 |
(*Binary union version*) |
|
250 |
lemma leadsETo_Un_Un: |
|
67613 | 251 |
"[| F \<in> A leadsTo[CC] A'; F \<in> B leadsTo[CC] B' |] |
252 |
==> F \<in> (A Un B) leadsTo[CC] (A' Un B')" |
|
13790 | 253 |
by (blast intro: leadsETo_Un leadsETo_weaken_R) |
254 |
||
255 |
||
256 |
(** The cancellation law **) |
|
257 |
||
258 |
lemma leadsETo_cancel2: |
|
67613 | 259 |
"[| F \<in> A leadsTo[CC] (A' Un B); F \<in> B leadsTo[CC] B' |] |
260 |
==> F \<in> A leadsTo[CC] (A' Un B')" |
|
13790 | 261 |
by (blast intro: leadsETo_Un_Un subset_imp_leadsETo leadsETo_Trans) |
262 |
||
263 |
lemma leadsETo_cancel1: |
|
67613 | 264 |
"[| F \<in> A leadsTo[CC] (B Un A'); F \<in> B leadsTo[CC] B' |] |
265 |
==> F \<in> A leadsTo[CC] (B' Un A')" |
|
13790 | 266 |
apply (simp add: Un_commute) |
267 |
apply (blast intro!: leadsETo_cancel2) |
|
268 |
done |
|
269 |
||
270 |
lemma leadsETo_cancel_Diff1: |
|
67613 | 271 |
"[| F \<in> A leadsTo[CC] (B Un A'); F \<in> (B-A') leadsTo[CC] B' |] |
272 |
==> F \<in> A leadsTo[CC] (B' Un A')" |
|
13790 | 273 |
apply (rule leadsETo_cancel1) |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
274 |
prefer 2 apply assumption |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
275 |
apply simp_all |
13790 | 276 |
done |
277 |
||
278 |
||
279 |
(** PSP: Progress-Safety-Progress **) |
|
280 |
||
281 |
(*Special case of PSP: Misra's "stable conjunction"*) |
|
282 |
lemma e_psp_stable: |
|
67613 | 283 |
"[| F \<in> A leadsTo[CC] A'; F \<in> stable B; \<forall>C\<in>CC. C Int B \<in> CC |] |
284 |
==> F \<in> (A Int B) leadsTo[CC] (A' Int B)" |
|
13790 | 285 |
apply (unfold stable_def) |
286 |
apply (erule leadsETo_induct) |
|
287 |
prefer 3 apply (blast intro: leadsETo_Union_Int) |
|
288 |
prefer 2 apply (blast intro: leadsETo_Trans) |
|
289 |
apply (rule leadsETo_Basis) |
|
290 |
prefer 2 apply (force simp add: Diff_Int_distrib2 [symmetric]) |
|
13819 | 291 |
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] |
292 |
Int_Un_distrib2 [symmetric]) |
|
13790 | 293 |
apply (blast intro: transient_strengthen constrains_Int) |
294 |
done |
|
295 |
||
296 |
lemma e_psp_stable2: |
|
67613 | 297 |
"[| F \<in> A leadsTo[CC] A'; F \<in> stable B; \<forall>C\<in>CC. C Int B \<in> CC |] |
298 |
==> F \<in> (B Int A) leadsTo[CC] (B Int A')" |
|
13790 | 299 |
by (simp (no_asm_simp) add: e_psp_stable Int_ac) |
300 |
||
301 |
lemma e_psp: |
|
67613 | 302 |
"[| F \<in> A leadsTo[CC] A'; F \<in> B co B'; |
303 |
\<forall>C\<in>CC. C Int B Int B' \<in> CC |] |
|
304 |
==> F \<in> (A Int B') leadsTo[CC] ((A' Int B) Un (B' - B))" |
|
13790 | 305 |
apply (erule leadsETo_induct) |
306 |
prefer 3 apply (blast intro: leadsETo_Union_Int) |
|
307 |
(*Transitivity case has a delicate argument involving "cancellation"*) |
|
308 |
apply (rule_tac [2] leadsETo_Un_duplicate2) |
|
309 |
apply (erule_tac [2] leadsETo_cancel_Diff1) |
|
310 |
prefer 2 |
|
311 |
apply (simp add: Int_Diff Diff_triv) |
|
312 |
apply (blast intro: leadsETo_weaken_L dest: constrains_imp_subset) |
|
313 |
(*Basis case*) |
|
314 |
apply (rule leadsETo_Basis) |
|
315 |
