| author | krauss | 
| Mon, 14 Feb 2011 15:27:23 +0100 | |
| changeset 41763 | 8ce56536fda7 | 
| parent 41541 | 1fa4725c4656 | 
| child 49962 | a8cc904a6820 | 
| permissions | -rw-r--r-- | 
| 38159 | 1 | (* Title: HOL/Old_Number_Theory/Pocklington.thy | 
| 30488 | 2 | Author: Amine Chaieb | 
| 26126 | 3 | *) | 
| 4 | ||
| 5 | header {* Pocklington's Theorem for Primes *}
 | |
| 6 | ||
| 7 | theory Pocklington | |
| 38159 | 8 | imports Primes | 
| 26126 | 9 | begin | 
| 10 | ||
| 11 | definition modeq:: "nat => nat => nat => bool"    ("(1[_ = _] '(mod _'))")
 | |
| 12 | where "[a = b] (mod p) == ((a mod p) = (b mod p))" | |
| 13 | ||
| 14 | definition modneq:: "nat => nat => nat => bool"    ("(1[_ \<noteq> _] '(mod _'))")
 | |
| 15 | where "[a \<noteq> b] (mod p) == ((a mod p) \<noteq> (b mod p))" | |
| 16 | ||
| 17 | lemma modeq_trans: | |
| 18 | "\<lbrakk> [a = b] (mod p); [b = c] (mod p) \<rbrakk> \<Longrightarrow> [a = c] (mod p)" | |
| 19 | by (simp add:modeq_def) | |
| 20 | ||
| 21 | ||
| 22 | lemma nat_mod_lemma: assumes xyn: "[x = y] (mod n)" and xy:"y \<le> x" | |
| 23 | shows "\<exists>q. x = y + n * q" | |
| 27668 | 24 | using xyn xy unfolding modeq_def using nat_mod_eq_lemma by blast | 
| 26126 | 25 | |
| 30488 | 26 | lemma nat_mod[algebra]: "[x = y] (mod n) \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" | 
| 27668 | 27 | unfolding modeq_def nat_mod_eq_iff .. | 
| 26126 | 28 | |
| 29 | (* Lemmas about previously defined terms. *) | |
| 30 | ||
| 30488 | 31 | lemma prime: "prime p \<longleftrightarrow> p \<noteq> 0 \<and> p\<noteq>1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)" | 
| 32 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 26126 | 33 | proof- | 
| 34 |   {assume "p=0 \<or> p=1" hence ?thesis using prime_0 prime_1 by (cases "p=0", simp_all)}
 | |
| 35 | moreover | |
| 36 |   {assume p0: "p\<noteq>0" "p\<noteq>1"
 | |
| 37 |     {assume H: "?lhs"
 | |
| 38 |       {fix m assume m: "m > 0" "m < p"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 39 |         {assume "m=1" hence "coprime p m" by simp}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 40 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 41 |         {assume "p dvd m" hence "p \<le> m" using dvd_imp_le m by blast with m(2)
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 42 | have "coprime p m" by simp} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 43 | ultimately have "coprime p m" using prime_coprime[OF H, of m] by blast} | 
| 26126 | 44 | hence ?rhs using p0 by auto} | 
| 45 | moreover | |
| 46 |     { assume H: "\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m"
 | |
| 47 | from prime_factor[OF p0(2)] obtain q where q: "prime q" "q dvd p" by blast | |
| 48 | from prime_ge_2[OF q(1)] have q0: "q > 0" by arith | |
| 49 | from dvd_imp_le[OF q(2)] p0 have qp: "q \<le> p" by arith | |
| 50 |       {assume "q = p" hence ?lhs using q(1) by blast}
 | |
| 51 | moreover | |
| 52 |       {assume "q\<noteq>p" with qp have qplt: "q < p" by arith
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 53 | from H[rule_format, of q] qplt q0 have "coprime p q" by arith | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 54 | with coprime_prime[of p q q] q have False by simp hence ?lhs by blast} | 
| 26126 | 55 | ultimately have ?lhs by blast} | 
| 56 | ultimately have ?thesis by blast} | |
| 57 | ultimately show ?thesis by (cases"p=0 \<or> p=1", auto) | |
| 58 | qed | |
| 59 | ||
| 60 | lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
 | |
| 61 | proof- | |
| 62 |   have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
 | |
| 63 | thus ?thesis by simp | |
| 64 | qed | |
| 65 | ||
| 66 | lemma coprime_mod: assumes n: "n \<noteq> 0" shows "coprime (a mod n) n \<longleftrightarrow> coprime a n" | |
| 67 | using n dvd_mod_iff[of _ n a] by (auto simp add: coprime) | |
| 68 | ||
| 69 | (* Congruences. *) | |
| 70 | ||
| 30488 | 71 | lemma cong_mod_01[simp,presburger]: | 
| 26126 | 72 | "[x = y] (mod 0) \<longleftrightarrow> x = y" "[x = y] (mod 1)" "[x = 0] (mod n) \<longleftrightarrow> n dvd x" | 
| 73 | by (simp_all add: modeq_def, presburger) | |
| 74 | ||
| 30488 | 75 | lemma cong_sub_cases: | 
| 26126 | 76 | "[x = y] (mod n) \<longleftrightarrow> (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))" | 
| 77 | apply (auto simp add: nat_mod) | |
| 78 | apply (rule_tac x="q2" in exI) | |
| 79 | apply (rule_tac x="q1" in exI, simp) | |
| 80 | apply (rule_tac x="q2" in exI) | |
| 81 | apply (rule_tac x="q1" in exI, simp) | |
| 82 | apply (rule_tac x="q1" in exI) | |
| 83 | apply (rule_tac x="q2" in exI, simp) | |
| 84 | apply (rule_tac x="q1" in exI) | |
| 85 | apply (rule_tac x="q2" in exI, simp) | |
| 86 | done | |
| 87 | ||
| 88 | lemma cong_mult_lcancel: assumes an: "coprime a n" and axy:"[a * x = a * y] (mod n)" | |
| 89 | shows "[x = y] (mod n)" | |
| 90 | proof- | |
| 91 |   {assume "a = 0" with an axy coprime_0'[of n] have ?thesis by (simp add: modeq_def) }
 | |
| 92 | moreover | |
| 93 |   {assume az: "a\<noteq>0"
 | |
| 94 |     {assume xy: "x \<le> y" hence axy': "a*x \<le> a*y" by simp
 | |
| 95 | with axy cong_sub_cases[of "a*x" "a*y" n] have "[a*(y - x) = 0] (mod n)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 96 | by (simp only: if_True diff_mult_distrib2) | 
| 30488 | 97 | hence th: "n dvd a*(y -x)" by simp | 
| 26126 | 98 | from coprime_divprod[OF th] an have "n dvd y - x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 99 | by (simp add: coprime_commute) | 
| 26126 | 100 | hence ?thesis using xy cong_sub_cases[of x y n] by simp} | 
| 101 | moreover | |
| 30488 | 102 |     {assume H: "\<not>x \<le> y" hence xy: "y \<le> x"  by arith
 | 
| 26126 | 103 | from H az have axy': "\<not> a*x \<le> a*y" by auto | 
| 104 | with axy H cong_sub_cases[of "a*x" "a*y" n] have "[a*(x - y) = 0] (mod n)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 105 | by (simp only: if_False diff_mult_distrib2) | 
| 30488 | 106 | hence th: "n dvd a*(x - y)" by simp | 
| 26126 | 107 | from coprime_divprod[OF th] an have "n dvd x - y" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 108 | by (simp add: coprime_commute) | 
| 26126 | 109 | hence ?thesis using xy cong_sub_cases[of x y n] by simp} | 
| 110 | ultimately have ?thesis by blast} | |
| 111 | ultimately show ?thesis by blast | |
| 112 | qed | |
| 113 | ||
| 114 | lemma cong_mult_rcancel: assumes an: "coprime a n" and axy:"[x*a = y*a] (mod n)" | |
| 115 | shows "[x = y] (mod n)" | |
| 116 | using cong_mult_lcancel[OF an axy[unfolded mult_commute[of _a]]] . | |
| 117 | ||
| 118 | lemma cong_refl: "[x = x] (mod n)" by (simp add: modeq_def) | |
| 119 | ||
| 120 | lemma eq_imp_cong: "a = b \<Longrightarrow> [a = b] (mod n)" by (simp add: cong_refl) | |
| 121 | ||
| 30488 | 122 | lemma cong_commute: "[x = y] (mod n) \<longleftrightarrow> [y = x] (mod n)" | 
| 26126 | 123 | by (auto simp add: modeq_def) | 
| 124 | ||
| 125 | lemma cong_trans[trans]: "[x = y] (mod n) \<Longrightarrow> [y = z] (mod n) \<Longrightarrow> [x = z] (mod n)" | |
| 126 | by (simp add: modeq_def) | |
| 127 | ||
| 128 | lemma cong_add: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)" | |
| 129 | shows "[x + y = x' + y'] (mod n)" | |
| 130 | proof- | |
| 131 | have "(x + y) mod n = (x mod n + y mod n) mod n" | |
| 132 | by (simp add: mod_add_left_eq[of x y n] mod_add_right_eq[of "x mod n" y n]) | |
| 30488 | 133 | also have "\<dots> = (x' mod n + y' mod n) mod n" using xx' yy' modeq_def by simp | 
| 26126 | 134 | also have "\<dots> = (x' + y') mod n" | 
| 135 | by (simp add: mod_add_left_eq[of x' y' n] mod_add_right_eq[of "x' mod n" y' n]) | |
| 30488 | 136 | finally show ?thesis unfolding modeq_def . | 
| 26126 | 137 | qed | 
| 138 | ||
| 139 | lemma cong_mult: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)" | |
| 140 | shows "[x * y = x' * y'] (mod n)" | |
| 141 | proof- | |
| 30488 | 142 | have "(x * y) mod n = (x mod n) * (y mod n) mod n" | 
| 30224 | 143 | by (simp add: mod_mult_left_eq[of x y n] mod_mult_right_eq[of "x mod n" y n]) | 
| 30488 | 144 | also have "\<dots> = (x' mod n) * (y' mod n) mod n" using xx'[unfolded modeq_def] yy'[unfolded modeq_def] by simp | 
| 26126 | 145 | also have "\<dots> = (x' * y') mod n" | 
| 30224 | 146 | by (simp add: mod_mult_left_eq[of x' y' n] mod_mult_right_eq[of "x' mod n" y' n]) | 
| 30488 | 147 | finally show ?thesis unfolding modeq_def . | 
| 26126 | 148 | qed | 
| 149 | ||
| 150 | lemma cong_exp: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)" | |
| 151 | by (induct k, auto simp add: cong_refl cong_mult) | |
| 152 | lemma cong_sub: assumes xx': "[x = x'] (mod n)" and yy': "[y = y'] (mod n)" | |
| 153 | and yx: "y <= x" and yx': "y' <= x'" | |
| 154 | shows "[x - y = x' - y'] (mod n)" | |
| 155 | proof- | |
| 30488 | 156 |   { fix x a x' a' y b y' b'
 | 
