| author | wenzelm |
| Mon, 13 Mar 2017 15:59:00 +0100 | |
| changeset 65210 | 8cfdf420b643 |
| parent 64281 | bfc2e92d9b4c |
| child 65952 | dec96cb3fbe0 |
| permissions | -rw-r--r-- |
| 30293 | 1 |
(*<*) |
| 30401 | 2 |
theory Main_Doc |
| 30293 | 3 |
imports Main |
4 |
begin |
|
5 |
||
| 61996 | 6 |
setup \<open> |
|
43564
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
7 |
let |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
8 |
fun pretty_term_type_only ctxt (t, T) = |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
9 |
(if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then () |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
10 |
else error "term_type_only: type mismatch"; |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
11 |
Syntax.pretty_typ ctxt T) |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
12 |
in |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
13 |
Thy_Output.antiquotation @{binding term_type_only}
|
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
14 |
(Args.term -- Args.typ_abbrev) |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
15 |
(fn {source, context = ctxt, ...} => fn arg =>
|
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
16 |
Thy_Output.output ctxt |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
17 |
(Thy_Output.maybe_pretty_source pretty_term_type_only ctxt source [arg])) |
|
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42361
diff
changeset
|
18 |
end |
| 61996 | 19 |
\<close> |
20 |
setup \<open> |
|
|
47189
e9a3dd1c4cf9
improved robustness with new antiquoation by Makarius
nipkow
parents:
47187
diff
changeset
|
21 |
Thy_Output.antiquotation @{binding expanded_typ} (Args.typ >> single)
|
|
e9a3dd1c4cf9
improved robustness with new antiquoation by Makarius
nipkow
parents:
47187
diff
changeset
|
22 |
(fn {source, context, ...} => Thy_Output.output context o
|
|
e9a3dd1c4cf9
improved robustness with new antiquoation by Makarius
nipkow
parents:
47187
diff
changeset
|
23 |
Thy_Output.maybe_pretty_source Syntax.pretty_typ context source) |
| 61996 | 24 |
\<close> |
| 30293 | 25 |
(*>*) |
| 61996 | 26 |
text\<open> |
| 30293 | 27 |
|
28 |
\begin{abstract}
|
|
| 63680 | 29 |
This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. For infix operators and their precedences see the final section. The sophisticated class structure is only hinted at. For details see \<^url>\<open>http://isabelle.in.tum.de/library/HOL\<close>.
|
| 30293 | 30 |
\end{abstract}
|
31 |
||
| 50581 | 32 |
\section*{HOL}
|
| 30293 | 33 |
|
| 63902 | 34 |
The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop "\<not> P"}, @{prop"P \<and> Q"},
|
35 |
@{prop "P \<or> Q"}, @{prop "P \<longrightarrow> Q"}, @{prop "\<forall>x. P"}, @{prop "\<exists>x. P"}, @{prop"\<exists>! x. P"},
|
|
36 |
@{term"THE x. P"}.
|
|
| 61996 | 37 |
\<^smallskip> |
| 30440 | 38 |
|
39 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
40 |
@{const HOL.undefined} & @{typeof HOL.undefined}\\
|
|
41 |
@{const HOL.default} & @{typeof HOL.default}\\
|
|
42 |
\end{tabular}
|
|
43 |
||
44 |
\subsubsection*{Syntax}
|
|
| 30293 | 45 |
|
| 30440 | 46 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 63902 | 47 |
@{term"\<not> (x = y)"} & @{term[source]"\<not> (x = y)"} & (\<^verbatim>\<open>~=\<close>)\\
|
| 30440 | 48 |
@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
|
49 |
@{term"If x y z"} & @{term[source]"If x y z"}\\
|
|
| 63902 | 50 |
@{term"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"} & @{term[source]"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"}\\
|
| 30440 | 51 |
\end{supertabular}
|
52 |
||
53 |
||
| 50581 | 54 |
\section*{Orderings}
|
| 30440 | 55 |
|
56 |
A collection of classes defining basic orderings: |
|
57 |
preorder, partial order, linear order, dense linear order and wellorder. |
|
| 61996 | 58 |
\<^smallskip> |
| 30293 | 59 |
|
| 30425 | 60 |
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
|
| 61996 | 61 |
@{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\<^verbatim>\<open><=\<close>)\\
|
| 35277 | 62 |
@{const Orderings.less} & @{typeof Orderings.less}\\
|
| 30440 | 63 |
@{const Orderings.Least} & @{typeof Orderings.Least}\\
|
64 |
@{const Orderings.min} & @{typeof Orderings.min}\\
|
|
65 |
@{const Orderings.max} & @{typeof Orderings.max}\\
|
|
66 |
@{const[source] top} & @{typeof Orderings.top}\\
|
|
67 |
@{const[source] bot} & @{typeof Orderings.bot}\\
|
|
68 |
@{const Orderings.mono} & @{typeof Orderings.mono}\\
|
|
69 |
@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
|
|
| 30293 | 70 |
\end{supertabular}
|
71 |
||
72 |
\subsubsection*{Syntax}
|
|
73 |
||
| 30440 | 74 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 61996 | 75 |
@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\<^verbatim>\<open>>=\<close>)\\
|
| 30293 | 76 |
@{term[source]"x > y"} & @{term"x > y"}\\
|
| 63902 | 77 |
@{term "\<forall>x\<le>y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
|
78 |
@{term "\<exists>x\<le>y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
|
|
| 30440 | 79 |
\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
|
| 63902 | 80 |
@{term "LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
|
| 30293 | 81 |
\end{supertabular}
|
82 |
||
| 30401 | 83 |
|
| 50581 | 84 |
\section*{Lattices}
|
| 30401 | 85 |
|
86 |
Classes semilattice, lattice, distributive lattice and complete lattice (the |
|
87 |
latter in theory @{theory Set}).
