author | paulson <lp15@cam.ac.uk> |
Wed, 26 Apr 2017 15:53:35 +0100 | |
changeset 65583 | 8d53b3bebab4 |
parent 62390 | 842917225d56 |
child 67443 | 3abf6a722518 |
permissions | -rw-r--r-- |
37936 | 1 |
(* Title: HOL/Auth/Message.thy |
1839 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
4 |
||
5 |
Datatypes of agents and messages; |
|
1913 | 6 |
Inductive relations "parts", "analz" and "synth" |
1839 | 7 |
*) |
8 |
||
61830 | 9 |
section\<open>Theory of Agents and Messages for Security Protocols\<close> |
13956 | 10 |
|
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
11 |
theory Message |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
12 |
imports Main |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
13 |
begin |
11189 | 14 |
|
15 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
13926 | 16 |
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" |
11189 | 17 |
by blast |
1839 | 18 |
|
41774 | 19 |
type_synonym |
1839 | 20 |
key = nat |
21 |
||
22 |
consts |
|
61830 | 23 |
all_symmetric :: bool \<comment>\<open>true if all keys are symmetric\<close> |
24 |
invKey :: "key=>key" \<comment>\<open>inverse of a symmetric key\<close> |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
25 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
26 |
specification (invKey) |
14181 | 27 |
invKey [simp]: "invKey (invKey K) = K" |
28 |
invKey_symmetric: "all_symmetric --> invKey = id" |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
29 |
by (rule exI [of _ id], auto) |
1839 | 30 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
31 |
|
61830 | 32 |
text\<open>The inverse of a symmetric key is itself; that of a public key |
33 |
is the private key and vice versa\<close> |
|
1839 | 34 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
35 |
definition symKeys :: "key set" where |
11230
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
36 |
"symKeys == {K. invKey K = K}" |
1839 | 37 |
|
61830 | 38 |
datatype \<comment>\<open>We allow any number of friendly agents\<close> |
2032 | 39 |
agent = Server | Friend nat | Spy |
1839 | 40 |
|
58310 | 41 |
datatype |
61830 | 42 |
msg = Agent agent \<comment>\<open>Agent names\<close> |
43 |
| Number nat \<comment>\<open>Ordinary integers, timestamps, ...\<close> |
|
44 |
| Nonce nat \<comment>\<open>Unguessable nonces\<close> |
|
45 |
| Key key \<comment>\<open>Crypto keys\<close> |
|
46 |
| Hash msg \<comment>\<open>Hashing\<close> |
|
47 |
| MPair msg msg \<comment>\<open>Compound messages\<close> |
|
48 |
| Crypt key msg \<comment>\<open>Encryption, public- or shared-key\<close> |
|
1839 | 49 |
|
5234 | 50 |
|
61956 | 51 |
text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close> |
5234 | 52 |
syntax |
61956 | 53 |
"_MTuple" :: "['a, args] \<Rightarrow> 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
1839 | 54 |
translations |
61956 | 55 |
"\<lbrace>x, y, z\<rbrace>" \<rightleftharpoons> "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" |
56 |
"\<lbrace>x, y\<rbrace>" \<rightleftharpoons> "CONST MPair x y" |
|
1839 | 57 |
|
58 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
59 |
definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where |
61830 | 60 |
\<comment>\<open>Message Y paired with a MAC computed with the help of X\<close> |
61956 | 61 |
"Hash[X] Y == \<lbrace>Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" |
2484 | 62 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
63 |
definition keysFor :: "msg set => key set" where |
61830 | 64 |
\<comment>\<open>Keys useful to decrypt elements of a message set\<close> |
11192 | 65 |
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
1839 | 66 |
|
16818 | 67 |
|
61830 | 68 |
subsubsection\<open>Inductive Definition of All Parts" of a Message\<close> |
1839 | 69 |
|
23746 | 70 |
inductive_set |
71 |
parts :: "msg set => msg set" |
|
72 |
for H :: "msg set" |
|
73 |
where |
|
61956 | 74 |
Inj [intro]: "X \<in> H ==> X \<in> parts H" |
75 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> X \<in> parts H" |
|
76 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> Y \<in> parts H" |
|
23746 | 77 |
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H" |
11189 | 78 |
|
79 |
||
61830 | 80 |
text\<open>Monotonicity\<close> |
16818 | 81 |
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" |
11189 | 82 |
apply auto |
83 |
apply (erule parts.induct) |
|
16818 | 84 |
apply (blast dest: parts.Fst parts.Snd parts.Body)+ |
11189 | 85 |
done |
1839 | 86 |
|
87 |
||
61830 | 88 |
text\<open>Equations hold because constructors are injective.\<close> |
13926 | 89 |
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" |
90 |
by auto |
|
91 |
||
92 |
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" |
|
93 |
by auto |
|
94 |
||
95 |
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" |
|
96 |
by auto |
|
97 |
||
98 |
||
61830 | 99 |
subsubsection\<open>Inverse of keys\<close> |
13926 | 100 |
|
101 |
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" |
|
28698 | 102 |
by (metis invKey) |
13926 | 103 |
|
104 |
||
61830 | 105 |
subsection\<open>keysFor operator\<close> |
13926 | 106 |
|
107 |
lemma keysFor_empty [simp]: "keysFor {} = {}" |
|
108 |
by (unfold keysFor_def, blast) |
|
109 |
||
110 |
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
|
111 |
by (unfold keysFor_def, blast) |
|
112 |
||
113 |
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" |
|
114 |
by (unfold keysFor_def, blast) |
|
115 |
||
61830 | 116 |
text\<open>Monotonicity\<close> |
16818 | 117 |
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" |
13926 | 118 |
by (unfold keysFor_def, blast) |