| 26126 | 157 | have "(x::nat) + a = x' + a' \<Longrightarrow> y + b = y' + b' \<Longrightarrow> y <= x \<Longrightarrow> y' <= x' | 
| 158 | \<Longrightarrow> (x - y) + (a + b') = (x' - y') + (a' + b)" by arith} | |
| 159 | note th = this | |
| 30488 | 160 | from xx' yy' obtain q1 q2 q1' q2' where q12: "x + n*q1 = x'+n*q2" | 
| 26126 | 161 | and q12': "y + n*q1' = y'+n*q2'" unfolding nat_mod by blast+ | 
| 162 | from th[OF q12 q12' yx yx'] | |
| 30488 | 163 | have "(x - y) + n*(q1 + q2') = (x' - y') + n*(q2 + q1')" | 
| 26126 | 164 | by (simp add: right_distrib) | 
| 165 | thus ?thesis unfolding nat_mod by blast | |
| 166 | qed | |
| 167 | ||
| 30488 | 168 | lemma cong_mult_lcancel_eq: assumes an: "coprime a n" | 
| 26126 | 169 | shows "[a * x = a * y] (mod n) \<longleftrightarrow> [x = y] (mod n)" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 170 | proof | |
| 171 | assume H: "?rhs" from cong_mult[OF cong_refl[of a n] H] show ?lhs . | |
| 172 | next | |
| 173 | assume H: "?lhs" hence H': "[x*a = y*a] (mod n)" by (simp add: mult_commute) | |
| 174 | from cong_mult_rcancel[OF an H'] show ?rhs . | |
| 175 | qed | |
| 176 | ||
| 30488 | 177 | lemma cong_mult_rcancel_eq: assumes an: "coprime a n" | 
| 26126 | 178 | shows "[x * a = y * a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 179 | using cong_mult_lcancel_eq[OF an, of x y] by (simp add: mult_commute) | |
| 180 | ||
| 30488 | 181 | lemma cong_add_lcancel_eq: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 26126 | 182 | by (simp add: nat_mod) | 
| 183 | ||
| 184 | lemma cong_add_rcancel_eq: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | |
| 185 | by (simp add: nat_mod) | |
| 186 | ||
| 30488 | 187 | lemma cong_add_rcancel: "[x + a = y + a] (mod n) \<Longrightarrow> [x = y] (mod n)" | 
| 26126 | 188 | by (simp add: nat_mod) | 
| 189 | ||
| 190 | lemma cong_add_lcancel: "[a + x = a + y] (mod n) \<Longrightarrow> [x = y] (mod n)" | |
| 191 | by (simp add: nat_mod) | |
| 192 | ||
| 30488 | 193 | lemma cong_add_lcancel_eq_0: "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 26126 | 194 | by (simp add: nat_mod) | 
| 195 | ||
| 196 | lemma cong_add_rcancel_eq_0: "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | |
| 197 | by (simp add: nat_mod) | |
| 198 | ||
| 199 | lemma cong_imp_eq: assumes xn: "x < n" and yn: "y < n" and xy: "[x = y] (mod n)" | |
| 200 | shows "x = y" | |
| 30488 | 201 | using xy[unfolded modeq_def mod_less[OF xn] mod_less[OF yn]] . | 
| 26126 | 202 | |
| 203 | lemma cong_divides_modulus: "[x = y] (mod m) \<Longrightarrow> n dvd m ==> [x = y] (mod n)" | |
| 204 | apply (auto simp add: nat_mod dvd_def) | |
| 205 | apply (rule_tac x="k*q1" in exI) | |
| 206 | apply (rule_tac x="k*q2" in exI) | |
| 207 | by simp | |
| 30488 | 208 | |
| 26126 | 209 | lemma cong_0_divides: "[x = 0] (mod n) \<longleftrightarrow> n dvd x" by simp | 
| 210 | ||
| 211 | lemma cong_1_divides:"[x = 1] (mod n) ==> n dvd x - 1" | |
| 212 | apply (cases "x\<le>1", simp_all) | |
| 213 | using cong_sub_cases[of x 1 n] by auto | |
| 214 | ||
| 215 | lemma cong_divides: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y" | |
| 216 | apply (auto simp add: nat_mod dvd_def) | |
| 217 | apply (rule_tac x="k + q1 - q2" in exI, simp add: add_mult_distrib2 diff_mult_distrib2) | |
| 218 | apply (rule_tac x="k + q2 - q1" in exI, simp add: add_mult_distrib2 diff_mult_distrib2) | |
| 219 | done | |
| 220 | ||
| 30488 | 221 | lemma cong_coprime: assumes xy: "[x = y] (mod n)" | 
| 26126 | 222 | shows "coprime n x \<longleftrightarrow> coprime n y" | 
| 223 | proof- | |
| 224 |   {assume "n=0" hence ?thesis using xy by simp}
 | |
| 225 | moreover | |
| 226 |   {assume nz: "n \<noteq> 0"
 | |
| 30488 | 227 | have "coprime n x \<longleftrightarrow> coprime (x mod n) n" | 
| 26126 | 228 | by (simp add: coprime_mod[OF nz, of x] coprime_commute[of n x]) | 
| 229 | also have "\<dots> \<longleftrightarrow> coprime (y mod n) n" using xy[unfolded modeq_def] by simp | |
| 230 | also have "\<dots> \<longleftrightarrow> coprime y n" by (simp add: coprime_mod[OF nz, of y]) | |
| 231 | finally have ?thesis by (simp add: coprime_commute) } | |
| 232 | ultimately show ?thesis by blast | |
| 233 | qed | |
| 234 | ||
| 235 | lemma cong_mod: "~(n = 0) \<Longrightarrow> [a mod n = a] (mod n)" by (simp add: modeq_def) | |
| 236 | ||
| 30488 | 237 | lemma mod_mult_cong: "~(a = 0) \<Longrightarrow> ~(b = 0) | 
| 26126 | 238 | \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)" | 
| 239 | by (simp add: modeq_def mod_mult2_eq mod_add_left_eq) | |
| 240 | ||
| 241 | lemma cong_mod_mult: "[x = y] (mod n) \<Longrightarrow> m dvd n \<Longrightarrow> [x = y] (mod m)" | |
| 242 | apply (auto simp add: nat_mod dvd_def) | |
| 243 | apply (rule_tac x="k*q1" in exI) | |
| 244 | apply (rule_tac x="k*q2" in exI, simp) | |
| 245 | done | |
| 246 | ||
| 247 | (* Some things when we know more about the order. *) | |
| 248 | ||
| 249 | lemma cong_le: "y <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)" | |
| 250 | using nat_mod_lemma[of x y n] | |
| 251 | apply auto | |
| 252 | apply (simp add: nat_mod) | |
| 253 | apply (rule_tac x="q" in exI) | |
| 254 | apply (rule_tac x="q + q" in exI) | |
| 29667 | 255 | by (auto simp: algebra_simps) | 
| 26126 | 256 | |
| 257 | lemma cong_to_1: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)" | |
| 258 | proof- | |
| 30488 | 259 |   {assume "n = 0 \<or> n = 1\<or> a = 0 \<or> a = 1" hence ?thesis
 | 
| 26126 | 260 | apply (cases "n=0", simp_all add: cong_commute) | 
| 261 | apply (cases "n=1", simp_all add: cong_commute modeq_def) | |
| 30488 | 262 | apply arith | 
| 41541 | 263 | apply (cases "a=1") | 
| 264 | apply (simp_all add: modeq_def cong_commute) | |
| 265 | done } | |
| 26126 | 266 | moreover | 
| 267 |   {assume n: "n\<noteq>0" "n\<noteq>1" and a:"a\<noteq>0" "a \<noteq> 1" hence a': "a \<ge> 1" by simp
 | |
| 268 | hence ?thesis using cong_le[OF a', of n] by auto } | |
| 269 | ultimately show ?thesis by auto | |
| 270 | qed | |
| 271 | ||
| 272 | (* Some basic theorems about solving congruences. *) | |
| 273 | ||
| 274 | ||
| 275 | lemma cong_solve: assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)" | |
| 276 | proof- | |
| 277 |   {assume "a=0" hence ?thesis using an by (simp add: modeq_def)}
 | |
| 278 | moreover | |
| 279 |   {assume az: "a\<noteq>0"
 | |
| 30488 | 280 | from bezout_add_strong[OF az, of n] | 
| 26126 | 281 | obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast | 
| 282 | from an[unfolded coprime, rule_format, of d] dxy(1,2) have d1: "d = 1" by blast | |
| 283 | hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp | |
| 284 | hence "a*(x*b) = n*(y*b) + b" by algebra | |
| 285 | hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp | |
| 286 | hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq) | |
| 287 | hence "[a*(x*b) = b] (mod n)" unfolding modeq_def . | |
| 288 | hence ?thesis by blast} | |
| 289 | ultimately show ?thesis by blast | |
| 290 | qed | |
| 291 | ||
| 292 | lemma cong_solve_unique: assumes an: "coprime a n" and nz: "n \<noteq> 0" | |
| 293 | shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)" | |
| 294 | proof- | |
| 295 | let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)" | |
| 296 | from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast | |
| 297 | let ?x = "x mod n" | |
| 298 | from x have th: "[a * ?x = b] (mod n)" | |
| 30224 | 299 | by (simp add: modeq_def mod_mult_right_eq[of a x n]) | 
| 26126 | 300 | from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp | 
| 301 |   {fix y assume Py: "y < n" "[a * y = b] (mod n)"
 | |
| 302 | from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: modeq_def) | |
| 303 | hence "[y = ?x] (mod n)" by (simp add: cong_mult_lcancel_eq[OF an]) | |
| 304 | with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz | |
| 305 | have "y = ?x" by (simp add: modeq_def)} | |
| 306 | with Px show ?thesis by blast | |
| 307 | qed | |
| 308 | ||
| 309 | lemma cong_solve_unique_nontrivial: | |
| 310 | assumes p: "prime p" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p" | |
| 311 | shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)" | |
| 312 | proof- | |
| 313 | from p have p1: "p > 1" using prime_ge_2[OF p] by arith | |
| 314 | hence p01: "p \<noteq> 0" "p \<noteq> 1" by arith+ | |
| 315 | from pa have ap: "coprime a p" by (simp add: coprime_commute) | |
| 316 | from prime_coprime[OF p, of x] dvd_imp_le[of p x] x0 xp have px:"coprime x p" | |
| 317 | by (auto simp add: coprime_commute) | |
| 30488 | 318 | from cong_solve_unique[OF px p01(1)] | 
| 26126 | 319 | obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y" by blast | 
| 320 |   {assume y0: "y = 0"
 | |
| 321 | with y(2) have th: "p dvd a" by (simp add: cong_commute[of 0 a p]) | |
| 322 | with p coprime_prime[OF pa, of p] have False by simp} | |