|
|
88 |
||
89 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
90 |
@{const Lattices.inf} & @{typeof Lattices.inf}\\
|
|
91 |
@{const Lattices.sup} & @{typeof Lattices.sup}\\
|
|
| 44969 | 92 |
@{const Complete_Lattices.Inf} & @{term_type_only Complete_Lattices.Inf "'a set \<Rightarrow> 'a::Inf"}\\
|
93 |
@{const Complete_Lattices.Sup} & @{term_type_only Complete_Lattices.Sup "'a set \<Rightarrow> 'a::Sup"}\\
|
|
| 30401 | 94 |
\end{tabular}
|
95 |
||
96 |
\subsubsection*{Syntax}
|
|
97 |
||
| 61996 | 98 |
Available by loading theory \<open>Lattice_Syntax\<close> in directory \<open>Library\<close>. |
| 30401 | 99 |
|
100 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
101 |
@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
|
|
102 |
@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
|
|
103 |
@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
|
|
104 |
@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
|
|
| 62204 | 105 |
@{text[source]"\<Sqinter>A"} & @{term"Inf A"}\\
|
106 |
@{text[source]"\<Squnion>A"} & @{term"Sup A"}\\
|
|
| 30440 | 107 |
@{text[source]"\<top>"} & @{term[source] top}\\
|
108 |
@{text[source]"\<bottom>"} & @{term[source] bot}\\
|
|
| 30401 | 109 |
\end{supertabular}
|
110 |
||
111 |
||
| 50581 | 112 |
\section*{Set}
|
| 30293 | 113 |
|
| 30425 | 114 |
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
|
| 30370 | 115 |
@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
|
| 32142 | 116 |
@{const Set.insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
|
| 30293 | 117 |
@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
|
| 61996 | 118 |
@{const Set.member} & @{term_type_only Set.member "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\<^verbatim>\<open>:\<close>)\\
|
119 |
@{const Set.union} & @{term_type_only Set.union "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Un\<close>)\\
|
|
120 |
@{const Set.inter} & @{term_type_only Set.inter "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Int\<close>)\\
|
|
| 30293 | 121 |
@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
|
122 |
@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
|
|
123 |
@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
|
|
124 |
@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
|
|
125 |
@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
|
|
126 |
@{const UNIV} & @{term_type_only UNIV "'a set"}\\
|
|
127 |
@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
|
|
128 |
@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
|
|
129 |
@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
|
|
130 |
\end{supertabular}
|
|
131 |
||
132 |
\subsubsection*{Syntax}
|
|
133 |
||
| 30425 | 134 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 61996 | 135 |
\<open>{a\<^sub>1,\<dots>,a\<^sub>n}\<close> & \<open>insert a\<^sub>1 (\<dots> (insert a\<^sub>n {})\<dots>)\<close>\\
|
| 63902 | 136 |
@{term "a \<notin> A"} & @{term[source]"\<not>(x \<in> A)"}\\
|
137 |
@{term "A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
|
|
138 |
@{term "A \<subset> B"} & @{term[source]"A < B"}\\
|
|
| 30293 | 139 |
@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
|
140 |
@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
|
|
| 63902 | 141 |
@{term "{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
|
| 61996 | 142 |
\<open>{t | x\<^sub>1 \<dots> x\<^sub>n. P}\<close> & \<open>{v. \<exists>x\<^sub>1 \<dots> x\<^sub>n. v = t \<and> P}\<close>\\
|
|
61995
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
143 |
@{term[source]"\<Union>x\<in>I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
|
|
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
144 |
@{term[source]"\<Union>x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
|
|
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
145 |
@{term[source]"\<Inter>x\<in>I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
|
|
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
146 |
@{term[source]"\<Inter>x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
|
| 63902 | 147 |
@{term "\<forall>x\<in>A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
|
148 |