apply (blast intro: psp_ensures) |
|
316 |
apply (subgoal_tac "A Int B' - (Ba Int B Un (B' - B)) = (A - Ba) Int B Int B'") |
|
317 |
apply auto |
|
318 |
done |
|
319 |
||
320 |
lemma e_psp2: |
|
67613 | 321 |
"[| F \<in> A leadsTo[CC] A'; F \<in> B co B'; |
322 |
\<forall>C\<in>CC. C Int B Int B' \<in> CC |] |
|
323 |
==> F \<in> (B' Int A) leadsTo[CC] ((B Int A') Un (B' - B))" |
|
13790 | 324 |
by (simp add: e_psp Int_ac) |
325 |
||
326 |
||
327 |
(*** Special properties involving the parameter [CC] ***) |
|
328 |
||
329 |
(*??IS THIS NEEDED?? or is it just an example of what's provable??*) |
|
330 |
lemma gen_leadsETo_imp_Join_leadsETo: |
|
67613 | 331 |
"[| F \<in> (A leadsTo[givenBy v] B); G \<in> preserves v; |
332 |
F\<squnion>G \<in> stable C |] |
|
333 |
==> F\<squnion>G \<in> ((C Int A) leadsTo[(%D. C Int D) ` givenBy v] B)" |
|
13790 | 334 |
apply (erule leadsETo_induct) |
335 |
prefer 3 |
|
336 |
apply (subst Int_Union) |
|
337 |
apply (blast intro: leadsETo_UN) |
|
338 |
prefer 2 |
|
339 |
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans) |
|
340 |
apply (rule leadsETo_Basis) |
|
13819 | 341 |
apply (auto simp add: Diff_eq_empty_iff [THEN iffD2] |
46577 | 342 |
Int_Diff ensures_def givenBy_eq_Collect) |
13790 | 343 |
prefer 3 apply (blast intro: transient_strengthen) |
344 |
apply (drule_tac [2] P1 = P in preserves_subset_stable [THEN subsetD]) |
|
345 |
apply (drule_tac P1 = P in preserves_subset_stable [THEN subsetD]) |
|
346 |
apply (unfold stable_def) |
|
347 |
apply (blast intro: constrains_Int [THEN constrains_weaken])+ |
|
348 |
done |
|
349 |
||
350 |
(**** Relationship with traditional "leadsTo", strong & weak ****) |
|
351 |
||
352 |
(** strong **) |
|
353 |
||
354 |
lemma leadsETo_subset_leadsTo: "(A leadsTo[CC] B) <= (A leadsTo B)" |
|
355 |
apply safe |
|
356 |
apply (erule leadsETo_induct) |
|
13819 | 357 |
prefer 3 apply (blast intro: leadsTo_Union) |
358 |
prefer 2 apply (blast intro: leadsTo_Trans, blast) |
|
13790 | 359 |
done |
360 |
||
361 |
lemma leadsETo_UNIV_eq_leadsTo: "(A leadsTo[UNIV] B) = (A leadsTo B)" |
|
362 |
apply safe |
|
363 |
apply (erule leadsETo_subset_leadsTo [THEN subsetD]) |
|
364 |
(*right-to-left case*) |
|
365 |
apply (erule leadsTo_induct) |
|
13819 | 366 |
prefer 3 apply (blast intro: leadsETo_Union) |
367 |
prefer 2 apply (blast intro: leadsETo_Trans, blast) |
|
13790 | 368 |
done |
369 |
||
370 |
(**** weak ****) |
|
371 |
||
372 |
lemma LeadsETo_eq_leadsETo: |
|
373 |
"A LeadsTo[CC] B = |
|
67613 | 374 |
{F. F \<in> (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC] |
13790 | 375 |
(reachable F Int B)}" |
376 |
apply (unfold LeadsETo_def) |
|
377 |
apply (blast dest: e_psp_stable2 intro: leadsETo_weaken) |
|
378 |
done |
|
379 |
||
380 |
(*** Introduction rules: Basis, Trans, Union ***) |
|
381 |
||
382 |
lemma LeadsETo_Trans: |
|
67613 | 383 |
"[| F \<in> A LeadsTo[CC] B; F \<in> B LeadsTo[CC] C |] |
384 |
==> F \<in> A LeadsTo[CC] C" |
|
13790 | 385 |
apply (simp add: LeadsETo_eq_leadsETo) |
386 |
apply (blast intro: leadsETo_Trans) |
|
387 |
done |
|
388 |
||
