| author | wenzelm | 
| Thu, 27 Mar 2008 14:41:18 +0100 | |
| changeset 26430 | 8ddb2e7c5a1e | 
| parent 25135 | 4f8176c940cf | 
| child 27148 | 5b78e50adc49 | 
| permissions | -rw-r--r-- | 
| 2640 | 1 | (* Title: HOLCF/Tr.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Franz Regensburger | |
| 4 | ||
| 16070 
4a83dd540b88
removed LICENCE note -- everything is subject to Isabelle licence as
 wenzelm parents: 
15649diff
changeset | 5 | Introduce infix if_then_else_fi and boolean connectives andalso, orelse. | 
| 2640 | 6 | *) | 
| 7 | ||
| 15649 | 8 | header {* The type of lifted booleans *}
 | 
| 9 | ||
| 10 | theory Tr | |
| 16228 | 11 | imports Lift | 
| 15649 | 12 | begin | 
| 2640 | 13 | |
| 16631 | 14 | defaultsort pcpo | 
| 15 | ||
| 2782 | 16 | types | 
| 17 | tr = "bool lift" | |
| 18 | ||
| 2766 | 19 | translations | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 20 | "tr" <= (type) "bool lift" | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 21 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 22 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 23 | TT :: "tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 24 | "TT = Def True" | 
| 2640 | 25 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 26 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 27 | FF :: "tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 28 | "FF = Def False" | 
| 2640 | 29 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 30 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 31 | trifte :: "'c \<rightarrow> 'c \<rightarrow> tr \<rightarrow> 'c" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 32 | ifte_def: "trifte = (\<Lambda> t e. FLIFT b. if b then t else e)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 33 | abbreviation | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 34 |   cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c"  ("(3If _/ (then _/ else _) fi)" 60)  where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 35 | "If b then e1 else e2 fi == trifte\<cdot>e1\<cdot>e2\<cdot>b" | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 36 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 37 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 38 | trand :: "tr \<rightarrow> tr \<rightarrow> tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 39 | andalso_def: "trand = (\<Lambda> x y. If x then y else FF fi)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 40 | abbreviation | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 41 |   andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ andalso _" [36,35] 35)  where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 42 | "x andalso y == trand\<cdot>x\<cdot>y" | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 43 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 44 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 45 | tror :: "tr \<rightarrow> tr \<rightarrow> tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 46 | orelse_def: "tror = (\<Lambda> x y. If x then TT else y fi)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 47 | abbreviation | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 48 |   orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ orelse _"  [31,30] 30)  where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 49 | "x orelse y == tror\<cdot>x\<cdot>y" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 50 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 51 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 52 | neg :: "tr \<rightarrow> tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 53 | "neg = flift2 Not" | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 54 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 55 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 56 | If2 :: "[tr, 'c, 'c] \<Rightarrow> 'c" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 57 | "If2 Q x y = (If Q then x else y fi)" | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 58 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 59 | translations | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 60 | "\<Lambda> (CONST TT). t" == "CONST trifte\<cdot>t\<cdot>\<bottom>" | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 61 | "\<Lambda> (CONST FF). t" == "CONST trifte\<cdot>\<bottom>\<cdot>t" | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 62 | |
| 15649 | 63 | |
| 64 | text {* Exhaustion and Elimination for type @{typ tr} *}
 | |
| 65 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 66 | lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF" | 
| 15649 | 67 | apply (unfold FF_def TT_def) | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 68 | apply (induct t) | 
| 15649 | 69 | apply fast | 
| 70 | apply fast | |
| 71 | done | |
| 72 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 73 | lemma trE: "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 15649 | 74 | apply (rule Exh_tr [THEN disjE]) | 
| 75 | apply fast | |
| 76 | apply (erule disjE) | |
| 77 | apply fast | |
| 78 | apply fast | |
| 79 | done | |
| 80 | ||
| 81 | text {* tactic for tr-thms with case split *}
 | |
| 82 | ||
| 83 | lemmas tr_defs = andalso_def orelse_def neg_def ifte_def TT_def FF_def | |
| 84 | (* | |
| 85 | fun prover t = prove_goal thy t | |
| 86 | (fn prems => | |
| 87 | [ | |
| 88 |         (res_inst_tac [("p","y")] trE 1),