@{term "\<exists>x\<in>A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
|
|
149 |
@{term "range f"} & @{term[source]"f ` UNIV"}\\
|
|
| 30293 | 150 |
\end{supertabular}
|
151 |
||
152 |
||
| 50581 | 153 |
\section*{Fun}
|
| 30293 | 154 |
|
| 32933 | 155 |
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
|
| 30293 | 156 |
@{const "Fun.id"} & @{typeof Fun.id}\\
|
| 32933 | 157 |
@{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\
|
| 30293 | 158 |
@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
|
159 |
@{const "Fun.inj"} & @{typeof Fun.inj}\\
|
|
160 |
@{const "Fun.surj"} & @{typeof Fun.surj}\\
|
|
161 |
@{const "Fun.bij"} & @{typeof Fun.bij}\\
|
|
162 |
@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
|
|
163 |
@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
|
|
164 |
\end{supertabular}
|
|
165 |
||
166 |
\subsubsection*{Syntax}
|
|
167 |
||
168 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
169 |
@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
|
|
| 61996 | 170 |
\<open>f(x\<^sub>1:=y\<^sub>1,\<dots>,x\<^sub>n:=y\<^sub>n)\<close> & \<open>f(x\<^sub>1:=y\<^sub>1)\<dots>(x\<^sub>n:=y\<^sub>n)\<close>\\ |
| 30293 | 171 |
\end{tabular}
|
172 |
||
173 |
||
| 50581 | 174 |
\section*{Hilbert\_Choice}
|
| 33019 | 175 |
|
176 |
Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}.
|
|
| 61996 | 177 |
\<^smallskip> |
| 33019 | 178 |
|
179 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
| 33057 | 180 |
@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
|
| 33019 | 181 |
\end{tabular}
|
182 |
||
183 |
\subsubsection*{Syntax}
|
|
184 |
||
185 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
| 33057 | 186 |
@{term inv} & @{term[source]"inv_into UNIV"}
|
| 33019 | 187 |
\end{tabular}
|
188 |
||
| 50581 | 189 |
\section*{Fixed Points}
|
| 30293 | 190 |
|
191 |
Theory: @{theory Inductive}.
|
|
192 |
||
193 |
Least and greatest fixed points in a complete lattice @{typ 'a}:
|
|
194 |
||
195 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
196 |
@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
|
|
197 |
@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
|
|
198 |
\end{tabular}
|
|
199 |
||
200 |
Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
|
|
201 |
||
| 50581 | 202 |
\section*{Sum\_Type}
|
| 30293 | 203 |
|
| 61996 | 204 |
Type constructor \<open>+\<close>. |
| 30293 | 205 |
|
206 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
207 |
@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
|
|
208 |
@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
|
|
209 |
@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
|
|
210 |
\end{tabular}
|
|
211 |
||
212 |
||
| 50581 | 213 |
\section*{Product\_Type}
|
| 30293 | 214 |
|
| 61996 | 215 |
Types @{typ unit} and \<open>\<times>\<close>.
|
| 30293 | 216 |
|
217 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
218 |
@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
|
|
219 |
@{const Pair} & @{typeof Pair}\\
|
|
220 |
@{const fst} & @{typeof fst}\\
|
|
221 |
@{const snd} & @{typeof snd}\\
|
|
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60352
diff
changeset
|
222 |
@{const case_prod} & @{typeof case_prod}\\
|
| 30293 | 223 |
@{const curry} & @{typeof curry}\\
|
224 |
@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
|
|
225 |
\end{supertabular}
|
|
226 |
||
227 |
\subsubsection*{Syntax}
|
|
228 |
||
| 30440 | 229 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
|
| 63902 | 230 |
@{term "Pair a b"} & @{term[source]"Pair a b"}\\
|
231 |
@{term "case_prod (\<lambda>x y. t)"} & @{term[source]"case_prod (\<lambda>x y. t)"}\\
|
|
|
63935
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
wenzelm
parents:
63902
diff
changeset
|
232 |
@{term "A \<times> B"} & \<open>Sigma A (\<lambda>\<^latex>\<open>\_\<close>. B)\<close>
|
| 30293 | 233 |
\end{tabular}
|
234 |
||
235 |
Pairs may be nested. Nesting to the right is printed as a tuple, |
|
| 63902 | 236 |
e.g.\ \mbox{@{term "(a,b,c)"}} is really \mbox{\<open>(a, (b, c))\<close>.}
|
| 30293 | 237 |
Pattern matching with pairs and tuples extends to all binders, |
| 63902 | 238 |
e.g.\ \mbox{@{prop "\<forall>(x,y)\<in>A. P"},} @{term "{(x,y). P}"}, etc.