| 30488 | 323 | with y show ?thesis unfolding Ex1_def using neq0_conv by blast | 
| 26126 | 324 | qed | 
| 325 | lemma cong_unique_inverse_prime: | |
| 326 | assumes p: "prime p" and x0: "0 < x" and xp: "x < p" | |
| 327 | shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)" | |
| 328 | using cong_solve_unique_nontrivial[OF p coprime_1[of p] x0 xp] . | |
| 329 | ||
| 330 | (* Forms of the Chinese remainder theorem. *) | |
| 331 | ||
| 30488 | 332 | lemma cong_chinese: | 
| 333 | assumes ab: "coprime a b" and xya: "[x = y] (mod a)" | |
| 26126 | 334 | and xyb: "[x = y] (mod b)" | 
| 335 | shows "[x = y] (mod a*b)" | |
| 336 | using ab xya xyb | |
| 30488 | 337 | by (simp add: cong_sub_cases[of x y a] cong_sub_cases[of x y b] | 
| 338 | cong_sub_cases[of x y "a*b"]) | |
| 26126 | 339 | (cases "x \<le> y", simp_all add: divides_mul[of a _ b]) | 
| 340 | ||
| 341 | lemma chinese_remainder_unique: | |
| 342 | assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b\<noteq>0" | |
| 343 | shows "\<exists>!x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 344 | proof- | |
| 345 | from az bz have abpos: "a*b > 0" by simp | |
| 30488 | 346 | from chinese_remainder[OF ab az bz] obtain x q1 q2 where | 
| 26126 | 347 | xq12: "x = m + q1 * a" "x = n + q2 * b" by blast | 
| 30488 | 348 | let ?w = "x mod (a*b)" | 
| 26126 | 349 | have wab: "?w < a*b" by (simp add: mod_less_divisor[OF abpos]) | 
| 350 | from xq12(1) have "?w mod a = ((m + q1 * a) mod (a*b)) mod a" by simp | |
| 351 | also have "\<dots> = m mod a" apply (simp add: mod_mult2_eq) | |
| 352 | apply (subst mod_add_left_eq) | |
| 353 | by simp | |
| 354 | finally have th1: "[?w = m] (mod a)" by (simp add: modeq_def) | |
| 355 | from xq12(2) have "?w mod b = ((n + q2 * b) mod (a*b)) mod b" by simp | |
| 356 | also have "\<dots> = ((n + q2 * b) mod (b*a)) mod b" by (simp add: mult_commute) | |
| 357 | also have "\<dots> = n mod b" apply (simp add: mod_mult2_eq) | |
| 358 | apply (subst mod_add_left_eq) | |
| 359 | by simp | |
| 360 | finally have th2: "[?w = n] (mod b)" by (simp add: modeq_def) | |
| 361 |   {fix y assume H: "y < a*b" "[y = m] (mod a)" "[y = n] (mod b)"
 | |
| 362 | with th1 th2 have H': "[y = ?w] (mod a)" "[y = ?w] (mod b)" | |
| 363 | by (simp_all add: modeq_def) | |
| 30488 | 364 | from cong_chinese[OF ab H'] mod_less[OF H(1)] mod_less[OF wab] | 
| 26126 | 365 | have "y = ?w" by (simp add: modeq_def)} | 
| 366 | with th1 th2 wab show ?thesis by blast | |
| 367 | qed | |
| 368 | ||
| 369 | lemma chinese_remainder_coprime_unique: | |
| 30488 | 370 | assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0" | 
| 26126 | 371 | and ma: "coprime m a" and nb: "coprime n b" | 
| 372 | shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 373 | proof- | |
| 374 | let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 375 | from chinese_remainder_unique[OF ab az bz] | |
| 30488 | 376 | obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)" | 
| 26126 | 377 | "\<forall>y. ?P y \<longrightarrow> y = x" by blast | 
| 378 | from ma nb cong_coprime[OF x(2)] cong_coprime[OF x(3)] | |
| 379 | have "coprime x a" "coprime x b" by (simp_all add: coprime_commute) | |
| 380 | with coprime_mul[of x a b] have "coprime x (a*b)" by simp | |
| 381 | with x show ?thesis by blast | |
| 382 | qed | |
| 383 | ||
| 384 | (* Euler totient function. *) | |
| 385 | ||
| 386 | definition phi_def: "\<phi> n = card { m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31021diff
changeset | 387 | |
| 26126 | 388 | lemma phi_0[simp]: "\<phi> 0 = 0" | 
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31021diff
changeset | 389 | unfolding phi_def by auto | 
| 26126 | 390 | |
| 391 | lemma phi_finite[simp]: "finite ({ m. 0 < m \<and> m <= n \<and> coprime m n })"
 | |
| 392 | proof- | |
| 393 |   have "{ m. 0 < m \<and> m <= n \<and> coprime m n } \<subseteq> {0..n}" by auto
 | |
| 394 | thus ?thesis by (auto intro: finite_subset) | |
| 395 | qed | |
| 396 | ||
| 397 | declare coprime_1[presburger] | |
| 398 | lemma phi_1[simp]: "\<phi> 1 = 1" | |
| 399 | proof- | |
| 30488 | 400 |   {fix m
 | 
| 26126 | 401 | have "0 < m \<and> m <= 1 \<and> coprime m 1 \<longleftrightarrow> m = 1" by presburger } | 
| 402 | thus ?thesis by (simp add: phi_def) | |
| 403 | qed | |
| 404 | ||
| 405 | lemma [simp]: "\<phi> (Suc 0) = Suc 0" using phi_1 by simp | |
| 406 | ||
| 407 | lemma phi_alt: "\<phi>(n) = card { m. coprime m n \<and> m < n}"
 | |
| 408 | proof- | |
| 409 |   {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=0", simp_all)}
 | |
| 410 | moreover | |
| 411 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 412 |     {fix m
 | |
| 413 | from n have "0 < m \<and> m <= n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 414 | apply (cases "m = 0", simp_all) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 415 | apply (cases "m = 1", simp_all) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 416 | apply (cases "m = n", auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 417 | done } | 
| 26126 | 418 | hence ?thesis unfolding phi_def by simp} | 
| 419 | ultimately show ?thesis by auto | |
| 420 | qed | |
| 421 | ||
| 422 | lemma phi_finite_lemma[simp]: "finite {m. coprime m n \<and>  m < n}" (is "finite ?S")
 | |
| 423 |   by (rule finite_subset[of "?S" "{0..n}"], auto)
 | |
| 424 | ||
| 425 | lemma phi_another: assumes n: "n\<noteq>1" | |
| 426 |   shows "\<phi> n = card {m. 0 < m \<and> m < n \<and> coprime m n }"
 | |
| 427 | proof- | |
| 30488 | 428 |   {fix m
 | 
| 26126 | 429 | from n have "0 < m \<and> m < n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n" | 
| 430 | by (cases "m=0", auto)} | |
| 431 | thus ?thesis unfolding phi_alt by auto | |
| 432 | qed | |
| 433 | ||
| 434 | lemma phi_limit: "\<phi> n \<le> n" | |
| 435 | proof- | |
| 436 |   have "{ m. coprime m n \<and> m < n} \<subseteq> {0 ..<n}" by auto
 | |
| 437 |   with card_mono[of "{0 ..<n}" "{ m. coprime m n \<and> m < n}"]
 | |
| 438 | show ?thesis unfolding phi_alt by auto | |
| 439 | qed | |
| 440 | ||
| 441 | lemma stupid[simp]: "{m. (0::nat) < m \<and> m < n} = {1..<n}"
 | |
| 442 | by auto | |
| 443 | ||
| 30488 | 444 | lemma phi_limit_strong: assumes n: "n\<noteq>1" | 
| 26126 | 445 | shows "\<phi>(n) \<le> n - 1" | 
| 446 | proof- | |
| 447 | show ?thesis | |
| 30488 | 448 | unfolding phi_another[OF n] finite_number_segment[of n, symmetric] | 
| 26126 | 449 |     by (rule card_mono[of "{m. 0 < m \<and> m < n}" "{m. 0 < m \<and> m < n \<and> coprime m n}"], auto)
 | 
| 450 | qed | |
| 451 | ||
| 452 | lemma phi_lowerbound_1_strong: assumes n: "n \<ge> 1" | |
| 453 | shows "\<phi>(n) \<ge> 1" | |
| 454 | proof- | |
| 455 |   let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 30488 | 456 | from card_0_eq[of ?S] n have "\<phi> n \<noteq> 0" unfolding phi_alt | 
| 26126 | 457 | apply auto | 
| 458 | apply (cases "n=1", simp_all) | |
| 459 | apply (rule exI[where x=1], simp) | |
| 460 | done | |
| 461 | thus ?thesis by arith | |
| 462 | qed | |
| 463 | ||
| 464 | lemma phi_lowerbound_1: "2 <= n ==> 1 <= \<phi>(n)" | |
| 465 | using phi_lowerbound_1_strong[of n] by auto | |
| 466 | ||
| 467 | lemma phi_lowerbound_2: assumes n: "3 <= n" shows "2 <= \<phi> (n)" | |
| 468 | proof- | |
| 469 |   let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 30488 | 470 |   have inS: "{1, n - 1} \<subseteq> ?S" using n coprime_plus1[of "n - 1"]
 | 
| 26126 | 471 | by (auto simp add: coprime_commute) | 
| 472 |   from n have c2: "card {1, n - 1} = 2" by (auto simp add: card_insert_if)
 | |
| 30488 | 473 |   from card_mono[of ?S "{1, n - 1}", simplified inS c2] show ?thesis
 | 
| 26126 | 474 | unfolding phi_def by auto | 
| 475 | qed | |
| 476 | ||
| 477 | lemma phi_prime: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1 \<longleftrightarrow> prime n" | |
| 478 | proof- | |
| 479 |   {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=1", simp_all)}
 | |
| 480 | moreover | |
| 481 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 482 |     let ?S = "{m. 0 < m \<and> m < n}"
 | |
| 483 | have fS: "finite ?S" by simp | |
| 484 |     let ?S' = "{m. 0 < m \<and> m < n \<and> coprime m n}"
 | |
| 485 | have fS':"finite ?S'" apply (rule finite_subset[of ?S' ?S]) by auto | |
| 486 |     {assume H: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1"
 | |
| 30488 | 487 | hence ceq: "card ?S' = card ?S" | 
| 26126 | 488 | using n finite_number_segment[of n] phi_another[OF n(2)] by simp | 
| 489 |       {fix m assume m: "0 < m" "m < n" "\<not> coprime m n"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 490 | hence mS': "m \<notin> ?S'" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 491 | have "insert m ?S' \<le> ?S" using m by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 492 | from m have "card (insert m ?S') \<le> card ?S" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 493 | by - (rule card_mono[of ?S "insert m ?S'"], auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 494 | hence False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 495 | unfolding card_insert_disjoint[of "?S'" m, OF fS' mS'] ceq | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 496 | by simp } | 