119 |
||
120 |
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
|
121 |
by (unfold keysFor_def, auto) |
|
122 |
||
123 |
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" |
|
124 |
by (unfold keysFor_def, auto) |
|
125 |
||
126 |
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" |
|
127 |
by (unfold keysFor_def, auto) |
|
128 |
||
129 |
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" |
|
130 |
by (unfold keysFor_def, auto) |
|
131 |
||
132 |
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" |
|
133 |
by (unfold keysFor_def, auto) |
|
134 |
||
61956 | 135 |
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H" |
13926 | 136 |
by (unfold keysFor_def, auto) |
137 |
||
138 |
lemma keysFor_insert_Crypt [simp]: |
|
139 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
140 |
by (unfold keysFor_def, auto) |
13926 | 141 |
|
142 |
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" |
|
143 |
by (unfold keysFor_def, auto) |
|
144 |
||
145 |
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" |
|
146 |
by (unfold keysFor_def, blast) |
|
147 |
||
148 |
||
61830 | 149 |
subsection\<open>Inductive relation "parts"\<close> |
13926 | 150 |
|
151 |
lemma MPair_parts: |
|
61956 | 152 |
"[| \<lbrace>X,Y\<rbrace> \<in> parts H; |
13926 | 153 |
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" |
154 |
by (blast dest: parts.Fst parts.Snd) |
|
155 |
||
156 |
declare MPair_parts [elim!] parts.Body [dest!] |
|
61830 | 157 |
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the |
13926 | 158 |
compound message. They work well on THIS FILE. |
61830 | 159 |
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs. |
160 |
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close> |
|
13926 | 161 |
|
162 |
lemma parts_increasing: "H \<subseteq> parts(H)" |
|
163 |
by blast |
|
164 |
||
45605 | 165 |
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
13926 | 166 |
|
167 |
lemma parts_empty [simp]: "parts{} = {}" |
|
168 |
apply safe |
|
169 |
apply (erule parts.induct, blast+) |
|
170 |
done |
|
171 |
||
172 |
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" |
|
173 |
by simp |
|
174 |
||
61830 | 175 |
text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close> |
13926 | 176 |
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" |
26807
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
berghofe
parents:
26342
diff
changeset
|
177 |
by (erule parts.induct, fast+) |
13926 | 178 |
|
179 |
||
61830 | 180 |
subsubsection\<open>Unions\<close> |
13926 | 181 |
|
182 |
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" |
|
183 |
by (intro Un_least parts_mono Un_upper1 Un_upper2) |
|
184 |
||
185 |
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" |
|
186 |
apply (rule subsetI) |
|
187 |
apply (erule parts.induct, blast+) |
|
188 |
done |
|
189 |
||
190 |
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" |
|
191 |
by (intro equalityI parts_Un_subset1 parts_Un_subset2) |
|
192 |
||
193 |
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" |
|
34185 | 194 |
by (metis insert_is_Un parts_Un) |
13926 | 195 |
|
61830 | 196 |
text\<open>TWO inserts to avoid looping. This rewrite is better than nothing. |
197 |
But its behaviour can be strange.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
198 |
lemma parts_insert2: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
199 |
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" |
34185 | 200 |
by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) |
13926 | 201 |
|
202 |
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" |
|
203 |
by (intro UN_least parts_mono UN_upper) |
|
204 |
||
205 |
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" |
|
206 |
apply (rule subsetI) |
|
207 |
apply (erule parts.induct, blast+) |
|
208 |
done |
|
209 |
||
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
210 |
lemma parts_UN [simp]: |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
211 |
"parts (\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts (H x))" |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
212 |
by (intro equalityI parts_UN_subset1 parts_UN_subset2) |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
213 |
|
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
214 |
lemma parts_image [simp]: |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
215 |
"parts (f ` A) = (\<Union>x\<in>A. parts {f x})" |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
216 |
apply auto |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
217 |
apply (metis (mono_tags, hide_lams) image_iff parts_singleton) |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
218 |
apply (metis empty_subsetI image_eqI insert_absorb insert_subset parts_mono) |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
219 |
done |
13926 | 220 |
|
61830 | 221 |
text\<open>Added to simplify arguments to parts, analz and synth. |
222 |
NOTE: the UN versions are no longer used!\<close> |
|
13926 | 223 |
|
224 |
||
61830 | 225 |
text\<open>This allows \<open>blast\<close> to simplify occurrences of |
226 |
@{term "parts(G\<union>H)"} in the assumption.\<close> |
|
17729 | 227 |
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
228 |
declare in_parts_UnE [elim!] |
|
13926 | 229 |
|
230 |
||
231 |
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
|
232 |
by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
|
233 |
||
61830 | 234 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 235 |
|
236 |
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" |
|
237 |
by (erule parts.induct, blast+) |
|
238 |
||
239 |
lemma parts_idem [simp]: "parts (parts H) = parts H" |