|
| 30293 | 239 |
|
240 |
||
| 50581 | 241 |
\section*{Relation}
|
| 30293 | 242 |
|
| 47187 | 243 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
| 30293 | 244 |
@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
|
| 47682 | 245 |
@{const Relation.relcomp} & @{term_type_only Relation.relcomp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
|
| 30293 | 246 |
@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
|
247 |
@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
|
|
248 |
@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
|
|
249 |
@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
|
|
250 |
@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
|
|
251 |
@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
|
|
252 |
@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
|
|
253 |
@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
|
|
254 |
@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
|
|
255 |
@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
|
|
256 |
@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
|
|
257 |
@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
|
|
258 |
@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
|
|
259 |
@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
|
|
| 30440 | 260 |
@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
|
| 47187 | 261 |
\end{tabular}
|
| 30293 | 262 |
|
263 |
\subsubsection*{Syntax}
|
|
264 |
||
| 30440 | 265 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 61996 | 266 |
@{term"converse r"} & @{term[source]"converse r"} & (\<^verbatim>\<open>^-1\<close>)
|
| 30293 | 267 |
\end{tabular}
|
| 61996 | 268 |
\<^medskip> |
| 47187 | 269 |
|
270 |
\noindent |
|
| 61996 | 271 |
Type synonym \ @{typ"'a rel"} \<open>=\<close> @{expanded_typ "'a rel"}
|
| 30293 | 272 |
|
| 50581 | 273 |
\section*{Equiv\_Relations}
|
| 30293 | 274 |
|
275 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
276 |
@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
|
|
277 |
@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
|
|
278 |
@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
|
|
279 |
@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
|
|
280 |
%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
|
|
281 |
\end{supertabular}
|
|
282 |
||
283 |
\subsubsection*{Syntax}
|
|
284 |
||
285 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
286 |
@{term"congruent r f"} & @{term[source]"congruent r f"}\\
|
|
287 |
@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
|
|
288 |
\end{tabular}
|
|
289 |
||
290 |
||
| 50581 | 291 |
\section*{Transitive\_Closure}
|
| 30293 | 292 |
|
293 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
294 |
@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
|
|
295 |
@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
|
|
296 |
@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
|
|
| 45618 | 297 |
@{const Transitive_Closure.acyclic} & @{term_type_only Transitive_Closure.acyclic "('a*'a)set\<Rightarrow>bool"}\\
|
| 30988 | 298 |
@{const compower} & @{term_type_only "op ^^ :: ('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set" "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set"}\\
|
| 30293 | 299 |
\end{tabular}
|
300 |
||
301 |
\subsubsection*{Syntax}
|
|
302 |
||
| 30440 | 303 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 61996 | 304 |
@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\<^verbatim>\<open>^*\<close>)\\
|
305 |
@{term"trancl r"} & @{term[source]"trancl r"} & (\<^verbatim>\<open>^+\<close>)\\
|
|
306 |
@{term"reflcl r"} & @{term[source]"reflcl r"} & (\<^verbatim>\<open>^=\<close>)
|
|
| 30293 | 307 |
\end{tabular}
|
308 |
||
309 |
||
| 50581 | 310 |
\section*{Algebra}
|
| 30293 | 311 |
|
| 35061 | 312 |
Theories @{theory Groups}, @{theory Rings}, @{theory Fields} and @{theory
|
| 30440 | 313 |
Divides} define a large collection of classes describing common algebraic |
314 |
structures from semigroups up to fields. Everything is done in terms of |
|
315 |
overloaded operators: |
|
316 |
||
317 |
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
|
|
| 61996 | 318 |
\<open>0\<close> & @{typeof zero}\\
|
319 |
\<open>1\<close> & @{typeof one}\\
|
|
| 30440 | 320 |
@{const plus} & @{typeof plus}\\
|
321 |
@{const minus} & @{typeof minus}\\
|
|
| 61996 | 322 |