 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 89 | (REPEAT(asm_simp_tac (simpset() addsimps | 
| 15649 | 90 | [o_def,flift1_def,flift2_def,inst_lift_po]@tr_defs) 1)) | 
| 91 | ]) | |
| 92 | *) | |
| 93 | text {* distinctness for type @{typ tr} *}
 | |
| 94 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 95 | lemma dist_less_tr [simp]: | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 96 | "\<not> TT \<sqsubseteq> \<bottom>" "\<not> FF \<sqsubseteq> \<bottom>" "\<not> TT \<sqsubseteq> FF" "\<not> FF \<sqsubseteq> TT" | 
| 15649 | 97 | by (simp_all add: tr_defs) | 
| 98 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 99 | lemma dist_eq_tr [simp]: | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 100 | "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT" | 
| 15649 | 101 | by (simp_all add: tr_defs) | 
| 102 | ||
| 103 | text {* lemmas about andalso, orelse, neg and if *}
 | |
| 104 | ||
| 105 | lemma ifte_thms [simp]: | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 106 | "If \<bottom> then e1 else e2 fi = \<bottom>" | 
| 15649 | 107 | "If FF then e1 else e2 fi = e2" | 
| 108 | "If TT then e1 else e2 fi = e1" | |
| 16756 | 109 | by (simp_all add: ifte_def TT_def FF_def) | 
| 15649 | 110 | |
| 111 | lemma andalso_thms [simp]: | |
| 112 | "(TT andalso y) = y" | |
| 113 | "(FF andalso y) = FF" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 114 | "(\<bottom> andalso y) = \<bottom>" | 
| 15649 | 115 | "(y andalso TT) = y" | 
| 116 | "(y andalso y) = y" | |
| 117 | apply (unfold andalso_def, simp_all) | |
| 118 | apply (rule_tac p=y in trE, simp_all) | |
| 119 | apply (rule_tac p=y in trE, simp_all) | |
| 120 | done | |
| 121 | ||
| 122 | lemma orelse_thms [simp]: | |
| 123 | "(TT orelse y) = TT" | |
| 124 | "(FF orelse y) = y" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 125 | "(\<bottom> orelse y) = \<bottom>" | 
| 15649 | 126 | "(y orelse FF) = y" | 
| 127 | "(y orelse y) = y" | |
| 128 | apply (unfold orelse_def, simp_all) | |
| 129 | apply (rule_tac p=y in trE, simp_all) | |
| 130 | apply (rule_tac p=y in trE, simp_all) | |
| 131 | done | |
| 132 | ||
| 133 | lemma neg_thms [simp]: | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 134 | "neg\<cdot>TT = FF" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 135 | "neg\<cdot>FF = TT" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 136 | "neg\<cdot>\<bottom> = \<bottom>" | 
| 15649 | 137 | by (simp_all add: neg_def TT_def FF_def) | 
| 138 | ||
| 139 | text {* split-tac for If via If2 because the constant has to be a constant *}
 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 140 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 141 | lemma split_If2: | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 142 | "P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))" | 
| 15649 | 143 | apply (unfold If2_def) | 
| 144 | apply (rule_tac p = "Q" in trE) | |
| 145 | apply (simp_all) | |
| 146 | done | |
| 147 | ||
| 16121 | 148 | ML {*
 | 
| 15649 | 149 | val split_If_tac = | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 150 |   simp_tac (HOL_basic_ss addsimps [@{thm If2_def} RS sym])
 | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 151 |     THEN' (split_tac [@{thm split_If2}])
 | 
| 15649 | 152 | *} | 
| 153 | ||
| 154 | subsection "Rewriting of HOLCF operations to HOL functions" | |
| 155 | ||
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 156 | lemma andalso_or: | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 157 | "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)" | 
| 15649 | 158 | apply (rule_tac p = "t" in trE) | 
| 159 | apply simp_all | |
| 160 | done | |
| 161 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 162 | lemma andalso_and: | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 163 | "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)" | 
| 15649 | 164 | apply (rule_tac p = "t" in trE) | 
| 165 | apply simp_all | |
| 166 | done | |
| 167 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 168 | lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x" | 
| 15649 | 169 | by (simp add: FF_def) | 
| 170 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 171 | lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)" | 
| 15649 | 172 | by (simp add: FF_def) | 
| 173 | ||
| 174 | lemma Def_bool3 [simp]: "(Def x = TT) = x" | |
| 175 | by (simp add: TT_def) | |
| 176 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 177 | lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)" | 
| 15649 | 178 | by (simp add: TT_def) | 
| 179 | ||
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 180 | lemma If_and_if: | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 181 | "(If Def P then A else B fi) = (if P then A else B)" | 
| 15649 | 182 | apply (rule_tac p = "Def P" in trE) | 
| 183 | apply (auto simp add: TT_def[symmetric] FF_def[symmetric]) | |
| 184 | done | |
| 185 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 186 | subsection {* Compactness *}
 | 
| 15649 | 187 | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 188 | lemma compact_TT [simp]: "compact TT" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 189 | by (rule compact_chfin) | 
| 15649 | 190 | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 191 | lemma compact_FF [simp]: "compact FF" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 192 | by (rule compact_chfin) | 
| 2640 | 193 | |
| 194 | end |