| 26126 | 497 | hence "\<forall>m. 0 <m \<and> m < n \<longrightarrow> coprime m n" by blast | 
| 498 | hence "prime n" unfolding prime using n by (simp add: coprime_commute)} | |
| 499 | moreover | |
| 500 |     {assume H: "prime n"
 | |
| 30488 | 501 | hence "?S = ?S'" unfolding prime using n | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 502 | by (auto simp add: coprime_commute) | 
| 26126 | 503 | hence "card ?S = card ?S'" by simp | 
| 504 | hence "\<phi> n = n - 1" unfolding phi_another[OF n(2)] by simp} | |
| 505 | ultimately have ?thesis using n by blast} | |
| 506 | ultimately show ?thesis by (cases "n=0") blast+ | |
| 507 | qed | |
| 508 | ||
| 509 | (* Multiplicativity property. *) | |
| 510 | ||
| 511 | lemma phi_multiplicative: assumes ab: "coprime a b" | |
| 512 | shows "\<phi> (a * b) = \<phi> a * \<phi> b" | |
| 513 | proof- | |
| 30488 | 514 |   {assume "a = 0 \<or> b = 0 \<or> a = 1 \<or> b = 1"
 | 
| 26126 | 515 | hence ?thesis | 
| 516 | by (cases "a=0", simp, cases "b=0", simp, cases"a=1", simp_all) } | |
| 517 | moreover | |
| 518 |   {assume a: "a\<noteq>0" "a\<noteq>1" and b: "b\<noteq>0" "b\<noteq>1"
 | |
| 519 | hence ab0: "a*b \<noteq> 0" by simp | |
| 520 |     let ?S = "\<lambda>k. {m. coprime m k \<and> m < k}"
 | |
| 521 | let ?f = "\<lambda>x. (x mod a, x mod b)" | |
| 522 | have eq: "?f ` (?S (a*b)) = (?S a \<times> ?S b)" | |
| 523 | proof- | |
| 524 |       {fix x assume x:"x \<in> ?S (a*b)"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 525 | hence x': "coprime x (a*b)" "x < a*b" by simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 526 | hence xab: "coprime x a" "coprime x b" by (simp_all add: coprime_mul_eq) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 527 | from mod_less_divisor a b have xab':"x mod a < a" "x mod b < b" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 528 | from xab xab' have "?f x \<in> (?S a \<times> ?S b)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 529 | by (simp add: coprime_mod[OF a(1)] coprime_mod[OF b(1)])} | 
| 26126 | 530 | moreover | 
| 531 |       {fix x y assume x: "x \<in> ?S a" and y: "y \<in> ?S b"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 532 | hence x': "coprime x a" "x < a" and y': "coprime y b" "y < b" by simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 533 | from chinese_remainder_coprime_unique[OF ab a(1) b(1) x'(1) y'(1)] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 534 | obtain z where z: "coprime z (a * b)" "z < a * b" "[z = x] (mod a)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 535 | "[z = y] (mod b)" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 536 | hence "(x,y) \<in> ?f ` (?S (a*b))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 537 | using y'(2) mod_less_divisor[of b y] x'(2) mod_less_divisor[of a x] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 538 | by (auto simp add: image_iff modeq_def)} | 
| 26126 | 539 | ultimately show ?thesis by auto | 
| 540 | qed | |
| 541 | have finj: "inj_on ?f (?S (a*b))" | |
| 542 | unfolding inj_on_def | |
| 543 | proof(clarify) | |
| 30488 | 544 | fix x y assume H: "coprime x (a * b)" "x < a * b" "coprime y (a * b)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 545 | "y < a * b" "x mod a = y mod a" "x mod b = y mod b" | 
| 30488 | 546 | hence cp: "coprime x a" "coprime x b" "coprime y a" "coprime y b" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 547 | by (simp_all add: coprime_mul_eq) | 
| 26126 | 548 | from chinese_remainder_coprime_unique[OF ab a(1) b(1) cp(3,4)] H | 
| 549 | show "x = y" unfolding modeq_def by blast | |
| 550 | qed | |
| 551 | from card_image[OF finj, unfolded eq] have ?thesis | |
| 552 | unfolding phi_alt by simp } | |
| 553 | ultimately show ?thesis by auto | |
| 554 | qed | |
| 555 | ||
| 556 | (* Fermat's Little theorem / Fermat-Euler theorem. *) | |
| 557 | ||
| 558 | ||
| 559 | lemma nproduct_mod: | |
| 560 | assumes fS: "finite S" and n0: "n \<noteq> 0" | |
| 561 | shows "[setprod (\<lambda>m. a(m) mod n) S = setprod a S] (mod n)" | |
| 562 | proof- | |
| 563 | have th1:"[1 = 1] (mod n)" by (simp add: modeq_def) | |
| 564 | from cong_mult | |
| 565 | have th3:"\<forall>x1 y1 x2 y2. | |
| 566 | [x1 = x2] (mod n) \<and> [y1 = y2] (mod n) \<longrightarrow> [x1 * y1 = x2 * y2] (mod n)" | |
| 567 | by blast | |
| 568 | have th4:"\<forall>x\<in>S. [a x mod n = a x] (mod n)" by (simp add: modeq_def) | |
| 28854 | 569 | from fold_image_related[where h="(\<lambda>m. a(m) mod n)" and g=a, OF th1 th3 fS, OF th4] show ?thesis unfolding setprod_def by (simp add: fS) | 
| 26126 | 570 | qed | 
| 571 | ||
| 572 | lemma nproduct_cmul: | |
| 573 | assumes fS:"finite S" | |
| 31021 | 574 |   shows "setprod (\<lambda>m. (c::'a::{comm_monoid_mult})* a(m)) S = c ^ (card S) * setprod a S"
 | 
| 26126 | 575 | unfolding setprod_timesf setprod_constant[OF fS, of c] .. | 
| 576 | ||
| 577 | lemma coprime_nproduct: | |
| 578 | assumes fS: "finite S" and Sn: "\<forall>x\<in>S. coprime n (a x)" | |
| 579 | shows "coprime n (setprod a S)" | |
| 27368 | 580 | using fS unfolding setprod_def by (rule finite_subset_induct) | 
| 581 | (insert Sn, auto simp add: coprime_mul) | |
| 26126 | 582 | |
| 583 | lemma fermat_little: assumes an: "coprime a n" | |
| 584 | shows "[a ^ (\<phi> n) = 1] (mod n)" | |
| 585 | proof- | |
| 586 |   {assume "n=0" hence ?thesis by simp}
 | |
| 587 | moreover | |
| 588 |   {assume "n=1" hence ?thesis by (simp add: modeq_def)}
 | |
| 589 | moreover | |
| 590 |   {assume nz: "n \<noteq> 0" and n1: "n \<noteq> 1"
 | |
| 591 |     let ?S = "{m. coprime m n \<and> m < n}"
 | |
| 592 | let ?P = "\<Prod> ?S" | |
| 593 | have fS: "finite ?S" by simp | |
| 594 | have cardfS: "\<phi> n = card ?S" unfolding phi_alt .. | |
| 595 |     {fix m assume m: "m \<in> ?S"
 | |
| 596 | hence "coprime m n" by simp | |
| 30488 | 597 | with coprime_mul[of n a m] an have "coprime (a*m) n" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 598 | by (simp add: coprime_commute)} | 
| 26126 | 599 | hence Sn: "\<forall>m\<in> ?S. coprime (a*m) n " by blast | 
| 600 | from coprime_nproduct[OF fS, of n "\<lambda>m. m"] have nP:"coprime ?P n" | |
| 601 | by (simp add: coprime_commute) | |
| 602 | have Paphi: "[?P*a^ (\<phi> n) = ?P*1] (mod n)" | |
| 603 | proof- | |
| 604 | let ?h = "\<lambda>m. m mod n" | |
| 605 |       {fix m assume mS: "m\<in> ?S"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 606 | hence "?h m \<in> ?S" by simp} | 
| 26126 | 607 | hence hS: "?h ` ?S = ?S"by (auto simp add: image_iff) | 
| 608 | have "a\<noteq>0" using an n1 nz apply- apply (rule ccontr) by simp | |
| 609 | hence inj: "inj_on (op * a) ?S" unfolding inj_on_def by simp | |
| 30488 | 610 | |
| 28854 | 611 |       have eq0: "fold_image op * (?h \<circ> op * a) 1 {m. coprime m n \<and> m < n} =
 | 
| 612 |      fold_image op * (\<lambda>m. m) 1 {m. coprime m n \<and> m < n}"
 | |
| 613 | proof (rule fold_image_eq_general[where h="?h o (op * a)"]) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 614 | show "finite ?S" using fS . | 
| 26126 | 615 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 616 |         {fix y assume yS: "y \<in> ?S" hence y: "coprime y n" "y < n" by simp_all
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 617 | from cong_solve_unique[OF an nz, of y] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 618 | obtain x where x:"x < n" "[a * x = y] (mod n)" "\<forall>z. z < n \<and> [a * z = y] (mod n) \<longrightarrow> z=x" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 619 | from cong_coprime[OF x(2)] y(1) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 620 | have xm: "coprime x n" by (simp add: coprime_mul_eq coprime_commute) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 621 |           {fix z assume "z \<in> ?S" "(?h \<circ> op * a) z = y"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 622 | hence z: "coprime z n" "z < n" "(?h \<circ> op * a) z = y" by simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 623 | from x(3)[rule_format, of z] z(2,3) have "z=x" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 624 | unfolding modeq_def mod_less[OF y(2)] by simp} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 625 | with xm x(1,2) have "\<exists>!x. x \<in> ?S \<and> (?h \<circ> op * a) x = y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 626 | unfolding modeq_def mod_less[OF y(2)] by auto } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 627 |         thus "\<forall>y\<in>{m. coprime m n \<and> m < n}.