@{const uminus} & @{typeof uminus} & (\<^verbatim>\<open>-\<close>)\\
|
| 30440 | 323 |
@{const times} & @{typeof times}\\
|
324 |
@{const inverse} & @{typeof inverse}\\
|
|
325 |
@{const divide} & @{typeof divide}\\
|
|
326 |
@{const abs} & @{typeof abs}\\
|
|
327 |
@{const sgn} & @{typeof sgn}\\
|
|
|
63950
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63935
diff
changeset
|
328 |
@{const Rings.dvd} & @{typeof Rings.dvd}\\
|
|
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63935
diff
changeset
|
329 |
@{const divide} & @{typeof divide}\\
|
|
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63935
diff
changeset
|
330 |
@{const modulo} & @{typeof modulo}\\
|
| 30440 | 331 |
\end{supertabular}
|
332 |
||
333 |
\subsubsection*{Syntax}
|
|
334 |
||
335 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
| 63902 | 336 |
@{term "\<bar>x\<bar>"} & @{term[source] "abs x"}
|
| 30440 | 337 |
\end{tabular}
|
| 30293 | 338 |
|
339 |
||
| 50581 | 340 |
\section*{Nat}
|
| 30293 | 341 |
|
342 |
@{datatype nat}
|
|
| 61996 | 343 |
\<^bigskip> |
| 30293 | 344 |
|
345 |
\begin{tabular}{@ {} lllllll @ {}}
|
|
346 |
@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
|
347 |
@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
|
348 |
@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
|
| 47187 | 349 |
@{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
| 30293 | 350 |
@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
|
351 |
@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
|
|
352 |
@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
|
|
353 |
@{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
|
|
354 |
@{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
|
|
355 |
@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
|
356 |
@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
|
|
357 |
@{term "Min :: nat set \<Rightarrow> nat"} &
|
|
358 |
@{term "Max :: nat set \<Rightarrow> nat"}\\
|
|
359 |
\end{tabular}
|
|
360 |
||
361 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
| 30988 | 362 |
@{const Nat.of_nat} & @{typeof Nat.of_nat}\\
|
363 |
@{term "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"} &
|
|
364 |
@{term_type_only "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"}
|
|
| 30293 | 365 |
\end{tabular}
|
366 |
||
| 50581 | 367 |
\section*{Int}
|
| 30293 | 368 |
|
369 |
Type @{typ int}
|
|
| 61996 | 370 |
\<^bigskip> |
| 30293 | 371 |
|
372 |
\begin{tabular}{@ {} llllllll @ {}}
|
|
373 |
@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
|
|
374 |
@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
|
|
375 |
@{term "uminus :: int \<Rightarrow> int"} &
|
|
376 |
@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
|
|
377 |
@{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
|
|
378 |
@{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
|
|
379 |
@{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
|
|
380 |
@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
|
|
381 |
@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
|
|
382 |
@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
|
|
383 |
@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
|
|
384 |
@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
|
|
385 |
@{term "Min :: int set \<Rightarrow> int"} &
|
|
386 |
@{term "Max :: int set \<Rightarrow> int"}\\
|
|
387 |
@{term "abs :: int \<Rightarrow> int"} &
|
|
388 |
@{term "sgn :: int \<Rightarrow> int"}\\
|
|
389 |
\end{tabular}
|
|
390 |
||
| 30440 | 391 |
\begin{tabular}{@ {} l @ {~::~} l l @ {}}
|
| 30293 | 392 |
@{const Int.nat} & @{typeof Int.nat}\\
|
393 |
@{const Int.of_int} & @{typeof Int.of_int}\\
|
|
| 61996 | 394 |
@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\<^verbatim>\<open>Ints\<close>)
|
| 30293 | 395 |
\end{tabular}
|
396 |
||
397 |
\subsubsection*{Syntax}
|
|
398 |
||
399 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
400 |
@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
|
|
401 |
\end{tabular}
|
|
402 |
||
403 |
||
| 50581 | 404 |
\section*{Finite\_Set}
|
| 30401 | 405 |
|
406 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
407 |
@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
|
|
| 63902 | 408 |
@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set \<Rightarrow> nat"}\\
|
| 30401 | 409 |
@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
|