|
240 |
by blast |
|
241 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
242 |
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" |
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
243 |
by (metis parts_idem parts_increasing parts_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
244 |
|
13926 | 245 |
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
246 |
by (metis parts_subset_iff set_mp) |
13926 | 247 |
|
61830 | 248 |
text\<open>Cut\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
249 |
lemma parts_cut: |
18492 | 250 |
"[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" |
251 |
by (blast intro: parts_trans) |
|
252 |
||
13926 | 253 |
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
254 |
by (metis insert_absorb parts_idem parts_insert) |
13926 | 255 |
|
256 |
||
61830 | 257 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 258 |
|
259 |
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] |
|
260 |
||
261 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
262 |
lemma parts_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
263 |
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" |
13926 | 264 |
apply (rule parts_insert_eq_I) |
265 |
apply (erule parts.induct, auto) |
|
266 |
done |
|
267 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
268 |
lemma parts_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
269 |
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" |
13926 | 270 |
apply (rule parts_insert_eq_I) |
271 |
apply (erule parts.induct, auto) |
|
272 |
done |
|
273 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
274 |
lemma parts_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
275 |
"parts (insert (Number N) H) = insert (Number N) (parts H)" |
13926 | 276 |
apply (rule parts_insert_eq_I) |
277 |
apply (erule parts.induct, auto) |
|
278 |
done |
|
279 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
280 |
lemma parts_insert_Key [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
281 |
"parts (insert (Key K) H) = insert (Key K) (parts H)" |
13926 | 282 |
apply (rule parts_insert_eq_I) |
283 |
apply (erule parts.induct, auto) |
|
284 |
done |
|
285 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
286 |
lemma parts_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
287 |
"parts (insert (Hash X) H) = insert (Hash X) (parts H)" |
13926 | 288 |
apply (rule parts_insert_eq_I) |
289 |
apply (erule parts.induct, auto) |
|
290 |
done |
|
291 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
292 |
lemma parts_insert_Crypt [simp]: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
293 |
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" |
13926 | 294 |
apply (rule equalityI) |
295 |
apply (rule subsetI) |
|
296 |
apply (erule parts.induct, auto) |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
297 |
apply (blast intro: parts.Body) |
13926 | 298 |
done |
299 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
300 |
lemma parts_insert_MPair [simp]: |
61956 | 301 |
"parts (insert \<lbrace>X,Y\<rbrace> H) = |
302 |
insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))" |
|
13926 | 303 |
apply (rule equalityI) |
304 |
apply (rule subsetI) |
|
305 |
apply (erule parts.induct, auto) |
|
306 |
apply (blast intro: parts.Fst parts.Snd)+ |
|
307 |
done |
|
308 |
||
309 |
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
310 |
by auto |
13926 | 311 |
|
61830 | 312 |
text\<open>In any message, there is an upper bound N on its greatest nonce.\<close> |
13926 | 313 |
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}" |
57394 | 314 |
proof (induct msg) |
315 |
case (Nonce n) |
|
316 |
show ?case |
|
317 |
by simp (metis Suc_n_not_le_n) |
|
318 |
next |
|
319 |
case (MPair X Y) |
|
61830 | 320 |
then show ?case \<comment>\<open>metis works out the necessary sum itself!\<close> |
57394 | 321 |
by (simp add: parts_insert2) (metis le_trans nat_le_linear) |
322 |
qed auto |
|
13926 | 323 |
|
61830 | 324 |
subsection\<open>Inductive relation "analz"\<close> |
13926 | 325 |
|
61830 | 326 |
text\<open>Inductive definition of "analz" -- what can be broken down from a set of |
1839 | 327 |
messages, including keys. A form of downward closure. Pairs can |
61830 | 328 |
be taken apart; messages decrypted with known keys.\<close> |
1839 | 329 |
|
23746 | 330 |
inductive_set |
331 |
analz :: "msg set => msg set" |
|
332 |
for H :: "msg set" |
|
333 |
where |
|
61956 | 334 |
Inj [intro,simp]: "X \<in> H ==> X \<in> analz H" |
335 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H" |
|
336 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H" |
|
23746 | 337 |
| Decrypt [dest]: |
11192 | 338 |
"[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" |
1839 | 339 |
|
340 |
||
61830 | 341 |
text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
342 |
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" |
11189 | 343 |
apply auto |
344 |
apply (erule analz.induct) |
|
16818 | 345 |
apply (auto dest: analz.Fst analz.Snd) |
11189 | 346 |
done |
347 |
||
61830 | 348 |
text\<open>Making it safe speeds up proofs\<close> |
13926 | 349 |
lemma MPair_analz [elim!]: |
61956 | 350 |
"[| \<lbrace>X,Y\<rbrace> \<in> analz H; |
13926 | 351 |
[| X \<in> analz H; Y \<in> analz H |] ==> P |
352 |
|] ==> P" |
|
353 |
by (blast dest: analz.Fst analz.Snd) |
|
354 |
||
355 |
lemma analz_increasing: "H \<subseteq> analz(H)" |
|
356 |
by blast |
|
357 |
||
358 |
lemma analz_subset_parts: "analz H \<subseteq> parts H" |
|
359 |
apply (rule subsetI) |
|
360 |
apply (erule analz.induct, blast+) |
|
361 |
done |
|
362 |
||
45605 | 363 |