 | 
| 26126 | 628 |        \<exists>!x. x \<in> {m. coprime m n \<and> m < n} \<and> ((\<lambda>m. m mod n) \<circ> op * a) x = y" by blast
 | 
| 629 | next | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 630 |         {fix x assume xS: "x\<in> ?S"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 631 | hence x: "coprime x n" "x < n" by simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 632 | with an have "coprime (a*x) n" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 633 | by (simp add: coprime_mul_eq[of n a x] coprime_commute) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 634 | hence "?h (a*x) \<in> ?S" using nz | 
| 41541 | 635 | by (simp add: coprime_mod[OF nz])} | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 636 |         thus " \<forall>x\<in>{m. coprime m n \<and> m < n}.
 | 
| 26126 | 637 |        ((\<lambda>m. m mod n) \<circ> op * a) x \<in> {m. coprime m n \<and> m < n} \<and>
 | 
| 638 | ((\<lambda>m. m mod n) \<circ> op * a) x = ((\<lambda>m. m mod n) \<circ> op * a) x" by simp | |
| 639 | qed | |
| 640 | from nproduct_mod[OF fS nz, of "op * a"] | |
| 641 | have "[(setprod (op *a) ?S) = (setprod (?h o (op * a)) ?S)] (mod n)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 642 | unfolding o_def | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 643 | by (simp add: cong_commute) | 
| 26126 | 644 | also have "[setprod (?h o (op * a)) ?S = ?P ] (mod n)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 645 | using eq0 fS an by (simp add: setprod_def modeq_def o_def) | 
| 26126 | 646 | finally show "[?P*a^ (\<phi> n) = ?P*1] (mod n)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 647 | unfolding cardfS mult_commute[of ?P "a^ (card ?S)"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 648 | nproduct_cmul[OF fS, symmetric] mult_1_right by simp | 
| 26126 | 649 | qed | 
| 650 | from cong_mult_lcancel[OF nP Paphi] have ?thesis . } | |
| 651 | ultimately show ?thesis by blast | |
| 652 | qed | |
| 653 | ||
| 654 | lemma fermat_little_prime: assumes p: "prime p" and ap: "coprime a p" | |
| 655 | shows "[a^ (p - 1) = 1] (mod p)" | |
| 656 | using fermat_little[OF ap] p[unfolded phi_prime[symmetric]] | |
| 657 | by simp | |
| 658 | ||
| 659 | ||
| 660 | (* Lucas's theorem. *) | |
| 661 | ||
| 662 | lemma lucas_coprime_lemma: | |
| 663 | assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)" | |
| 664 | shows "coprime a n" | |
| 665 | proof- | |
| 666 |   {assume "n=1" hence ?thesis by simp}
 | |
| 667 | moreover | |
| 668 |   {assume "n = 0" hence ?thesis using am m exp_eq_1[of a m] by simp}
 | |
| 669 | moreover | |
| 670 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 671 | from m obtain m' where m': "m = Suc m'" by (cases m, blast+) | |
| 672 |     {fix d
 | |
| 673 | assume d: "d dvd a" "d dvd n" | |
| 30488 | 674 | from n have n1: "1 < n" by arith | 
| 26126 | 675 | from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding modeq_def by simp | 
| 676 | from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m') | |
| 677 | from dvd_mod_iff[OF d(2), of "a^m"] dam am1 | |
| 678 | have "d = 1" by simp } | |
| 679 | hence ?thesis unfolding coprime by auto | |
| 680 | } | |
| 30488 | 681 | ultimately show ?thesis by blast | 
| 26126 | 682 | qed | 
| 683 | ||
| 684 | lemma lucas_weak: | |
| 30488 | 685 | assumes n: "n \<ge> 2" and an:"[a^(n - 1) = 1] (mod n)" | 
| 26126 | 686 | and nm: "\<forall>m. 0 <m \<and> m < n - 1 \<longrightarrow> \<not> [a^m = 1] (mod n)" | 
| 687 | shows "prime n" | |
| 688 | proof- | |
| 689 | from n have n1: "n \<noteq> 1" "n\<noteq>0" "n - 1 \<noteq> 0" "n - 1 > 0" "n - 1 < n" by arith+ | |
| 690 | from lucas_coprime_lemma[OF n1(3) an] have can: "coprime a n" . | |
| 691 | from fermat_little[OF can] have afn: "[a ^ \<phi> n = 1] (mod n)" . | |
| 692 |   {assume "\<phi> n \<noteq> n - 1"
 | |
| 693 | with phi_limit_strong[OF n1(1)] phi_lowerbound_1[OF n] | |
| 694 | have c:"\<phi> n > 0 \<and> \<phi> n < n - 1" by arith | |
| 695 | from nm[rule_format, OF c] afn have False ..} | |
| 696 | hence "\<phi> n = n - 1" by blast | |
| 697 | with phi_prime[of n] n1(1,2) show ?thesis by simp | |
| 698 | qed | |
| 699 | ||
| 30488 | 700 | lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" | 
| 26126 | 701 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 702 | proof | |
| 703 | assume ?rhs thus ?lhs by blast | |
| 704 | next | |
| 705 | assume H: ?lhs then obtain n where n: "P n" by blast | |
| 706 | let ?x = "Least P" | |
| 707 |   {fix m assume m: "m < ?x"
 | |
| 708 | from not_less_Least[OF m] have "\<not> P m" .} | |
| 709 | with LeastI_ex[OF H] show ?rhs by blast | |
| 710 | qed | |
| 711 | ||
| 30488 | 712 | lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))" | 
| 26126 | 713 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 714 | proof- | |
| 715 |   {assume ?rhs hence ?lhs by blast}
 | |
| 30488 | 716 | moreover | 
| 26126 | 717 |   { assume H: ?lhs then obtain n where n: "P n" by blast
 | 
| 718 | let ?x = "Least P" | |
| 719 |     {fix m assume m: "m < ?x"
 | |
| 720 | from not_less_Least[OF m] have "\<not> P m" .} | |
| 721 | with LeastI_ex[OF H] have ?rhs by blast} | |
| 722 | ultimately show ?thesis by blast | |
| 723 | qed | |
| 30488 | 724 | |
| 26126 | 725 | lemma power_mod: "((x::nat) mod m)^n mod m = x^n mod m" | 
| 726 | proof(induct n) | |
| 727 | case 0 thus ?case by simp | |
| 728 | next | |
| 30488 | 729 | case (Suc n) | 
| 730 | have "(x mod m)^(Suc n) mod m = ((x mod m) * (((x mod m) ^ n) mod m)) mod m" | |
| 30224 | 731 | by (simp add: mod_mult_right_eq[symmetric]) | 
| 26126 | 732 | also have "\<dots> = ((x mod m) * (x^n mod m)) mod m" using Suc.hyps by simp | 
| 733 | also have "\<dots> = x^(Suc n) mod m" | |
| 30224 | 734 | by (simp add: mod_mult_left_eq[symmetric] mod_mult_right_eq[symmetric]) | 
| 26126 | 735 | finally show ?case . | 
| 736 | qed | |
| 737 | ||
| 738 | lemma lucas: | |
| 30488 | 739 | assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)" | 
| 26126 | 740 | and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> \<not> [a^((n - 1) div p) = 1] (mod n)" | 
| 741 | shows "prime n" | |
| 742 | proof- | |
| 743 | from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+ | |
| 744 | from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp | |
| 30488 | 745 | from lucas_coprime_lemma[OF n01(3) an1] cong_coprime[OF an1] | 
| 26126 | 746 | have an: "coprime a n" "coprime (a^(n - 1)) n" by (simp_all add: coprime_commute) | 
| 747 |   {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
 | |
| 30488 | 748 | from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where | 
| 26126 | 749 | m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast | 
| 30488 | 750 |     {assume nm1: "(n - 1) mod m > 0"
 | 
| 751 | from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast | |
| 26126 | 752 | let ?y = "a^ ((n - 1) div m * m)" | 
| 753 | note mdeq = mod_div_equality[of "(n - 1)" m] | |
| 30488 | 754 | from coprime_exp[OF an(1)[unfolded coprime_commute[of a n]], | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 755 | of "(n - 1) div m * m"] | 
| 30488 | 756 | have yn: "coprime ?y n" by (simp add: coprime_commute) | 
| 757 | have "?y mod n = (a^m)^((n - 1) div m) mod n" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 758 | by (simp add: algebra_simps power_mult) | 
| 30488 | 759 | also have "\<dots> = (a^m mod n)^((n - 1) div m) mod n" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 760 | using power_mod[of "a^m" n "(n - 1) div m"] by simp | 
| 30488 | 761 | also have "\<dots> = 1" using m(3)[unfolded modeq_def onen] onen | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 762 | by (simp add: power_Suc0) | 
| 30488 | 763 | finally have th3: "?y mod n = 1" . | 
| 764 | have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 765 | using an1[unfolded modeq_def onen] onen | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 766 | mod_div_equality[of "(n - 1)" m, symmetric] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 767 | by (simp add:power_add[symmetric] modeq_def th3 del: One_nat_def) | 
| 26126 | 768 | from cong_mult_lcancel[of ?y n "a^((n - 1) mod m)" 1, OF yn th2] | 
| 30488 | 769 | have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)" . | 
| 770 | from m(4)[rule_format, OF th0] nm1 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 771 | less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1 | 
| 26126 | 772 | have False by blast } | 
| 773 | hence "(n - 1) mod m = 0" by auto | |
| 774 | then have mn: "m dvd n - 1" by presburger | |
| 775 | then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast | |
| 776 | from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+ | |
| 777 | from prime_factor[OF r01(2)] obtain p where p: "prime p" "p dvd r" by blast | |
| 778 | hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult) | |
| 779 | have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r | |
| 780 | by (simp add: power_mult) | |
| 781 | also have "\<dots> = (a^(m*(r div p))) mod n" using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp | |
| 782 | also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult) | |