|
64281
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
410 |
\end{supertabular}
|
|
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
411 |
|
|
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
412 |
|
|
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
413 |
\section*{Groups\_Big}
|
|
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
414 |
|
|
bfc2e92d9b4c
restored document structure after theory refactoring
haftmann
parents:
64272
diff
changeset
|
415 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
| 64267 | 416 |
@{const Groups_Big.sum} & @{term_type_only Groups_Big.sum "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_add"}\\
|
| 64272 | 417 |
@{const Groups_Big.prod} & @{term_type_only Groups_Big.prod "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_mult"}\\
|
| 30401 | 418 |
\end{supertabular}
|
419 |
||
420 |
||
421 |
\subsubsection*{Syntax}
|
|
422 |
||
| 30440 | 423 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
|
| 64267 | 424 |
@{term "sum (\<lambda>x. x) A"} & @{term[source]"sum (\<lambda>x. x) A"} & (\<^verbatim>\<open>SUM\<close>)\\
|
425 |
@{term "sum (\<lambda>x. t) A"} & @{term[source]"sum (\<lambda>x. t) A"}\\
|
|
| 63902 | 426 |
@{term[source] "\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
|
| 61996 | 427 |
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>} & (\<^verbatim>\<open>PROD\<close>)\\
|
| 30401 | 428 |
\end{supertabular}
|
429 |
||
430 |
||
| 50581 | 431 |
\section*{Wellfounded}
|
| 30293 | 432 |
|
433 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
434 |
@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
|
|
435 |
@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
|
|
436 |
@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
|
|
437 |
@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
|
|
438 |
@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
|
|
439 |
@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
|
|
440 |
@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
|
|
441 |
\end{supertabular}
|
|
442 |
||
443 |
||
| 50581 | 444 |
\section*{Set\_Interval} % @{theory Set_Interval}
|
| 30321 | 445 |
|
446 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
| 30370 | 447 |
@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
|
448 |
@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
|
|
449 |
@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
|
|
450 |
@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
|
|
451 |
@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
|
|
452 |
@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
|
|
453 |
@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
|
|
454 |
@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
|
|
| 30321 | 455 |
\end{supertabular}
|
456 |
||
457 |
\subsubsection*{Syntax}
|
|
458 |
||
459 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
460 |
@{term "lessThan y"} & @{term[source] "lessThan y"}\\
|
|
461 |
@{term "atMost y"} & @{term[source] "atMost y"}\\
|
|
462 |
@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
|
|
463 |
@{term "atLeast x"} & @{term[source] "atLeast x"}\\
|
|
464 |
@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
|
|
465 |
@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
|
|
466 |
@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
|
|
467 |
@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
|
|
|
61995
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
468 |
@{term[source] "\<Union>i\<le>n. A"} & @{term[source] "\<Union>i \<in> {..n}. A"}\\
|
|
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
wenzelm
parents:
61943
diff
changeset
|
469 |
@{term[source] "\<Union>i<n. A"} & @{term[source] "\<Union>i \<in> {..<n}. A"}\\
|
| 61996 | 470 |
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Inter>\<close> instead of \<open>\<Union>\<close>}\\
|
| 64267 | 471 |
@{term "sum (\<lambda>x. t) {a..b}"} & @{term[source] "sum (\<lambda>x. t) {a..b}"}\\
|
472 |
@{term "sum (\<lambda>x. t) {a..<b}"} & @{term[source] "sum (\<lambda>x. t) {a..<b}"}\\
|
|
473 |
@{term "sum (\<lambda>x. t) {..b}"} & @{term[source] "sum (\<lambda>x. t) {..b}"}\\
|
|
474 |
@{term "sum (\<lambda>x. t) {..<b}"} & @{term[source] "sum (\<lambda>x. t) {..<b}"}\\
|
|
| 61996 | 475 |
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>}\\
|
| 30321 | 476 |
\end{supertabular}