lemmas analz_into_parts = analz_subset_parts [THEN subsetD] |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
364 |
|
45605 | 365 |
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] |
13926 | 366 |
|
367 |
||
368 |
lemma parts_analz [simp]: "parts (analz H) = parts H" |
|
34185 | 369 |
by (metis analz_increasing analz_subset_parts equalityI parts_mono parts_subset_iff) |
13926 | 370 |
|
371 |
lemma analz_parts [simp]: "analz (parts H) = parts H" |
|
372 |
apply auto |
|
373 |
apply (erule analz.induct, auto) |
|
374 |
done |
|
375 |
||
45605 | 376 |
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
13926 | 377 |
|
61830 | 378 |
subsubsection\<open>General equational properties\<close> |
13926 | 379 |
|
380 |
lemma analz_empty [simp]: "analz{} = {}" |
|
381 |
apply safe |
|
382 |
apply (erule analz.induct, blast+) |
|
383 |
done |
|
384 |
||
61830 | 385 |
text\<open>Converse fails: we can analz more from the union than from the |
386 |
separate parts, as a key in one might decrypt a message in the other\<close> |
|
13926 | 387 |
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
388 |
by (intro Un_least analz_mono Un_upper1 Un_upper2) |
|
389 |
||
390 |
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
|
391 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
392 |
||
61830 | 393 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 394 |
|
395 |
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
|
396 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
397 |
lemma analz_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
398 |
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
13926 | 399 |
apply (rule analz_insert_eq_I) |
400 |
apply (erule analz.induct, auto) |
|
401 |
done |
|
402 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
403 |
lemma analz_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
404 |
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" |
13926 | 405 |
apply (rule analz_insert_eq_I) |
406 |
apply (erule analz.induct, auto) |
|
407 |
done |
|
408 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
409 |
lemma analz_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
410 |
"analz (insert (Number N) H) = insert (Number N) (analz H)" |
13926 | 411 |
apply (rule analz_insert_eq_I) |
412 |
apply (erule analz.induct, auto) |
|
413 |
done |
|
414 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
415 |
lemma analz_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
416 |
"analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
13926 | 417 |
apply (rule analz_insert_eq_I) |
418 |
apply (erule analz.induct, auto) |
|
419 |
done |
|
420 |
||
61830 | 421 |
text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close> |
13926 | 422 |
lemma analz_insert_Key [simp]: |
423 |
"K \<notin> keysFor (analz H) ==> |
|
424 |
analz (insert (Key K) H) = insert (Key K) (analz H)" |
|
425 |
apply (unfold keysFor_def) |
|
426 |
apply (rule analz_insert_eq_I) |
|
427 |
apply (erule analz.induct, auto) |
|
428 |
done |
|
429 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
430 |
lemma analz_insert_MPair [simp]: |
61956 | 431 |
"analz (insert \<lbrace>X,Y\<rbrace> H) = |
432 |
insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))" |
|
13926 | 433 |
apply (rule equalityI) |
434 |
apply (rule subsetI) |
|
435 |
apply (erule analz.induct, auto) |
|
436 |
apply (erule analz.induct) |
|
437 |
apply (blast intro: analz.Fst analz.Snd)+ |
|
438 |
done |
|
439 |
||
61830 | 440 |
text\<open>Can pull out enCrypted message if the Key is not known\<close> |
13926 | 441 |
lemma analz_insert_Crypt: |
442 |
"Key (invKey K) \<notin> analz H |
|
443 |
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
|
444 |
apply (rule analz_insert_eq_I) |
|
445 |
apply (erule analz.induct, auto) |
|
446 |
||
447 |
done |
|
448 |
||
449 |
lemma lemma1: "Key (invKey K) \<in> analz H ==> |
|
450 |
analz (insert (Crypt K X) H) \<subseteq> |
|
451 |
insert (Crypt K X) (analz (insert X H))" |
|
452 |
apply (rule subsetI) |
|
23746 | 453 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 454 |
done |
455 |
||
456 |
lemma lemma2: "Key (invKey K) \<in> analz H ==> |
|
457 |
insert (Crypt K X) (analz (insert X H)) \<subseteq> |
|
458 |
analz (insert (Crypt K X) H)" |
|
459 |
apply auto |
|
23746 | 460 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 461 |
apply (blast intro: analz_insertI analz.Decrypt) |
462 |
done |
|
463 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
464 |
lemma analz_insert_Decrypt: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
465 |
"Key (invKey K) \<in> analz H ==> |
13926 | 466 |
analz (insert (Crypt K X) H) = |
467 |
insert (Crypt K X) (analz (insert X H))" |
|
468 |
by (intro equalityI lemma1 lemma2) |
|
469 |
||
61830 | 470 |
text\<open>Case analysis: either the message is secure, or it is not! Effective, |
62390 | 471 |
but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently |
61830 | 472 |
\<open>split_tac\<close> does not cope with patterns such as @{term"analz (insert |
473 |
(Crypt K X) H)"}\<close> |
|
13926 | 474 |
lemma analz_Crypt_if [simp]: |
475 |
"analz (insert (Crypt K X) H) = |
|
476 |
(if (Key (invKey K) \<in> analz H) |
|
477 |
then insert (Crypt K X) (analz (insert X H)) |
|
478 |
else insert (Crypt K X) (analz H))" |
|
479 |
by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
|
480 |
||
481 |
||
61830 | 482 |
text\<open>This rule supposes "for the sake of argument" that we have the key.\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
483 |
lemma analz_insert_Crypt_subset: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
484 |