| 783 | also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod[of "a^m" "n" "r div p" ] .. | |
| 26158 | 784 | also have "\<dots> = 1" using m(3) onen by (simp add: modeq_def power_Suc0) | 
| 30488 | 785 | finally have "[(a ^ ((n - 1) div p))= 1] (mod n)" | 
| 26126 | 786 | using onen by (simp add: modeq_def) | 
| 787 | with pn[rule_format, OF th] have False by blast} | |
| 788 | hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast | |
| 789 | from lucas_weak[OF n2 an1 th] show ?thesis . | |
| 790 | qed | |
| 791 | ||
| 792 | (* Definition of the order of a number mod n (0 in non-coprime case). *) | |
| 793 | ||
| 794 | definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)" | |
| 795 | ||
| 796 | (* This has the expected properties. *) | |
| 797 | ||
| 798 | lemma coprime_ord: | |
| 30488 | 799 | assumes na: "coprime n a" | 
| 26126 | 800 | shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))" | 
| 801 | proof- | |
| 802 | let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)" | |
| 803 | from euclid[of a] obtain p where p: "prime p" "a < p" by blast | |
| 804 | from na have o: "ord n a = Least ?P" by (simp add: ord_def) | |
| 805 |   {assume "n=0 \<or> n=1" with na have "\<exists>m>0. ?P m" apply auto apply (rule exI[where x=1]) by (simp  add: modeq_def)}
 | |
| 806 | moreover | |
| 30488 | 807 |   {assume "n\<noteq>0 \<and> n\<noteq>1" hence n2:"n \<ge> 2" by arith
 | 
| 26126 | 808 | from na have na': "coprime a n" by (simp add: coprime_commute) | 
| 809 | from phi_lowerbound_1[OF n2] fermat_little[OF na'] | |
| 810 | have ex: "\<exists>m>0. ?P m" by - (rule exI[where x="\<phi> n"], auto) } | |
| 811 | ultimately have ex: "\<exists>m>0. ?P m" by blast | |
| 30488 | 812 | from nat_exists_least_iff'[of ?P] ex na show ?thesis | 
| 26126 | 813 | unfolding o[symmetric] by auto | 
| 814 | qed | |
| 815 | (* With the special value 0 for non-coprime case, it's more convenient. *) | |
| 816 | lemma ord_works: | |
| 817 | "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))" | |
| 818 | apply (cases "coprime n a") | |
| 819 | using coprime_ord[of n a] | |
| 820 | by (blast, simp add: ord_def modeq_def) | |
| 821 | ||
| 30488 | 822 | lemma ord: "[a^(ord n a) = 1] (mod n)" using ord_works by blast | 
| 823 | lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)" | |
| 26126 | 824 | using ord_works by blast | 
| 825 | lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> ~coprime n a" | |
| 41541 | 826 | by (cases "coprime n a", simp add: coprime_ord, simp add: ord_def) | 
| 26126 | 827 | |
| 828 | lemma ord_divides: | |
| 829 | "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 830 | proof | |
| 831 | assume rh: ?rhs | |
| 832 | then obtain k where "d = ord n a * k" unfolding dvd_def by blast | |
| 833 | hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)" | |
| 834 | by (simp add : modeq_def power_mult power_mod) | |
| 30488 | 835 | also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)" | 
| 836 | using ord[of a n, unfolded modeq_def] | |
| 26158 | 837 | by (simp add: modeq_def power_mod power_Suc0) | 
| 26126 | 838 | finally show ?lhs . | 
| 30488 | 839 | next | 
| 26126 | 840 | assume lh: ?lhs | 
| 841 |   { assume H: "\<not> coprime n a"
 | |
| 842 | hence o: "ord n a = 0" by (simp add: ord_def) | |
| 843 |     {assume d: "d=0" with o H have ?rhs by (simp add: modeq_def)}
 | |
| 844 | moreover | |
| 845 |     {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
 | |
| 30488 | 846 | from H[unfolded coprime] | 
| 847 | obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto | |
| 848 | from lh[unfolded nat_mod] | |
| 26126 | 849 | obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2" by blast | 
| 850 | hence "a ^ d + n * q1 - n * q2 = 1" by simp | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31197diff
changeset | 851 | with dvd_diff_nat [OF dvd_add [OF divides_rexp[OF p(2), of d'] dvd_mult2[OF p(1), of q1]] dvd_mult2[OF p(1), of q2]] d' have "p dvd 1" by simp | 
| 26126 | 852 | with p(3) have False by simp | 
| 853 | hence ?rhs ..} | |
| 854 | ultimately have ?rhs by blast} | |
| 855 | moreover | |
| 856 |   {assume H: "coprime n a"
 | |
| 857 | let ?o = "ord n a" | |
| 858 | let ?q = "d div ord n a" | |
| 859 | let ?r = "d mod ord n a" | |
| 30488 | 860 | from cong_exp[OF ord[of a n], of ?q] | 
| 26158 | 861 | have eqo: "[(a^?o)^?q = 1] (mod n)" by (simp add: modeq_def power_Suc0) | 
| 26126 | 862 | from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0) | 
| 863 | hence op: "?o > 0" by simp | |
| 864 | from mod_div_equality[of d "ord n a"] lh | |
| 865 | have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: modeq_def mult_commute) | |
| 30488 | 866 | hence "[(a^?o)^?q * (a^?r) = 1] (mod n)" | 
| 26126 | 867 | by (simp add: modeq_def power_mult[symmetric] power_add[symmetric]) | 
| 868 | hence th: "[a^?r = 1] (mod n)" | |
| 30224 | 869 | using eqo mod_mult_left_eq[of "(a^?o)^?q" "a^?r" n] | 
| 26126 | 870 | apply (simp add: modeq_def del: One_nat_def) | 
| 30224 | 871 | by (simp add: mod_mult_left_eq[symmetric]) | 
| 26126 | 872 |     {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
 | 
| 873 | moreover | |
| 30488 | 874 |     {assume r: "?r \<noteq> 0"
 | 
| 26126 | 875 | with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp | 
| 30488 | 876 | from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th | 
| 26126 | 877 | have ?rhs by blast} | 
| 878 | ultimately have ?rhs by blast} | |
| 879 | ultimately show ?rhs by blast | |
| 880 | qed | |
| 881 | ||
| 882 | lemma order_divides_phi: "coprime n a \<Longrightarrow> ord n a dvd \<phi> n" | |
| 883 | using ord_divides fermat_little coprime_commute by simp | |
| 30488 | 884 | lemma order_divides_expdiff: | 
| 26126 | 885 | assumes na: "coprime n a" | 
| 886 | shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))" | |
| 887 | proof- | |
| 30488 | 888 |   {fix n a d e
 | 
| 26126 | 889 | assume na: "coprime n a" and ed: "(e::nat) \<le> d" | 
| 890 | hence "\<exists>c. d = e + c" by arith | |
| 891 | then obtain c where c: "d = e + c" by arith | |
| 892 | from na have an: "coprime a n" by (simp add: coprime_commute) | |
| 30488 | 893 | from coprime_exp[OF na, of e] | 
| 26126 | 894 | have aen: "coprime (a^e) n" by (simp add: coprime_commute) | 
| 30488 | 895 | from coprime_exp[OF na, of c] | 
| 26126 | 896 | have acn: "coprime (a^c) n" by (simp add: coprime_commute) | 
| 897 | have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)" | |
| 898 | using c by simp | |
| 899 | also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add) | |
| 900 | also have "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)" | |
| 901 | using cong_mult_lcancel_eq[OF aen, of "a^c" "a^0"] by simp | |
| 902 | also have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides) | |
| 903 | also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)" | |
| 904 | using cong_add_lcancel_eq[of e c 0 "ord n a", simplified cong_0_divides] | |
| 905 | by simp | |
| 906 | finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))" | |
| 907 | using c by simp } | |
| 908 | note th = this | |
| 909 | have "e \<le> d \<or> d \<le> e" by arith | |
| 910 | moreover | |
| 911 |   {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
 | |
| 912 | moreover | |
| 913 |   {assume de: "d \<le> e"
 | |
| 914 | from th[OF na de] have ?thesis by (simp add: cong_commute) } | |
| 915 | ultimately show ?thesis by blast | |
| 916 | qed | |
| 917 | ||
| 918 | (* Another trivial primality characterization. *) | |
| 919 | ||
| 920 | lemma prime_prime_factor: | |
| 921 | "prime n \<longleftrightarrow> n \<noteq> 1\<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)" | |
| 922 | proof- | |
| 923 |   {assume n: "n=0 \<or> n=1" hence ?thesis using prime_0 two_is_prime by auto}
 | |
| 924 | moreover | |
| 925 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 926 |     {assume pn: "prime n"
 | |
| 30488 | 927 | |
| 26126 | 928 | from pn[unfolded prime_def] have "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 929 | using n | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 930 | apply (cases "n = 0 \<or> n=1",simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 931 | by (clarsimp, erule_tac x="p" in allE, auto)} | 
| 26126 | 932 | moreover | 
| 933 |     {assume H: "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
 | |
| 934 | from n have n1: "n > 1" by arith | |
| 935 |       {fix m assume m: "m dvd n" "m\<noteq>1"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 936 | from prime_factor[OF m(2)] obtain p where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 937 | p: "prime p" "p dvd m" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 938 | from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 939 | with p(2) have "n dvd m" by simp | 
| 33657 | 940 | hence "m=n" using dvd_antisym[OF m(1)] by simp } | 
| 26126 | 941 | with n1 have "prime n" unfolding prime_def by auto } | 
| 30488 | 942 | ultimately have ?thesis using n by blast} | 
| 943 | ultimately show ?thesis by auto | |
| 26126 | 944 | qed | 
| 945 | ||
| 946 | lemma prime_divisor_sqrt: | |
| 947 | "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d^2 \<le> n \<longrightarrow> d = 1)" | |
| 948 | proof- | |