|
477 |
||
478 |
||
| 50581 | 479 |
\section*{Power}
|
| 30293 | 480 |
|
481 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
482 |
@{const Power.power} & @{typeof Power.power}
|
|
483 |
\end{tabular}
|
|
484 |
||
485 |
||
| 50581 | 486 |
\section*{Option}
|
| 30293 | 487 |
|
488 |
@{datatype option}
|
|
| 61996 | 489 |
\<^bigskip> |
| 30293 | 490 |
|
491 |
\begin{tabular}{@ {} l @ {~::~} l @ {}}
|
|
492 |
@{const Option.the} & @{typeof Option.the}\\
|
|
| 55466 | 493 |
@{const map_option} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
|
|
55518
1ddb2edf5ceb
folded 'Option.set' into BNF-generated 'set_option'
blanchet
parents:
55466
diff
changeset
|
494 |
@{const set_option} & @{term_type_only set_option "'a option \<Rightarrow> 'a set"}\\
|
| 41532 | 495 |
@{const Option.bind} & @{term_type_only Option.bind "'a option \<Rightarrow> ('a \<Rightarrow> 'b option) \<Rightarrow> 'b option"}
|
| 30293 | 496 |
\end{tabular}
|
497 |
||
| 50581 | 498 |
\section*{List}
|
| 30293 | 499 |
|
500 |
@{datatype list}
|
|
| 61996 | 501 |
\<^bigskip> |
| 30293 | 502 |
|
503 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
504 |
@{const List.append} & @{typeof List.append}\\
|
|
505 |
@{const List.butlast} & @{typeof List.butlast}\\
|
|
506 |
@{const List.concat} & @{typeof List.concat}\\
|
|
507 |
@{const List.distinct} & @{typeof List.distinct}\\
|
|
508 |
@{const List.drop} & @{typeof List.drop}\\
|
|
509 |
@{const List.dropWhile} & @{typeof List.dropWhile}\\
|
|
510 |
@{const List.filter} & @{typeof List.filter}\\
|
|
| 47187 | 511 |
@{const List.find} & @{typeof List.find}\\
|
|
46133
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents:
45618
diff
changeset
|
512 |
@{const List.fold} & @{typeof List.fold}\\
|
|
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents:
45618
diff
changeset
|
513 |
@{const List.foldr} & @{typeof List.foldr}\\
|
| 30293 | 514 |
@{const List.foldl} & @{typeof List.foldl}\\
|
515 |
@{const List.hd} & @{typeof List.hd}\\
|
|
516 |
@{const List.last} & @{typeof List.last}\\
|
|
517 |
@{const List.length} & @{typeof List.length}\\
|
|
518 |
@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
|
|
519 |
@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
|
|
520 |
@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
|
|
521 |
@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
|
|
| 46488 | 522 |
@{const List.listrel} & @{term_type_only List.listrel "('a*'b)set\<Rightarrow>('a list * 'b list)set"}\\
|
| 40272 | 523 |
@{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
|
| 30293 | 524 |
@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
|
525 |
@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
|
|
| 63884 | 526 |
@{const Groups_List.sum_list} & @{typeof Groups_List.sum_list}\\
|
527 |
@{const Groups_List.prod_list} & @{typeof Groups_List.prod_list}\\
|
|
| 30293 | 528 |
@{const List.list_all2} & @{typeof List.list_all2}\\
|
529 |
@{const List.list_update} & @{typeof List.list_update}\\
|
|
530 |
@{const List.map} & @{typeof List.map}\\
|
|
531 |
@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
|
|
| 32933 | 532 |
@{const List.nth} & @{typeof List.nth}\\
|
| 30293 | 533 |
@{const List.remdups} & @{typeof List.remdups}\\
|
534 |
@{const List.removeAll} & @{typeof List.removeAll}\\
|
|
535 |
@{const List.remove1} & @{typeof List.remove1}\\
|
|
536 |
@{const List.replicate} & @{typeof List.replicate}\\
|
|
537 |
@{const List.rev} & @{typeof List.rev}\\
|
|
538 |
@{const List.rotate} & @{typeof List.rotate}\\
|
|
539 |
@{const List.rotate1} & @{typeof List.rotate1}\\
|
|
540 |
@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
|
|
541 |
@{const List.sort} & @{typeof List.sort}\\
|
|
542 |
@{const List.sorted} & @{typeof List.sorted}\\
|
|
543 |
@{const List.splice} & @{typeof List.splice}\\
|
|
544 |
@{const List.sublist} & @{typeof List.sublist}\\
|
|
545 |
@{const List.take} & @{typeof List.take}\\
|
|
546 |
@{const List.takeWhile} & @{typeof List.takeWhile}\\
|
|
547 |
@{const List.tl} & @{typeof List.tl}\\
|
|
548 |
@{const List.upt} & @{typeof List.upt}\\
|
|
549 |
@{const List.upto} & @{typeof List.upto}\\
|
|
550 |
@{const List.zip} & @{typeof List.zip}\\
|
|
551 |
\end{supertabular}
|
|
552 |
||
553 |
\subsubsection*{Syntax}
|
|
554 |
||
555 |
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
| 61996 | 556 |