"analz (insert (Crypt K X) H) \<subseteq> |
13926 | 485 |
insert (Crypt K X) (analz (insert X H))" |
486 |
apply (rule subsetI) |
|
487 |
apply (erule analz.induct, auto) |
|
488 |
done |
|
489 |
||
490 |
||
491 |
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" |
|
492 |
apply auto |
|
493 |
apply (erule analz.induct, auto) |
|
494 |
done |
|
495 |
||
496 |
||
61830 | 497 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 498 |
|
499 |
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" |
|
500 |
by (erule analz.induct, blast+) |
|
501 |
||
502 |
lemma analz_idem [simp]: "analz (analz H) = analz H" |
|
503 |
by blast |
|
504 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
505 |
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" |
34185 | 506 |
by (metis analz_idem analz_increasing analz_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
507 |
|
13926 | 508 |
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" |
509 |
by (drule analz_mono, blast) |
|
510 |
||
61830 | 511 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
13926 | 512 |
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" |
513 |
by (erule analz_trans, blast) |
|
514 |
||
515 |
(*Cut can be proved easily by induction on |
|
516 |
"Y: analz (insert X H) ==> X: analz H --> Y: analz H" |
|
517 |
*) |
|
518 |
||
61830 | 519 |
text\<open>This rewrite rule helps in the simplification of messages that involve |
13926 | 520 |
the forwarding of unknown components (X). Without it, removing occurrences |
61830 | 521 |
of X can be very complicated.\<close> |
13926 | 522 |
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
523 |
by (metis analz_cut analz_insert_eq_I insert_absorb) |
13926 | 524 |
|
525 |
||
61830 | 526 |
text\<open>A congruence rule for "analz"\<close> |
13926 | 527 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
528 |
lemma analz_subset_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
529 |
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
530 |
==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
531 |
by (metis Un_mono analz_Un analz_subset_iff subset_trans) |
13926 | 532 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
533 |
lemma analz_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
534 |
"[| analz G = analz G'; analz H = analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
535 |
==> analz (G \<union> H) = analz (G' \<union> H')" |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
536 |
by (intro equalityI analz_subset_cong, simp_all) |
13926 | 537 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
538 |
lemma analz_insert_cong: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
539 |
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')" |
13926 | 540 |
by (force simp only: insert_def intro!: analz_cong) |
541 |
||
61830 | 542 |
text\<open>If there are no pairs or encryptions then analz does nothing\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
543 |
lemma analz_trivial: |
61956 | 544 |
"[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" |
13926 | 545 |
apply safe |
546 |
apply (erule analz.induct, blast+) |
|
547 |
done |
|
548 |
||
61830 | 549 |
text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
550 |
lemma analz_UN_analz_lemma: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
551 |
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" |
13926 | 552 |
apply (erule analz.induct) |
553 |
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ |
|
554 |
done |
|
555 |
||
556 |
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" |
|
557 |
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) |
|
558 |
||
559 |
||
61830 | 560 |
subsection\<open>Inductive relation "synth"\<close> |
13926 | 561 |
|
61830 | 562 |
text\<open>Inductive definition of "synth" -- what can be built up from a set of |
1839 | 563 |
messages. A form of upward closure. Pairs can be built, messages |
3668 | 564 |
encrypted with known keys. Agent names are public domain. |
61830 | 565 |
Numbers can be guessed, but Nonces cannot be.\<close> |
1839 | 566 |
|
23746 | 567 |
inductive_set |
568 |
synth :: "msg set => msg set" |
|
569 |
for H :: "msg set" |
|
570 |
where |
|
11192 | 571 |
Inj [intro]: "X \<in> H ==> X \<in> synth H" |
23746 | 572 |
| Agent [intro]: "Agent agt \<in> synth H" |
573 |
| Number [intro]: "Number n \<in> synth H" |
|
574 |
| Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" |
|
61956 | 575 |
| MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H" |
23746 | 576 |
| Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" |
11189 | 577 |
|
61830 | 578 |
text\<open>Monotonicity\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
579 |
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" |
16818 | 580 |
by (auto, erule synth.induct, auto) |
11189 | 581 |
|
61830 | 582 |
text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized. |
583 |
The same holds for @{term Number}\<close> |
|
11189 | 584 |
|
39216 | 585 |
inductive_simps synth_simps [iff]: |
586 |
"Nonce n \<in> synth H" |
|
587 |
"Key K \<in> synth H" |
|
588 |
"Hash X \<in> synth H" |
|
61956 | 589 |
"\<lbrace>X,Y\<rbrace> \<in> synth H" |
39216 | 590 |
"Crypt K X \<in> synth H" |
13926 | 591 |
|
592 |
lemma synth_increasing: "H \<subseteq> synth(H)" |
|
593 |
by blast |
|
594 |
||
61830 | 595 |
subsubsection\<open>Unions\<close> |
13926 | 596 |
|
61830 | 597 |
text\<open>Converse fails: we can synth more from the union than from the |
598 |
separate parts, building a compound message using elements of each.\<close> |
|
13926 | 599 |
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
600 |