| 30488 | 949 |   {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1
 | 
| 26126 | 950 | by (auto simp add: nat_power_eq_0_iff)} | 
| 951 | moreover | |
| 952 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 953 | hence np: "n > 1" by arith | |
| 954 |     {fix d assume d: "d dvd n" "d^2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
 | |
| 955 | from H d have d1n: "d = 1 \<or> d=n" by blast | |
| 956 |       {assume dn: "d=n"
 | |
| 41541 | 957 | have "n^2 > n*1" using n by (simp add: power2_eq_square) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 958 | with dn d(2) have "d=1" by simp} | 
| 26126 | 959 | with d1n have "d = 1" by blast } | 
| 960 | moreover | |
| 961 |     {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'^2 \<le> n \<longrightarrow> d' = 1"
 | |
| 962 | from d n have "d \<noteq> 0" apply - apply (rule ccontr) by simp | |
| 963 | hence dp: "d > 0" by simp | |
| 964 | from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast | |
| 965 | from n dp e have ep:"e > 0" by simp | |
| 966 | have "d^2 \<le> n \<or> e^2 \<le> n" using dp ep | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 967 | by (auto simp add: e power2_eq_square mult_le_cancel_left) | 
| 26126 | 968 | moreover | 
| 969 |       {assume h: "d^2 \<le> n"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 970 | from H[rule_format, of d] h d have "d = 1" by blast} | 
| 26126 | 971 | moreover | 
| 972 |       {assume h: "e^2 \<le> n"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 973 | from e have "e dvd n" unfolding dvd_def by (simp add: mult_commute) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 974 | with H[rule_format, of e] h have "e=1" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 975 | with e have "d = n" by simp} | 
| 26126 | 976 | ultimately have "d=1 \<or> d=n" by blast} | 
| 977 | ultimately have ?thesis unfolding prime_def using np n(2) by blast} | |
| 978 | ultimately show ?thesis by auto | |
| 979 | qed | |
| 980 | lemma prime_prime_factor_sqrt: | |
| 30488 | 981 | "prime n \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p^2 \<le> n)" | 
| 26126 | 982 | (is "?lhs \<longleftrightarrow>?rhs") | 
| 983 | proof- | |
| 984 |   {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 by auto}
 | |
| 985 | moreover | |
| 986 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 987 |     {assume H: ?lhs
 | |
| 30488 | 988 | from H[unfolded prime_divisor_sqrt] n | 
| 41541 | 989 | have ?rhs | 
| 990 | apply clarsimp | |
| 991 | apply (erule_tac x="p" in allE) | |
| 992 | apply simp | |
| 993 | done | |
| 26126 | 994 | } | 
| 995 | moreover | |
| 996 |     {assume H: ?rhs
 | |
| 997 |       {fix d assume d: "d dvd n" "d^2 \<le> n" "d\<noteq>1"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 998 | from prime_factor[OF d(3)] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 999 | obtain p where p: "prime p" "p dvd d" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1000 | from n have np: "n > 0" by arith | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1001 | from d(1) n have "d \<noteq> 0" by - (rule ccontr, auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1002 | hence dp: "d > 0" by arith | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1003 | from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1004 | have "p^2 \<le> n" unfolding power2_eq_square by arith | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1005 | with H n p(1) dvd_trans[OF p(2) d(1)] have False by blast} | 
| 26126 | 1006 | with n prime_divisor_sqrt have ?lhs by auto} | 
| 1007 | ultimately have ?thesis by blast } | |
| 1008 | ultimately show ?thesis by (cases "n=0 \<or> n=1", auto) | |
| 1009 | qed | |
| 1010 | (* Pocklington theorem. *) | |
| 1011 | ||
| 1012 | lemma pocklington_lemma: | |
| 1013 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1014 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n" | |
| 1015 | and pp: "prime p" and pn: "p dvd n" | |
| 1016 | shows "[p = 1] (mod q)" | |
| 1017 | proof- | |
| 1018 | from pp prime_0 prime_1 have p01: "p \<noteq> 0" "p \<noteq> 1" by - (rule ccontr, simp)+ | |
| 30488 | 1019 | from cong_1_divides[OF an, unfolded nqr, unfolded dvd_def] | 
| 26126 | 1020 | obtain k where k: "a ^ (q * r) - 1 = n*k" by blast | 
| 1021 | from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast | |
| 1022 |   {assume a0: "a = 0"
 | |
| 1023 | hence "a^ (n - 1) = 0" using n by (simp add: power_0_left) | |
| 1024 | with n an mod_less[of 1 n] have False by (simp add: power_0_left modeq_def)} | |
| 1025 | hence a0: "a\<noteq>0" .. | |
| 41541 | 1026 | from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by simp | 
| 26126 | 1027 | hence "(a ^ (q * r) - 1) + 1 = a ^ (q * r)" by simp | 
| 1028 | with k l have "a ^ (q * r) = p*l*k + 1" by simp | |
| 1029 | hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: mult_ac) | |
| 1030 | hence odq: "ord p (a^r) dvd q" | |
| 1031 | unfolding ord_divides[symmetric] power_mult[symmetric] nat_mod by blast | |
| 1032 | from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast | |
| 30488 | 1033 |   {assume d1: "d \<noteq> 1"
 | 
| 26126 | 1034 | from prime_factor[OF d1] obtain P where P: "prime P" "P dvd d" by blast | 
| 1035 | from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp | |
| 1036 | from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast | |
| 1037 | from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast | |
| 1038 | have P0: "P \<noteq> 0" using P(1) prime_0 by - (rule ccontr, simp) | |
| 1039 | from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast | |
| 1040 | from d s t P0 have s': "ord p (a^r) * t = s" by algebra | |
| 1041 | have "ord p (a^r) * t*r = r * ord p (a^r) * t" by algebra | |
| 1042 | hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t" | |
| 1043 | by (simp only: power_mult) | |
| 30488 | 1044 | have "[((a ^ r) ^ ord p (a^r)) ^ t= 1^t] (mod p)" | 
| 26126 | 1045 | by (rule cong_exp, rule ord) | 
| 30488 | 1046 | then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)" | 
| 26158 | 1047 | by (simp add: power_Suc0) | 
| 26126 | 1048 | from cong_1_divides[OF th] exps have pd0: "p dvd a^(ord p (a^r) * t*r) - 1" by simp | 
| 1049 | from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp | |
| 1050 | with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp | |
| 1051 | with p01 pn pd0 have False unfolding coprime by auto} | |
| 30488 | 1052 | hence d1: "d = 1" by blast | 
| 1053 | hence o: "ord p (a^r) = q" using d by simp | |
| 26126 | 1054 | from pp phi_prime[of p] have phip: " \<phi> p = p - 1" by simp | 
| 1055 |   {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
 | |
| 1056 | from pp[unfolded prime_def] d have dp: "d = p" by blast | |
| 1057 | from n have n12:"Suc (n - 2) = n - 1" by arith | |
| 1058 | with divides_rexp[OF d(2)[unfolded dp], of "n - 2"] | |
| 1059 | have th0: "p dvd a ^ (n - 1)" by simp | |
| 1060 | from n have n0: "n \<noteq> 0" by simp | |
| 30488 | 1061 | from d(2) an n12[symmetric] have a0: "a \<noteq> 0" | 
| 26126 | 1062 | by - (rule ccontr, simp add: modeq_def) | 
| 41541 | 1063 | have th1: "a^ (n - 1) \<noteq> 0" using n d(2) dp a0 by auto | 
| 30488 | 1064 | from coprime_minus1[OF th1, unfolded coprime] | 
| 26126 | 1065 | dvd_trans[OF pn cong_1_divides[OF an]] th0 d(3) dp | 
| 1066 | have False by auto} | |
| 30488 | 1067 | hence cpa: "coprime p a" using coprime by auto | 
| 1068 | from coprime_exp[OF cpa, of r] coprime_commute | |
| 26126 | 1069 | have arp: "coprime (a^r) p" by blast | 
| 1070 | from fermat_little[OF arp, simplified ord_divides] o phip | |
| 1071 | have "q dvd (p - 1)" by simp | |
| 1072 | then obtain d where d:"p - 1 = q * d" unfolding dvd_def by blast | |
| 1073 | from prime_0 pp have p0:"p \<noteq> 0" by - (rule ccontr, auto) | |
| 1074 | from p0 d have "p + q * 0 = 1 + q * d" by simp | |
| 1075 | with nat_mod[of p 1 q, symmetric] | |
| 1076 | show ?thesis by blast | |
| 1077 | qed | |
| 1078 | ||
| 1079 | lemma pocklington: | |
| 1080 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2" | |
| 1081 | and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1082 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n" | |
| 1083 | shows "prime n" | |
| 1084 | unfolding prime_prime_factor_sqrt[of n] | |
| 1085 | proof- | |
| 1086 | let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<twosuperior> \<le> n)" | |
| 1087 | from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+ | |
| 1088 |   {fix p assume p: "prime p" "p dvd n" "p^2 \<le> n"
 | |
| 1089 | from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square) | |
| 1090 | hence pq: "p \<le> q" unfolding exp_mono_le . | |
| 1091 | from pocklington_lemma[OF n nqr an aq p(1,2)] cong_1_divides | |
| 1092 | have th: "q dvd p - 1" by blast | |
| 1093 | have "p - 1 \<noteq> 0"using prime_ge_2[OF p(1)] by arith | |
| 1094 | with divides_ge[OF th] pq have False by arith } | |
| 1095 | with n01 show ?ths by blast | |
| 1096 | qed | |
| 1097 | ||
| 1098 | (* Variant for application, to separate the exponentiation. *) | |
| 1099 | lemma pocklington_alt: | |
| 1100 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2" | |
| 1101 | and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1102 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)" | |