389 |
lemma LeadsETo_Union: |
|
67613 | 390 |
"(\<And>A. A \<in> S \<Longrightarrow> F \<in> A LeadsTo[CC] B) \<Longrightarrow> F \<in> (\<Union>S) LeadsTo[CC] B" |
13790 | 391 |
apply (simp add: LeadsETo_def) |
392 |
apply (subst Int_Union) |
|
393 |
apply (blast intro: leadsETo_UN) |
|
394 |
done |
|
395 |
||
396 |
lemma LeadsETo_UN: |
|
67613 | 397 |
"(\<And>i. i \<in> I \<Longrightarrow> F \<in> (A i) LeadsTo[CC] B) |
398 |
\<Longrightarrow> F \<in> (UN i:I. A i) LeadsTo[CC] B" |
|
13790 | 399 |
apply (blast intro: LeadsETo_Union) |
400 |
done |
|
401 |
||
402 |
(*Binary union introduction rule*) |
|
403 |
lemma LeadsETo_Un: |
|
67613 | 404 |
"[| F \<in> A LeadsTo[CC] C; F \<in> B LeadsTo[CC] C |] |
405 |
==> F \<in> (A Un B) LeadsTo[CC] C" |
|
44106 | 406 |
using LeadsETo_Union [of "{A, B}" F CC C] by auto |
13790 | 407 |
|
408 |
(*Lets us look at the starting state*) |
|
409 |
lemma single_LeadsETo_I: |
|
67613 | 410 |
"(\<And>s. s \<in> A ==> F \<in> {s} LeadsTo[CC] B) \<Longrightarrow> F \<in> A LeadsTo[CC] B" |
13819 | 411 |
by (subst UN_singleton [symmetric], rule LeadsETo_UN, blast) |
13790 | 412 |
|
413 |
lemma subset_imp_LeadsETo: |
|
67613 | 414 |
"A <= B \<Longrightarrow> F \<in> A LeadsTo[CC] B" |
13790 | 415 |
apply (simp (no_asm) add: LeadsETo_def) |
416 |
apply (blast intro: subset_imp_leadsETo) |
|
417 |
done |
|
418 |
||
45605 | 419 |
lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo] |
13790 | 420 |
|
46911 | 421 |
lemma LeadsETo_weaken_R: |
67613 | 422 |
"[| F \<in> A LeadsTo[CC] A'; A' <= B' |] ==> F \<in> A LeadsTo[CC] B'" |
46911 | 423 |
apply (simp add: LeadsETo_def) |
13790 | 424 |
apply (blast intro: leadsETo_weaken_R) |
425 |
done |
|
426 |
||
46911 | 427 |
lemma LeadsETo_weaken_L: |
67613 | 428 |
"[| F \<in> A LeadsTo[CC] A'; B <= A |] ==> F \<in> B LeadsTo[CC] A'" |
46911 | 429 |
apply (simp add: LeadsETo_def) |
13790 | 430 |
apply (blast intro: leadsETo_weaken_L) |
431 |
done |
|
432 |
||
433 |
lemma LeadsETo_weaken: |
|
67613 | 434 |
"[| F \<in> A LeadsTo[CC'] A'; |
13790 | 435 |
B <= A; A' <= B'; CC' <= CC |] |
67613 | 436 |
==> F \<in> B LeadsTo[CC] B'" |
13790 | 437 |
apply (simp (no_asm_use) add: LeadsETo_def) |
438 |
apply (blast intro: leadsETo_weaken) |
|
439 |
done |
|
440 |
||
441 |
lemma LeadsETo_subset_LeadsTo: "(A LeadsTo[CC] B) <= (A LeadsTo B)" |
|
442 |
apply (unfold LeadsETo_def LeadsTo_def) |
|
443 |
apply (blast intro: leadsETo_subset_leadsTo [THEN subsetD]) |
|
444 |
done |
|
445 |
||
446 |
(*Postcondition can be strengthened to (reachable F Int B) *) |
|
447 |
lemma reachable_ensures: |
|
67613 | 448 |
"F \<in> A ensures B \<Longrightarrow> F \<in> (reachable F Int A) ensures B" |
13790 | 449 |
apply (rule stable_ensures_Int [THEN ensures_weaken_R], auto) |
450 |
done |
|
451 |
||
452 |
lemma lel_lemma: |
|
67613 | 453 |
"F \<in> A leadsTo B \<Longrightarrow> F \<in> (reachable F Int A) leadsTo[Pow(reachable F)] B" |
13790 | 454 |
apply (erule leadsTo_induct) |
46577 | 455 |
apply (blast intro: reachable_ensures) |
13790 | 456 |
apply (blast dest: e_psp_stable2 intro: leadsETo_Trans leadsETo_weaken_L) |