by (intro Un_least synth_mono Un_upper1 Un_upper2) |
|
601 |
||
602 |
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
|
603 |
by (blast intro: synth_mono [THEN [2] rev_subsetD]) |
|
604 |
||
61830 | 605 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 606 |
|
607 |
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" |
|
39216 | 608 |
by (erule synth.induct, auto) |
13926 | 609 |
|
610 |
lemma synth_idem: "synth (synth H) = synth H" |
|
611 |
by blast |
|
612 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
613 |
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" |
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
614 |
by (metis subset_trans synth_idem synth_increasing synth_mono) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
615 |
|
13926 | 616 |
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" |
617 |
by (drule synth_mono, blast) |
|
618 |
||
61830 | 619 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
13926 | 620 |
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" |
621 |
by (erule synth_trans, blast) |
|
622 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
623 |
lemma Crypt_synth_eq [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
624 |
"Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" |
13926 | 625 |
by blast |
626 |
||
627 |
||
628 |
lemma keysFor_synth [simp]: |
|
629 |
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
630 |
by (unfold keysFor_def, blast) |
13926 | 631 |
|
632 |
||
61830 | 633 |
subsubsection\<open>Combinations of parts, analz and synth\<close> |
13926 | 634 |
|
635 |
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" |
|
636 |
apply (rule equalityI) |
|
637 |
apply (rule subsetI) |
|
638 |
apply (erule parts.induct) |
|
639 |
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] |
|
640 |
parts.Fst parts.Snd parts.Body)+ |
|
641 |
done |
|
642 |
||
643 |
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" |
|
644 |
apply (intro equalityI analz_subset_cong)+ |
|
645 |
apply simp_all |
|
646 |
done |
|
647 |
||
648 |
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" |
|
649 |
apply (rule equalityI) |
|
650 |
apply (rule subsetI) |
|
651 |
apply (erule analz.induct) |
|
652 |
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
653 |
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ |
|
654 |
done |
|
655 |
||
656 |
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" |
|
34185 | 657 |
by (metis Un_empty_right analz_synth_Un) |
13926 | 658 |
|
659 |
||
61830 | 660 |
subsubsection\<open>For reasoning about the Fake rule in traces\<close> |
13926 | 661 |
|
662 |
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" |
|
34185 | 663 |
by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) |
13926 | 664 |
|
61830 | 665 |
text\<open>More specifically for Fake. See also \<open>Fake_parts_sing\<close> below\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
666 |
lemma Fake_parts_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
667 |
"X \<in> synth (analz H) ==> |
13926 | 668 |
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" |
34185 | 669 |
by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono |
670 |
parts_synth synth_mono synth_subset_iff) |
|
13926 | 671 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
672 |
lemma Fake_parts_insert_in_Un: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
673 |
"[|Z \<in> parts (insert X H); X: synth (analz H)|] |
34185 | 674 |
==> Z \<in> synth (analz H) \<union> parts H" |
675 |
by (metis Fake_parts_insert set_mp) |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
676 |
|
61830 | 677 |
text\<open>@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put |
678 |
@{term "G=H"}.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
679 |
lemma Fake_analz_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
680 |
"X\<in> synth (analz G) ==> |
13926 | 681 |
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" |
682 |
apply (rule subsetI) |
|
34185 | 683 |
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H)", force) |
684 |
apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) |
|
13926 | 685 |
done |
686 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
687 |
lemma analz_conj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
688 |
"(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
689 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 690 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
691 |
lemma analz_disj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
692 |
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
693 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 694 |
|
61830 | 695 |
text\<open>Without this equation, other rules for synth and analz would yield |
696 |
redundant cases\<close> |
|
13926 | 697 |
lemma MPair_synth_analz [iff]: |
61956 | 698 |
"(\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = |
13926 | 699 |
(X \<in> synth (analz H) & Y \<in> synth (analz H))" |
700 |
by blast |
|
701 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
702 |
lemma Crypt_synth_analz: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
703 |
"[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] |
13926 | 704 |
==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" |
705 |
by blast |
|
706 |
||
707 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
708 |
lemma Hash_synth_analz [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
709 |
"X \<notin> synth (analz H) |
61956 | 710 |
==> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)" |
13926 | 711 |
by blast |
712 |
||
713 |
||
61830 | 714 |