| 1103 | shows "prime n" | |
| 1104 | proof- | |
| 1105 |   {fix p assume p: "prime p" "p dvd q"
 | |
| 30488 | 1106 | from aq[rule_format] p obtain b where | 
| 26126 | 1107 | b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast | 
| 1108 |     {assume a0: "a=0"
 | |
| 1109 | from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto | |
| 1110 | hence False using n by (simp add: modeq_def dvd_eq_mod_eq_0[symmetric])} | |
| 1111 | hence a0: "a\<noteq> 0" .. | |
| 1112 | hence a1: "a \<ge> 1" by arith | |
| 1113 | from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" . | |
| 1114 |     {assume b0: "b = 0"
 | |
| 30488 | 1115 | from p(2) nqr have "(n - 1) mod p = 0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1116 | apply (simp only: dvd_eq_mod_eq_0[symmetric]) by (rule dvd_mult2, simp) | 
| 30488 | 1117 | with mod_div_equality[of "n - 1" p] | 
| 1118 | have "(n - 1) div p * p= n - 1" by auto | |
| 26126 | 1119 | hence eq: "(a^((n - 1) div p))^p = a^(n - 1)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1120 | by (simp only: power_mult[symmetric]) | 
| 26126 | 1121 | from prime_ge_2[OF p(1)] have pS: "Suc (p - 1) = p" by arith | 
| 1122 | from b(1) have d: "n dvd a^((n - 1) div p)" unfolding b0 cong_0_divides . | |
| 1123 | from divides_rexp[OF d, of "p - 1"] pS eq cong_divides[OF an] n | |
| 1124 | have False by simp} | |
| 30488 | 1125 | then have b0: "b \<noteq> 0" .. | 
| 1126 | hence b1: "b \<ge> 1" by arith | |
| 26126 | 1127 | from cong_coprime[OF cong_sub[OF b(1) cong_refl[of 1] ath b1]] b(2) nqr | 
| 1128 | have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute)} | |
| 30488 | 1129 | hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n " | 
| 26126 | 1130 | by blast | 
| 1131 | from pocklington[OF n nqr sqr an th] show ?thesis . | |
| 1132 | qed | |
| 1133 | ||
| 1134 | (* Prime factorizations. *) | |
| 1135 | ||
| 1136 | definition "primefact ps n = (foldr op * ps 1 = n \<and> (\<forall>p\<in> set ps. prime p))" | |
| 1137 | ||
| 1138 | lemma primefact: assumes n: "n \<noteq> 0" | |
| 1139 | shows "\<exists>ps. primefact ps n" | |
| 1140 | using n | |
| 1141 | proof(induct n rule: nat_less_induct) | |
| 1142 | fix n assume H: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>ps. primefact ps m)" and n: "n\<noteq>0" | |
| 1143 | let ?ths = "\<exists>ps. primefact ps n" | |
| 30488 | 1144 |   {assume "n = 1"
 | 
| 26126 | 1145 | hence "primefact [] n" by (simp add: primefact_def) | 
| 1146 | hence ?ths by blast } | |
| 1147 | moreover | |
| 1148 |   {assume n1: "n \<noteq> 1"
 | |
| 1149 | with n have n2: "n \<ge> 2" by arith | |
| 1150 | from prime_factor[OF n1] obtain p where p: "prime p" "p dvd n" by blast | |
| 1151 | from p(2) obtain m where m: "n = p*m" unfolding dvd_def by blast | |
| 1152 | from n m have m0: "m > 0" "m\<noteq>0" by auto | |
| 1153 | from prime_ge_2[OF p(1)] have "1 < p" by arith | |
| 1154 | with m0 m have mn: "m < n" by auto | |
| 1155 | from H[rule_format, OF mn m0(2)] obtain ps where ps: "primefact ps m" .. | |
| 1156 | from ps m p(1) have "primefact (p#ps) n" by (simp add: primefact_def) | |
| 1157 | hence ?ths by blast} | |
| 1158 | ultimately show ?ths by blast | |
| 1159 | qed | |
| 1160 | ||
| 30488 | 1161 | lemma primefact_contains: | 
| 26126 | 1162 | assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n" | 
| 1163 | shows "p \<in> set ps" | |
| 1164 | using pf p pn | |
| 1165 | proof(induct ps arbitrary: p n) | |
| 1166 | case Nil thus ?case by (auto simp add: primefact_def) | |
| 1167 | next | |
| 1168 | case (Cons q qs p n) | |
| 30488 | 1169 | from Cons.prems[unfolded primefact_def] | 
| 26126 | 1170 | have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p" and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all | 
| 1171 |   {assume "p dvd q"
 | |
| 1172 | with p(1) q(1) have "p = q" unfolding prime_def by auto | |
| 1173 | hence ?case by simp} | |
| 1174 | moreover | |
| 1175 |   { assume h: "p dvd foldr op * qs 1"
 | |
| 30488 | 1176 | from q(3) have pqs: "primefact qs (foldr op * qs 1)" | 
| 26126 | 1177 | by (simp add: primefact_def) | 
| 1178 | from Cons.hyps[OF pqs p(1) h] have ?case by simp} | |
| 1179 | ultimately show ?case using prime_divprod[OF p] by blast | |
| 1180 | qed | |
| 1181 | ||
| 37602 | 1182 | lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps" | 
| 1183 | by (auto simp add: primefact_def list_all_iff) | |
| 26126 | 1184 | |
| 1185 | (* Variant of Lucas theorem. *) | |
| 1186 | ||
| 1187 | lemma lucas_primefact: | |
| 30488 | 1188 | assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)" | 
| 1189 | and psn: "foldr op * ps 1 = n - 1" | |
| 26126 | 1190 | and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps" | 
| 1191 | shows "prime n" | |
| 1192 | proof- | |
| 1193 |   {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
 | |
| 30488 | 1194 | from psn psp have psn1: "primefact ps (n - 1)" | 
| 26126 | 1195 | by (auto simp add: list_all_iff primefact_variant) | 
| 1196 | from p(3) primefact_contains[OF psn1 p(1,2)] psp | |
| 1197 | have False by (induct ps, auto)} | |
| 1198 | with lucas[OF n an] show ?thesis by blast | |
| 1199 | qed | |
| 1200 | ||
| 1201 | (* Variant of Pocklington theorem. *) | |
| 1202 | ||
| 1203 | lemma mod_le: assumes n: "n \<noteq> (0::nat)" shows "m mod n \<le> m" | |
| 1204 | proof- | |
| 1205 | from mod_div_equality[of m n] | |
| 30488 | 1206 | have "\<exists>x. x + m mod n = m" by blast | 
| 26126 | 1207 | then show ?thesis by auto | 
| 1208 | qed | |
| 30488 | 1209 | |
| 26126 | 1210 | |
| 1211 | lemma pocklington_primefact: | |
| 1212 | assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q^2" | |
| 30488 | 1213 | and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q" | 
| 26126 | 1214 | and bqn: "(b^q) mod n = 1" | 
| 1215 | and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps" | |
| 1216 | shows "prime n" | |
| 1217 | proof- | |
| 1218 | from bqn psp qrn | |
| 1219 | have bqn: "a ^ (n - 1) mod n = 1" | |
| 30488 | 1220 | and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps" unfolding arnb[symmetric] power_mod | 
| 29667 | 1221 | by (simp_all add: power_mult[symmetric] algebra_simps) | 
| 26126 | 1222 | from n have n0: "n > 0" by arith | 
| 1223 | from mod_div_equality[of "a^(n - 1)" n] | |
| 1224 | mod_less_divisor[OF n0, of "a^(n - 1)"] | |
| 30488 | 1225 | have an1: "[a ^ (n - 1) = 1] (mod n)" | 
| 26126 | 1226 | unfolding nat_mod bqn | 
| 1227 | apply - | |
| 1228 | apply (rule exI[where x="0"]) | |
| 1229 | apply (rule exI[where x="a^(n - 1) div n"]) | |
| 29667 | 1230 | by (simp add: algebra_simps) | 
| 26126 | 1231 |   {fix p assume p: "prime p" "p dvd q"
 | 
| 1232 | from psp psq have pfpsq: "primefact ps q" | |
| 1233 | by (auto simp add: primefact_variant list_all_iff) | |
| 30488 | 1234 | from psp primefact_contains[OF pfpsq p] | 
| 26126 | 1235 | have p': "coprime (a ^ (r * (q div p)) mod n - 1) n" | 
| 1236 | by (simp add: list_all_iff) | |
| 1237 | from prime_ge_2[OF p(1)] have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)" by arith+ | |
| 30488 | 1238 | from div_mult1_eq[of r q p] p(2) | 
| 26126 | 1239 | have eq1: "r* (q div p) = (n - 1) div p" | 
| 1240 | unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult_commute) | |
| 1241 | have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith | |
| 1242 | from n0 have n00: "n \<noteq> 0" by arith | |
| 1243 | from mod_le[OF n00] | |
| 1244 | have th10: "a ^ ((n - 1) div p) mod n \<le> a ^ ((n - 1) div p)" . | |
| 1245 |     {assume "a ^ ((n - 1) div p) mod n = 0"
 | |
| 1246 | then obtain s where s: "a ^ ((n - 1) div p) = n*s" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1247 | unfolding mod_eq_0_iff by blast | 
| 26126 | 1248 | hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp | 
| 1249 | from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto | |
| 1250 | from dvd_trans[OF p(2) qn1] div_mod_equality'[of "n - 1" p] | |
| 30488 | 1251 | have npp: "(n - 1) div p * p = n - 1" by (simp add: dvd_eq_mod_eq_0) | 
| 26126 | 1252 | with eq0 have "a^ (n - 1) = (n*s)^p" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32479diff
changeset | 1253 | by (simp add: power_mult[symmetric]) | 
| 26126 | 1254 | hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp | 
| 28668 
e79e196039a1
fixed and reactivated HOL/Library/Pocklington.thy -- by Mark Hillebrand;
 wenzelm parents: 
27668diff
changeset | 1255 | also have "\<dots> = 0" by (simp add: mult_assoc) | 
| 26126 | 1256 | finally have False by simp } | 
| 30488 | 1257 | then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto | 
| 1258 | have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)" | |
| 1259 | unfolding modeq_def by simp | |
| 26126 | 1260 | from cong_sub[OF th1 cong_refl[of 1]] ath[OF th10 th11] | 
| 1261 | have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)" | |
| 30488 | 1262 | by blast | 
| 1263 | from cong_coprime[OF th] p'[unfolded eq1] | |
| 26126 | 1264 | have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute) } | 
| 1265 | with pocklington[OF n qrn[symmetric] nq2 an1] | |
| 30488 | 1266 | show ?thesis by blast | 
| 26126 | 1267 | qed | 
| 1268 | ||
| 1269 | end |