| 
14074
 | 
     1  | 
(*  Title:      HOL/Hoare/Heap.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   2002 TUM
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Heap abstractions (at the moment only Path and List)
  | 
| 
 | 
     7  | 
for Separation Logic.
  | 
| 
 | 
     8  | 
*)
  | 
| 
 | 
     9  | 
  | 
| 
18576
 | 
    10  | 
theory SepLogHeap
  | 
| 
 | 
    11  | 
imports Main
  | 
| 
 | 
    12  | 
begin
  | 
| 
18447
 | 
    13  | 
  | 
| 
14074
 | 
    14  | 
types heap = "(nat \<Rightarrow> nat option)"
  | 
| 
 | 
    15  | 
  | 
| 
16972
 | 
    16  | 
text{* @{text "Some"} means allocated, @{text "None"} means
 | 
| 
 | 
    17  | 
free. Address @{text "0"} serves as the null reference. *}
 | 
| 
14074
 | 
    18  | 
  | 
| 
 | 
    19  | 
subsection "Paths in the heap"
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
consts
  | 
| 
 | 
    22  | 
 Path :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"
  | 
| 
 | 
    23  | 
primrec
  | 
| 
 | 
    24  | 
"Path h x [] y = (x = y)"
  | 
| 
 | 
    25  | 
"Path h x (a#as) y = (x\<noteq>0 \<and> a=x \<and> (\<exists>b. h x = Some b \<and> Path h b as y))"
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma [iff]: "Path h 0 xs y = (xs = [] \<and> y = 0)"
  | 
| 
16972
 | 
    28  | 
by (cases xs) simp_all
  | 
| 
14074
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma [simp]: "x\<noteq>0 \<Longrightarrow> Path h x as z =
  | 
| 
 | 
    31  | 
 (as = [] \<and> z = x  \<or>  (\<exists>y bs. as = x#bs \<and> h x = Some y & Path h y bs z))"
  | 
| 
16972
 | 
    32  | 
by (cases as) auto
  | 
| 
14074
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
  | 
| 
16972
 | 
    35  | 
by (induct as) auto
  | 
| 
14074
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma Path_upd[simp]:
  | 
| 
 | 
    38  | 
 "\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
  | 
| 
16972
 | 
    39  | 
by (induct as) simp_all
  | 
| 
14074
 | 
    40  | 
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
subsection "Lists on the heap"
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
constdefs
  | 
| 
 | 
    45  | 
 List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"
  | 
| 
 | 
    46  | 
"List h x as == Path h x as 0"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma [simp]: "List h x [] = (x = 0)"
  | 
| 
16972
 | 
    49  | 
by (simp add: List_def)
  | 
| 
14074
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma [simp]:
  | 
| 
 | 
    52  | 
 "List h x (a#as) = (x\<noteq>0 \<and> a=x \<and> (\<exists>y. h x = Some y \<and> List h y as))"
  | 
| 
16972
 | 
    53  | 
by (simp add: List_def)
  | 
| 
14074
 | 
    54  | 
  | 
| 
 | 
    55  | 
lemma [simp]: "List h 0 as = (as = [])"
  | 
| 
16972
 | 
    56  | 
by (cases as) simp_all
  | 
| 
14074
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma List_non_null: "a\<noteq>0 \<Longrightarrow>
  | 
| 
 | 
    59  | 
 List h a as = (\<exists>b bs. as = a#bs \<and> h a = Some b \<and> List h b bs)"
  | 
| 
16972
 | 
    60  | 
by (cases as) simp_all
  | 
| 
14074
 | 
    61  | 
  | 
| 
 | 
    62  | 
theorem notin_List_update[simp]:
  | 
| 
 | 
    63  | 
 "\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
  | 
| 
16972
 | 
    64  | 
by (induct as) simp_all
  | 
| 
14074
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
  | 
| 
16972
 | 
    67  | 
by (induct as) (auto simp add:List_non_null)
  | 
| 
14074
 | 
    68  | 
  | 
| 
 | 
    69  | 
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
  | 
| 
16972
 | 
    70  | 
by (blast intro: List_unique)
  | 
| 
14074
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
  | 
| 
16972
 | 
    73  | 
by (induct as) auto
  | 
| 
14074
 | 
    74  | 
  | 
| 
 | 
    75  | 
lemma List_hd_not_in_tl[simp]: "List h b as \<Longrightarrow> h a = Some b \<Longrightarrow> a \<notin> set as"
  | 
| 
 | 
    76  | 
apply (clarsimp simp add:in_set_conv_decomp)
  | 
| 
 | 
    77  | 
apply(frule List_app[THEN iffD1])
  | 
| 
 | 
    78  | 
apply(fastsimp dest: List_unique)
  | 
| 
 | 
    79  | 
done
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
  | 
| 
16972
 | 
    82  | 
by (induct as) (auto dest:List_hd_not_in_tl)
  | 
| 
14074
 | 
    83  | 
  | 
| 
 | 
    84  | 
lemma list_in_heap: "\<And>p. List h p ps \<Longrightarrow> set ps \<subseteq> dom h"
  | 
| 
16972
 | 
    85  | 
by (induct ps) auto
  | 
| 
14074
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma list_ortho_sum1[simp]:
  | 
| 
 | 
    88  | 
 "\<And>p. \<lbrakk> List h1 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
 | 
| 
16972
 | 
    89  | 
by (induct ps) (auto simp add:map_add_def split:option.split)
  | 
| 
14074
 | 
    90  | 
  | 
| 
18447
 | 
    91  | 
  | 
| 
14074
 | 
    92  | 
lemma list_ortho_sum2[simp]:
  | 
| 
 | 
    93  | 
 "\<And>p. \<lbrakk> List h2 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
 | 
| 
16972
 | 
    94  | 
by (induct ps) (auto simp add:map_add_def split:option.split)
  | 
| 
14074
 | 
    95  | 
  | 
| 
 | 
    96  | 
end
  |