subsection\<open>HPair: a combination of Hash and MPair\<close> |
13926 | 715 |
|
61830 | 716 |
subsubsection\<open>Freeness\<close> |
13926 | 717 |
|
718 |
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" |
|
57394 | 719 |
unfolding HPair_def by simp |
13926 | 720 |
|
721 |
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" |
|
57394 | 722 |
unfolding HPair_def by simp |
13926 | 723 |
|
724 |
lemma Number_neq_HPair: "Number N ~= Hash[X] Y" |
|
57394 | 725 |
unfolding HPair_def by simp |
13926 | 726 |
|
727 |
lemma Key_neq_HPair: "Key K ~= Hash[X] Y" |
|
57394 | 728 |
unfolding HPair_def by simp |
13926 | 729 |
|
730 |
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" |
|
57394 | 731 |
unfolding HPair_def by simp |
13926 | 732 |
|
733 |
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" |
|
57394 | 734 |
unfolding HPair_def by simp |
13926 | 735 |
|
736 |
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair |
|
737 |
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair |
|
738 |
||
739 |
declare HPair_neqs [iff] |
|
740 |
declare HPair_neqs [symmetric, iff] |
|
741 |
||
742 |
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" |
|
743 |
by (simp add: HPair_def) |
|
744 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
745 |
lemma MPair_eq_HPair [iff]: |
61956 | 746 |
"(\<lbrace>X',Y'\<rbrace> = Hash[X] Y) = (X' = Hash\<lbrace>X,Y\<rbrace> & Y'=Y)" |
13926 | 747 |
by (simp add: HPair_def) |
748 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
749 |
lemma HPair_eq_MPair [iff]: |
61956 | 750 |
"(Hash[X] Y = \<lbrace>X',Y'\<rbrace>) = (X' = Hash\<lbrace>X,Y\<rbrace> & Y'=Y)" |
13926 | 751 |
by (auto simp add: HPair_def) |
752 |
||
753 |
||
61830 | 754 |
subsubsection\<open>Specialized laws, proved in terms of those for Hash and MPair\<close> |
13926 | 755 |
|
756 |
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" |
|
757 |
by (simp add: HPair_def) |
|
758 |
||
759 |
lemma parts_insert_HPair [simp]: |
|
760 |
"parts (insert (Hash[X] Y) H) = |
|
61956 | 761 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (parts (insert Y H)))" |
13926 | 762 |
by (simp add: HPair_def) |
763 |
||
764 |
lemma analz_insert_HPair [simp]: |
|
765 |
"analz (insert (Hash[X] Y) H) = |
|
61956 | 766 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (analz (insert Y H)))" |
13926 | 767 |
by (simp add: HPair_def) |
768 |
||
769 |
lemma HPair_synth_analz [simp]: |
|
770 |
"X \<notin> synth (analz H) |
|
771 |
==> (Hash[X] Y \<in> synth (analz H)) = |
|
61956 | 772 |
(Hash \<lbrace>X, Y\<rbrace> \<in> analz H & Y \<in> synth (analz H))" |
39216 | 773 |
by (auto simp add: HPair_def) |
13926 | 774 |
|
775 |
||
61830 | 776 |
text\<open>We do NOT want Crypt... messages broken up in protocols!!\<close> |
13926 | 777 |
declare parts.Body [rule del] |
778 |
||
779 |
||
61830 | 780 |
text\<open>Rewrites to push in Key and Crypt messages, so that other messages can |
781 |
be pulled out using the \<open>analz_insert\<close> rules\<close> |
|
13926 | 782 |
|
45605 | 783 |
lemmas pushKeys = |
27225 | 784 |
insert_commute [of "Key K" "Agent C"] |
785 |
insert_commute [of "Key K" "Nonce N"] |
|
786 |
insert_commute [of "Key K" "Number N"] |
|
787 |
insert_commute [of "Key K" "Hash X"] |
|
788 |
insert_commute [of "Key K" "MPair X Y"] |
|
789 |
insert_commute [of "Key K" "Crypt X K'"] |
|
45605 | 790 |
for K C N X Y K' |
13926 | 791 |
|
45605 | 792 |
lemmas pushCrypts = |
27225 | 793 |
insert_commute [of "Crypt X K" "Agent C"] |
794 |
insert_commute [of "Crypt X K" "Agent C"] |
|
795 |
insert_commute [of "Crypt X K" "Nonce N"] |
|
796 |
insert_commute [of "Crypt X K" "Number N"] |
|
797 |
insert_commute [of "Crypt X K" "Hash X'"] |
|
798 |
insert_commute [of "Crypt X K" "MPair X' Y"] |
|
45605 | 799 |
for X K C N X' Y |
13926 | 800 |
|
61830 | 801 |
text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be |
802 |
re-ordered.\<close> |
|
13926 | 803 |
lemmas pushes = pushKeys pushCrypts |
804 |
||
805 |
||
61830 | 806 |
subsection\<open>The set of key-free messages\<close> |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
807 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
808 |
(*Note that even the encryption of a key-free message remains key-free. |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
809 |
This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
810 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
811 |
inductive_set |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
812 |
keyfree :: "msg set" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
813 |
where |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
814 |
Agent: "Agent A \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
815 |
| Number: "Number N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
816 |
| Nonce: "Nonce N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
817 |
| Hash: "Hash X \<in> keyfree" |
61956 | 818 |
| MPair: "[|X \<in> keyfree; Y \<in> keyfree|] ==> \<lbrace>X,Y\<rbrace> \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
819 |
| Crypt: "[|X \<in> keyfree|] ==> Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
820 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
821 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
822 |
declare keyfree.intros [intro] |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
823 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
824 |
inductive_cases keyfree_KeyE: "Key K \<in> keyfree" |
61956 | 825 |
inductive_cases keyfree_MPairE: "\<lbrace>X,Y\<rbrace> \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
826 |
inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