\<open>[x\<^sub>1,\<dots>,x\<^sub>n]\<close> & \<open>x\<^sub>1 # \<dots> # x\<^sub>n # []\<close>\\ |
| 30293 | 557 |
@{term"[m..<n]"} & @{term[source]"upt m n"}\\
|
558 |
@{term"[i..j]"} & @{term[source]"upto i j"}\\
|
|
| 61996 | 559 |
\<open>[e. x \<leftarrow> xs]\<close> & @{term"map (%x. e) xs"}\\
|
| 30293 | 560 |
@{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
|
561 |
@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
|
|
562 |
@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
|
|
563 |
\end{supertabular}
|
|
| 61996 | 564 |
\<^medskip> |
| 30293 | 565 |
|
| 61996 | 566 |
List comprehension: \<open>[e. q\<^sub>1, \<dots>, q\<^sub>n]\<close> where each |
567 |
qualifier \<open>q\<^sub>i\<close> is either a generator \mbox{\<open>pat \<leftarrow> e\<close>} or a
|
|
| 30293 | 568 |
guard, i.e.\ boolean expression. |
569 |
||
| 50581 | 570 |
\section*{Map}
|
| 30293 | 571 |
|
572 |
Maps model partial functions and are often used as finite tables. However, |
|
573 |
the domain of a map may be infinite. |
|
574 |
||
575 |
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
|
|
576 |
@{const Map.empty} & @{typeof Map.empty}\\
|
|
577 |
@{const Map.map_add} & @{typeof Map.map_add}\\
|
|
578 |
@{const Map.map_comp} & @{typeof Map.map_comp}\\
|
|
579 |
@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
|
|
580 |
@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
|
|
581 |
@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
|
|
582 |
@{const Map.map_le} & @{typeof Map.map_le}\\
|
|
583 |
@{const Map.map_of} & @{typeof Map.map_of}\\
|
|
584 |
@{const Map.map_upds} & @{typeof Map.map_upds}\\
|
|
585 |
\end{supertabular}
|
|
586 |
||
587 |
\subsubsection*{Syntax}
|
|
588 |
||
589 |
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
|
|
| 30403 | 590 |
@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
|
| 30293 | 591 |
@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
|
| 61996 | 592 |
\<open>m(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)\<close> & @{text[source]"m(x\<^sub>1\<mapsto>y\<^sub>1)\<dots>(x\<^sub>n\<mapsto>y\<^sub>n)"}\\
|
593 |
\<open>[x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n]\<close> & @{text[source]"Map.empty(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)"}\\
|
|
| 30293 | 594 |
@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
|
595 |
\end{tabular}
|
|
596 |
||
| 50581 | 597 |
\section*{Infix operators in Main} % @{theory Main}
|
598 |
||
599 |
\begin{center}
|
|
| 50605 | 600 |
\begin{tabular}{llll}
|
601 |
& Operator & precedence & associativity \\ |
|
602 |
\hline |
|
| 61996 | 603 |
Meta-logic & \<open>\<Longrightarrow>\<close> & 1 & right \\ |
604 |
& \<open>\<equiv>\<close> & 2 \\ |
|
| 50605 | 605 |
\hline |
| 61996 | 606 |
Logic & \<open>\<and>\<close> & 35 & right \\ |
607 |
&\<open>\<or>\<close> & 30 & right \\ |
|
608 |
&\<open>\<longrightarrow>\<close>, \<open>\<longleftrightarrow>\<close> & 25 & right\\ |
|
609 |
&\<open>=\<close>, \<open>\<noteq>\<close> & 50 & left\\ |
|
| 50605 | 610 |
\hline |
| 61996 | 611 |
Orderings & \<open>\<le>\<close>, \<open><\<close>, \<open>\<ge>\<close>, \<open>>\<close> & 50 \\ |
| 50605 | 612 |
\hline |
| 61996 | 613 |
Sets & \<open>\<subseteq>\<close>, \<open>\<subset>\<close>, \<open>\<supseteq>\<close>, \<open>\<supset>\<close> & 50 \\ |
614 |
&\<open>\<in>\<close>, \<open>\<notin>\<close> & 50 \\ |
|
615 |
&\<open>\<inter>\<close> & 70 & left \\ |
|
616 |
&\<open>\<union>\<close> & 65 & left \\ |
|
| 50605 | 617 |
\hline |
| 61996 | 618 |
Functions and Relations & \<open>\<circ>\<close> & 55 & left\\ |
619 |
&\<open>`\<close> & 90 & right\\ |
|
620 |
&\<open>O\<close> & 75 & right\\ |
|
621 |
&\<open>``\<close> & 90 & right\\ |
|
622 |
&\<open>^^\<close> & 80 & right\\ |
|
| 50605 | 623 |
\hline |
| 61996 | 624 |
Numbers & \<open>+\<close>, \<open>-\<close> & 65 & left \\ |
625 |
&\<open>*\<close>, \<open>/\<close> & 70 & left \\ |
|
626 |
&\<open>div\<close>, \<open>mod\<close> & 70 & left\\ |
|
627 |
&\<open>^\<close> & 80 & right\\ |
|
628 |
&\<open>dvd\<close> & 50 \\ |
|
| 50605 | 629 |
\hline |
| 61996 | 630 |
Lists & \<open>#\<close>, \<open>@\<close> & 65 & right\\ |
631 |
&\<open>!\<close> & 100 & left |
|
| 50581 | 632 |
\end{tabular}
|
633 |
\end{center}
|
|
| 61996 | 634 |
\<close> |
| 30293 | 635 |
(*<*) |
636 |
end |
|
637 |
(*>*) |