457 |
apply (subst Int_Union) |
|
458 |
apply (blast intro: leadsETo_UN) |
|
459 |
done |
|
460 |
||
461 |
lemma LeadsETo_UNIV_eq_LeadsTo: "(A LeadsTo[UNIV] B) = (A LeadsTo B)" |
|
462 |
apply safe |
|
463 |
apply (erule LeadsETo_subset_LeadsTo [THEN subsetD]) |
|
464 |
(*right-to-left case*) |
|
465 |
apply (unfold LeadsETo_def LeadsTo_def) |
|
13836 | 466 |
apply (blast intro: lel_lemma [THEN leadsETo_weaken]) |
13790 | 467 |
done |
468 |
||
469 |
||
470 |
(**** EXTEND/PROJECT PROPERTIES ****) |
|
471 |
||
46912 | 472 |
context Extend |
473 |
begin |
|
474 |
||
475 |
lemma givenBy_o_eq_extend_set: |
|
13819 | 476 |
"givenBy (v o f) = extend_set h ` (givenBy v)" |
13836 | 477 |
apply (simp add: givenBy_eq_Collect) |
478 |
apply (rule equalityI, best) |
|
479 |
apply blast |
|
480 |
done |
|
13790 | 481 |
|
46912 | 482 |
lemma givenBy_eq_extend_set: "givenBy f = range (extend_set h)" |
13836 | 483 |
by (simp add: givenBy_eq_Collect, best) |
13790 | 484 |
|
46912 | 485 |
lemma extend_set_givenBy_I: |
67613 | 486 |
"D \<in> givenBy v ==> extend_set h D \<in> givenBy (v o f)" |
13836 | 487 |
apply (simp (no_asm_use) add: givenBy_eq_all, blast) |
13790 | 488 |
done |
489 |
||
46912 | 490 |
lemma leadsETo_imp_extend_leadsETo: |
67613 | 491 |
"F \<in> A leadsTo[CC] B |
492 |
==> extend h F \<in> (extend_set h A) leadsTo[extend_set h ` CC] |
|
13790 | 493 |
(extend_set h B)" |
494 |
apply (erule leadsETo_induct) |
|
46577 | 495 |
apply (force intro: subset_imp_ensures |
13790 | 496 |
simp add: extend_ensures extend_set_Diff_distrib [symmetric]) |
497 |
apply (blast intro: leadsETo_Trans) |
|
498 |
apply (simp add: leadsETo_UN extend_set_Union) |
|
499 |
done |
|
500 |
||
501 |
||
502 |
(*This version's stronger in the "ensures" precondition |
|
503 |
BUT there's no ensures_weaken_L*) |
|
46912 | 504 |
lemma Join_project_ensures_strong: |
67613 | 505 |
"[| project h C G \<notin> transient (project_set h C Int (A-B)) | |
13790 | 506 |
project_set h C Int (A - B) = {}; |
67613 | 507 |
extend h F\<squnion>G \<in> stable C; |
508 |
F\<squnion>project h C G \<in> (project_set h C Int A) ensures B |] |
|
509 |
==> extend h F\<squnion>G \<in> (C Int extend_set h A) ensures (extend_set h B)" |
|
13790 | 510 |
apply (subst Int_extend_set_lemma [symmetric]) |
511 |
apply (rule Join_project_ensures) |
|
512 |
apply (auto simp add: Int_Diff) |
|
513 |
done |
|
514 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
515 |
(*NOT WORKING. MODIFY AS IN Project.thy |
46912 | 516 |
lemma pld_lemma: |
13819 | 517 |
"[| extend h F\<squnion>G : stable C; |
518 |
F\<squnion>project h C G : (project_set h C Int A) leadsTo[(%D. project_set h C Int D)`givenBy v] B; |
|
13790 | 519 |
G : preserves (v o f) |] |
13819 | 520 |
==> extend h F\<squnion>G : |
13790 | 521 |
(C Int extend_set h (project_set h C Int A)) |
522 |
leadsTo[(%D. C Int extend_set h D)`givenBy v] (extend_set h B)" |
|
523 |
apply (erule leadsETo_induct) |
|
524 |
prefer 3 |
|
525 |
apply (simp del: UN_simps add: Int_UN_distrib leadsETo_UN extend_set_Union) |
|
526 |
