author | paulson <lp15@cam.ac.uk> |
Wed, 26 Apr 2017 15:53:35 +0100 | |
changeset 65583 | 8d53b3bebab4 |
parent 61076 | bdc1e2f0a86a |
permissions | -rw-r--r-- |
15737 | 1 |
(* Title: HOL/Library/List_lexord.thy |
2 |
Author: Norbert Voelker |
|
3 |
*) |
|
4 |
||
60500 | 5 |
section \<open>Lexicographic order on lists\<close> |
15737 | 6 |
|
7 |
theory List_lexord |
|
53214 | 8 |
imports Main |
15737 | 9 |
begin |
10 |
||
25764 | 11 |
instantiation list :: (ord) ord |
12 |
begin |
|
13 |
||
14 |
definition |
|
37474 | 15 |
list_less_def: "xs < ys \<longleftrightarrow> (xs, ys) \<in> lexord {(u, v). u < v}" |
25764 | 16 |
|
17 |
definition |
|
37474 | 18 |
list_le_def: "(xs :: _ list) \<le> ys \<longleftrightarrow> xs < ys \<or> xs = ys" |
25764 | 19 |
|
20 |
instance .. |
|
21 |
||
22 |
end |
|
15737 | 23 |
|
17200 | 24 |
instance list :: (order) order |
27682 | 25 |
proof |
26 |
fix xs :: "'a list" |
|
27 |
show "xs \<le> xs" by (simp add: list_le_def) |
|
28 |
next |
|
29 |
fix xs ys zs :: "'a list" |
|
30 |
assume "xs \<le> ys" and "ys \<le> zs" |
|
53214 | 31 |
then show "xs \<le> zs" |
32 |
apply (auto simp add: list_le_def list_less_def) |
|
33 |
apply (rule lexord_trans) |
|
34 |
apply (auto intro: transI) |
|
35 |
done |
|
27682 | 36 |
next |
37 |
fix xs ys :: "'a list" |
|
38 |
assume "xs \<le> ys" and "ys \<le> xs" |
|
53214 | 39 |
then show "xs = ys" |
40 |
apply (auto simp add: list_le_def list_less_def) |
|
41 |
apply (rule lexord_irreflexive [THEN notE]) |
|
42 |
defer |
|
43 |
apply (rule lexord_trans) |
|
44 |
apply (auto intro: transI) |
|
45 |
done |
|
27682 | 46 |
next |
47 |
fix xs ys :: "'a list" |
|
53214 | 48 |
show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" |
49 |
apply (auto simp add: list_less_def list_le_def) |
|
50 |
defer |
|
51 |
apply (rule lexord_irreflexive [THEN notE]) |
|
52 |
apply auto |
|
53 |
apply (rule lexord_irreflexive [THEN notE]) |
|
54 |
defer |
|
55 |
apply (rule lexord_trans) |
|
56 |
apply (auto intro: transI) |
|
57 |
done |
|
27682 | 58 |
qed |
15737 | 59 |
|
21458 | 60 |
instance list :: (linorder) linorder |
27682 | 61 |
proof |
62 |
fix xs ys :: "'a list" |
|
63 |
have "(xs, ys) \<in> lexord {(u, v). u < v} \<or> xs = ys \<or> (ys, xs) \<in> lexord {(u, v). u < v}" |
|
64 |
by (rule lexord_linear) auto |
|
53214 | 65 |
then show "xs \<le> ys \<or> ys \<le> xs" |
27682 | 66 |
by (auto simp add: list_le_def list_less_def) |
67 |
qed |
|
15737 | 68 |
|
25764 | 69 |
instantiation list :: (linorder) distrib_lattice |
70 |
begin |
|
71 |
||
61076 | 72 |
definition "(inf :: 'a list \<Rightarrow> _) = min" |
25764 | 73 |
|
61076 | 74 |
definition "(sup :: 'a list \<Rightarrow> _) = max" |
25764 | 75 |
|
76 |
instance |
|
60679 | 77 |
by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2) |
22483 | 78 |
|
25764 | 79 |
end |
80 |
||
53214 | 81 |
lemma not_less_Nil [simp]: "\<not> x < []" |
82 |
by (simp add: list_less_def) |
|
15737 | 83 |
|
22177 | 84 |
lemma Nil_less_Cons [simp]: "[] < a # x" |
53214 | 85 |
by (simp add: list_less_def) |
15737 | 86 |
|
22177 | 87 |
lemma Cons_less_Cons [simp]: "a # x < b # y \<longleftrightarrow> a < b \<or> a = b \<and> x < y" |
53214 | 88 |
by (simp add: list_less_def) |
15737 | 89 |
|
22177 | 90 |
lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []" |
53214 | 91 |
unfolding list_le_def by (cases x) auto |
22177 | 92 |
|
93 |
lemma Nil_le_Cons [simp]: "[] \<le> x" |
|
53214 | 94 |
unfolding list_le_def by (cases x) auto |
15737 | 95 |
|
22177 | 96 |
lemma Cons_le_Cons [simp]: "a # x \<le> b # y \<longleftrightarrow> a < b \<or> a = b \<and> x \<le> y" |
53214 | 97 |
unfolding list_le_def by auto |
15737 | 98 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
38857
diff
changeset
|
99 |
instantiation list :: (order) order_bot |
37474 | 100 |
begin |
101 |
||
53214 | 102 |
definition "bot = []" |
37474 | 103 |
|
53214 | 104 |
instance |
60679 | 105 |
by standard (simp add: bot_list_def) |
37474 | 106 |
|
107 |
end |
|
108 |
||
109 |
lemma less_list_code [code]: |
|
61076 | 110 |
"xs < ([]::'a::{equal, order} list) \<longleftrightarrow> False" |
111 |
"[] < (x::'a::{equal, order}) # xs \<longleftrightarrow> True" |
|
112 |
"(x::'a::{equal, order}) # xs < y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs < ys" |
|
22177 | 113 |
by simp_all |
114 |
||
37474 | 115 |
lemma less_eq_list_code [code]: |
61076 | 116 |
"x # xs \<le> ([]::'a::{equal, order} list) \<longleftrightarrow> False" |
117 |
"[] \<le> (xs::'a::{equal, order} list) \<longleftrightarrow> True" |
|
118 |
"(x::'a::{equal, order}) # xs \<le> y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs \<le> ys" |
|
22177 | 119 |
by simp_all |
120 |
||
17200 | 121 |
end |