827 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
828 |
lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
829 |
by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
830 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
831 |
(*The key-free part of a set of messages can be removed from the scope of the analz operator.*) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
832 |
lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" |
57394 | 833 |
apply (erule analz.induct, auto dest: parts.Body) |
44174
d1d79f0e1ea6
make more HOL theories work with separate set type
huffman
parents:
43582
diff
changeset
|
834 |
apply (metis Un_absorb2 keyfree_KeyE parts_Un parts_keyfree UnI2) |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
835 |
done |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
836 |
|
61830 | 837 |
subsection\<open>Tactics useful for many protocol proofs\<close> |
13926 | 838 |
ML |
61830 | 839 |
\<open> |
13926 | 840 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
841 |
but this application is no longer necessary if analz_insert_eq is used. |
|
842 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
843 |
||
32117
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
844 |
fun impOfSubs th = th RSN (2, @{thm rev_subsetD}) |
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
845 |
|
13926 | 846 |
(*Apply rules to break down assumptions of the form |
847 |
Y \<in> parts(insert X H) and Y \<in> analz(insert X H) |
|
848 |
*) |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
849 |
fun Fake_insert_tac ctxt = |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
850 |
dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert}, |
24122 | 851 |
impOfSubs @{thm Fake_parts_insert}] THEN' |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
852 |
eresolve_tac ctxt [asm_rl, @{thm synth.Inj}]; |
13926 | 853 |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
854 |
fun Fake_insert_simp_tac ctxt i = |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
855 |
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i; |
13926 | 856 |
|
42474 | 857 |
fun atomic_spy_analz_tac ctxt = |
42793 | 858 |
SELECT_GOAL |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
859 |
(Fake_insert_simp_tac ctxt 1 THEN |
42793 | 860 |
IF_UNSOLVED |
861 |
(Blast.depth_tac |
|
862 |
(ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1)); |
|
13926 | 863 |
|
42474 | 864 |
fun spy_analz_tac ctxt i = |
42793 | 865 |
DETERM |
866 |
(SELECT_GOAL |
|
867 |
(EVERY |
|
868 |
[ (*push in occurrences of X...*) |
|
869 |
(REPEAT o CHANGED) |
|
59780 | 870 |
(Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] [] |
871 |
(insert_commute RS ssubst) 1), |
|
42793 | 872 |
(*...allowing further simplifications*) |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
873 |
simp_tac ctxt 1, |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
874 |
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])), |
42793 | 875 |
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); |
61830 | 876 |
\<close> |
13926 | 877 |
|
61830 | 878 |
text\<open>By default only \<open>o_apply\<close> is built-in. But in the presence of |
16818 | 879 |
eta-expansion this means that some terms displayed as @{term "f o g"} will be |
61830 | 880 |
rewritten, and others will not!\<close> |
13926 | 881 |
declare o_def [simp] |
882 |
||
11189 | 883 |
|
13922 | 884 |
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" |
885 |
by auto |
|
886 |
||
887 |
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" |
|
888 |
by auto |
|
889 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
890 |
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
891 |
by (iprover intro: synth_mono analz_mono) |
13922 | 892 |
|
893 |
lemma Fake_analz_eq [simp]: |
|
894 |
"X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
895 |
by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute |
34185 | 896 |
subset_insertI synth_analz_mono synth_increasing synth_subset_iff) |
13922 | 897 |
|
61830 | 898 |
text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close> |
13922 | 899 |
lemma gen_analz_insert_eq [rule_format]: |
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
900 |
"X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G" |
13922 | 901 |
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) |
902 |
||
903 |
lemma synth_analz_insert_eq [rule_format]: |
|
904 |
"X \<in> synth (analz H) |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
905 |
==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)" |
13922 | 906 |
apply (erule synth.induct) |
907 |
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) |
|
908 |
done |
|
909 |
||
910 |
lemma Fake_parts_sing: |
|
34185 | 911 |
"X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H" |
912 |
by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) |
|
13922 | 913 |
|
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
914 |
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] |
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
915 |
|
61830 | 916 |
method_setup spy_analz = \<open> |
917 |
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close> |
|
11189 | 918 |
"for proving the Fake case when analz is involved" |
1839 | 919 |
|
61830 | 920 |
method_setup atomic_spy_analz = \<open> |
921 |
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close> |
|
11264 | 922 |
"for debugging spy_analz" |
923 |
||
61830 | 924 |
method_setup Fake_insert_simp = \<open> |
925 |
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close> |
|
11264 | 926 |
"for debugging spy_analz" |
927 |
||
1839 | 928 |
end |