prefer 2 |
|
527 |
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans) |
|
528 |
txt{*Base case is hard*} |
|
529 |
apply auto |
|
530 |
apply (force intro: leadsETo_Basis subset_imp_ensures) |
|
531 |
apply (rule leadsETo_Basis) |
|
532 |
prefer 2 |
|
533 |
apply (simp add: Int_Diff Int_extend_set_lemma extend_set_Diff_distrib [symmetric]) |
|
534 |
apply (rule Join_project_ensures_strong) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
535 |
apply (auto intro: project_stable_project_set simp add: Int_left_absorb) |
13790 | 536 |
apply (simp (no_asm_simp) add: stable_ensures_Int [THEN ensures_weaken_R] Int_lower2 project_stable_project_set extend_stable_project_set) |
537 |
done |
|
538 |
||
46912 | 539 |
lemma project_leadsETo_D_lemma: |
13819 | 540 |
"[| extend h F\<squnion>G : stable C; |
541 |
F\<squnion>project h C G : |
|
13790 | 542 |
(project_set h C Int A) |
543 |
leadsTo[(%D. project_set h C Int D)`givenBy v] B; |
|
544 |
G : preserves (v o f) |] |
|
13819 | 545 |
==> extend h F\<squnion>G : (C Int extend_set h A) |
13790 | 546 |
leadsTo[(%D. C Int extend_set h D)`givenBy v] (extend_set h B)" |
547 |
apply (rule pld_lemma [THEN leadsETo_weaken]) |
|
548 |
apply (auto simp add: split_extended_all) |
|
549 |
done |
|
550 |
||
46912 | 551 |
lemma project_leadsETo_D: |
13819 | 552 |
"[| F\<squnion>project h UNIV G : A leadsTo[givenBy v] B; |
13790 | 553 |
G : preserves (v o f) |] |
13819 | 554 |
==> extend h F\<squnion>G : (extend_set h A) |
13790 | 555 |
leadsTo[givenBy (v o f)] (extend_set h B)" |
556 |
apply (cut_tac project_leadsETo_D_lemma [of _ _ UNIV], auto) |
|
557 |
apply (erule leadsETo_givenBy) |
|
558 |
apply (rule givenBy_o_eq_extend_set [THEN equalityD2]) |
|
559 |
done |
|
560 |
||
46912 | 561 |
lemma project_LeadsETo_D: |
13819 | 562 |
"[| F\<squnion>project h (reachable (extend h F\<squnion>G)) G |
13790 | 563 |
: A LeadsTo[givenBy v] B; |
564 |
G : preserves (v o f) |] |
|
13819 | 565 |
==> extend h F\<squnion>G : |
13790 | 566 |
(extend_set h A) LeadsTo[givenBy (v o f)] (extend_set h B)" |
567 |
apply (cut_tac subset_refl [THEN stable_reachable, THEN project_leadsETo_D_lemma]) |
|
568 |
apply (auto simp add: LeadsETo_def) |
|
569 |
apply (erule leadsETo_mono [THEN [2] rev_subsetD]) |
|
570 |
apply (blast intro: extend_set_givenBy_I) |
|
571 |
apply (simp add: project_set_reachable_extend_eq [symmetric]) |
|
572 |
done |
|
573 |
||
46912 | 574 |
lemma extending_leadsETo: |
13790 | 575 |
"(ALL G. extend h F ok G --> G : preserves (v o f)) |
576 |
==> extending (%G. UNIV) h F |
|
577 |
(extend_set h A leadsTo[givenBy (v o f)] extend_set h B) |
|
578 |
(A leadsTo[givenBy v] B)" |
|
579 |
apply (unfold extending_def) |
|
580 |
apply (auto simp add: project_leadsETo_D) |
|
581 |
done |
|
582 |
||
46912 | 583 |
lemma extending_LeadsETo: |
13790 | 584 |
"(ALL G. extend h F ok G --> G : preserves (v o f)) |
13819 | 585 |
==> extending (%G. reachable (extend h F\<squnion>G)) h F |
13790 | 586 |
(extend_set h A LeadsTo[givenBy (v o f)] extend_set h B) |
587 |
(A LeadsTo[givenBy v] B)" |
|
588 |
apply (unfold extending_def) |
|
589 |
apply (blast intro: project_LeadsETo_D) |
|
590 |
done |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13798
diff
changeset
|
591 |
*) |
13790 | 592 |
|
593 |
||
594 |
(*** leadsETo in the precondition ***) |
|
595 |
||
596 |
(*Lemma for the Trans case*) |
|
46912 | 597 |
lemma pli_lemma: |
67613 | 598 |
"[| extend h F\<squnion>G \<in> stable C; |
13819 | 599 |
F\<squnion>project h C G |
67613 | 600 |
\<in> project_set h C Int project_set h A leadsTo project_set h B |] |
13819 | 601 |
==> F\<squnion>project h C G |
67613 | 602 |
\<in> project_set h C Int project_set h A leadsTo |
13790 | 603 |
project_set h C Int project_set h B" |
604 |
apply (rule psp_stable2 [THEN leadsTo_weaken_L]) |
|
605 |
apply (auto simp add: project_stable_project_set extend_stable_project_set) |
|
606 |
done |
|
607 |
||
46912 | 608 |
lemma project_leadsETo_I_lemma: |
67613 | 609 |
"[| extend h F\<squnion>G \<in> stable C; |
610 |
extend h F\<squnion>G \<in> |
|
13790 | 611 |
(C Int A) leadsTo[(%D. C Int D)`givenBy f] B |] |
13819 | 612 |
==> F\<squnion>project h C G |
67613 | 613 |
\<in> (project_set h C Int project_set h (C Int A)) leadsTo (project_set h B)" |
13790 | 614 |
apply (erule leadsETo_induct) |
615 |
prefer 3 |
|
616 |
apply (simp only: Int_UN_distrib project_set_Union) |
|
617 |
apply (blast intro: leadsTo_UN) |
|
618 |
prefer 2 apply (blast intro: leadsTo_Trans pli_lemma) |
|
619 |
apply (simp add: givenBy_eq_extend_set) |
|
620 |
apply (rule leadsTo_Basis) |
|
621 |
apply (blast intro: ensures_extend_set_imp_project_ensures) |
|
622 |
done |
|
623 |
||
46912 | 624 |
lemma project_leadsETo_I: |
67613 | 625 |
"extend h F\<squnion>G \<in> (extend_set h A) leadsTo[givenBy f] (extend_set h B) |
626 |
\<Longrightarrow> F\<squnion>project h UNIV G \<in> A leadsTo B" |
|
13790 | 627 |
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken], auto) |
628 |
done |
|
629 |
||
46912 | 630 |
lemma project_LeadsETo_I: |
67613 | 631 |
"extend h F\<squnion>G \<in> (extend_set h A) LeadsTo[givenBy f] (extend_set h B) |
632 |
\<Longrightarrow> F\<squnion>project h (reachable (extend h F\<squnion>G)) G |
|
633 |
\<in> A LeadsTo B" |
|
13790 | 634 |
apply (simp (no_asm_use) add: LeadsTo_def LeadsETo_def) |
635 |
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken]) |
|
636 |
apply (auto simp add: project_set_reachable_extend_eq [symmetric]) |
|
637 |
done |
|
638 |
||
46912 | 639 |
lemma projecting_leadsTo: |
67613 | 640 |
"projecting (\<lambda>G. UNIV) h F |
13790 | 641 |
(extend_set h A leadsTo[givenBy f] extend_set h B) |
642 |
(A leadsTo B)" |
|
643 |
apply (unfold projecting_def) |
|
644 |
apply (force dest: project_leadsETo_I) |
|
645 |
done |
|
646 |
||
46912 | 647 |
lemma projecting_LeadsTo: |
67613 | 648 |
"projecting (\<lambda>G. reachable (extend h F\<squnion>G)) h F |
13790 | 649 |
(extend_set h A LeadsTo[givenBy f] extend_set h B) |
650 |
(A LeadsTo B)" |
|
651 |
apply (unfold projecting_def) |
|
652 |
apply (force dest: project_LeadsETo_I) |
|
653 |
done |
|
654 |
||
8044 | 655 |
end |
46912 | 656 |
|
657 |
end |