doc-src/TutorialI/Types/document/Axioms.tex
author wenzelm
Thu, 27 Sep 2001 22:24:09 +0200
changeset 11605 8e45a16295ed
parent 11494 23a118849801
child 11866 fbd097aec213
permissions -rw-r--r--
HOLogic.unit;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Axioms}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     4
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
     5
\isamarkupsubsection{Axioms%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
     6
}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     7
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
     8
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
     9
Attaching axioms to our classes lets us reason on the
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    10
level of classes.  The results will be applicable to all types in a class,
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    11
just as in axiomatic mathematics.  These ideas are demonstrated by means of
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    12
our ordering relations.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    13
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    14
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    15
\isamarkupsubsubsection{Partial Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    16
}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    18
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    19
A \emph{partial order} is a subclass of \isa{ordrel}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    20
where certain axioms need to hold:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    21
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    22
\isacommand{axclass}\ parord\ {\isacharless}\ ordrel\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    23
refl{\isacharcolon}\ \ \ \ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ x{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    24
trans{\isacharcolon}\ \ \ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ z\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ z{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    25
antisym{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ x\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharequal}\ y{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    26
less{\isacharunderscore}le{\isacharcolon}\ {\isachardoublequote}x\ {\isacharless}{\isacharless}\ y\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isasymand}\ x\ {\isasymnoteq}\ y{\isacharparenright}{\isachardoublequote}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    27
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    28
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    29
The first three axioms are the familiar ones, and the final one
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    30
requires that \isa{{\isacharless}{\isacharless}} and \isa{{\isacharless}{\isacharless}{\isacharequal}} are related as expected.
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    31
Note that behind the scenes, Isabelle has restricted the axioms to class
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    32
\isa{parord}. For example, the axiom \isa{refl} really is
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    33
\isa{{\isacharparenleft}{\isacharquery}x{\isasymColon}{\isacharquery}{\isacharprime}a{\isasymColon}parord{\isacharparenright}\ {\isacharless}{\isacharless}{\isacharequal}\ {\isacharquery}x}.
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    34
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    35
We have not made \isa{less{\isacharunderscore}le} a global definition because it would
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
    36
fix once and for all that \isa{{\isacharless}{\isacharless}} is defined in terms of \isa{{\isacharless}{\isacharless}{\isacharequal}} and
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
    37
never the other way around. Below you will see why we want to avoid this
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    38
asymmetry. The drawback of our choice is that
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    39
we need to define both \isa{{\isacharless}{\isacharless}{\isacharequal}} and \isa{{\isacharless}{\isacharless}} for each instance.
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    40
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    41
We can now prove simple theorems in this abstract setting, for example
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    42
that \isa{{\isacharless}{\isacharless}} is not symmetric:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    43
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    44
\isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isacharcolon}{\isacharcolon}parord{\isacharparenright}\ {\isacharless}{\isacharless}\ y\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymnot}\ y\ {\isacharless}{\isacharless}\ x{\isacharparenright}\ {\isacharequal}\ True{\isachardoublequote}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    45
\begin{isamarkuptxt}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    46
\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    47
The conclusion is not just \isa{{\isasymnot}\ y\ {\isacharless}{\isacharless}\ x} because the 
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    48
simplifier's preprocessor (see \S\ref{sec:simp-preprocessor})
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    49
would turn it into \isa{{\isacharparenleft}y\ {\isacharless}{\isacharless}\ x{\isacharparenright}\ {\isacharequal}\ False}, yielding
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    50
a nonterminating rewrite rule.  
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    51
(It would be used to try to prove its own precondition \emph{ad
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    52
    infinitum}.)
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    53
In the form above, the rule is useful.
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    54
The type constraint is necessary because otherwise Isabelle would only assume
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    55
\isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}ordrel} (as required in the type of \isa{{\isacharless}{\isacharless}}), 
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    56
when the proposition is not a theorem.  The proof is easy:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    57
\end{isamarkuptxt}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    58
\isacommand{by}{\isacharparenleft}simp\ add{\isacharcolon}less{\isacharunderscore}le\ antisym{\isacharparenright}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    59
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    60
We could now continue in this vein and develop a whole theory of
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    61
results about partial orders. Eventually we will want to apply these results
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    62
to concrete types, namely the instances of the class. Thus we first need to
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    63
prove that the types in question, for example \isa{bool}, are indeed
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    64
instances of \isa{parord}:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    65
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    66
\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ parord\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    67
\isacommand{apply}\ intro{\isacharunderscore}classes%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    68
\begin{isamarkuptxt}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    69
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    70
This time \isa{intro{\isacharunderscore}classes} leaves us with the four axioms,
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    71
specialized to type \isa{bool}, as subgoals:
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    72
\begin{isabelle}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    73
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isasymColon}bool{\isachardot}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ x\isanewline
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
    74
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}{\isacharparenleft}x{\isasymColon}bool{\isacharparenright}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}\ z{\isasymColon}bool{\isachardot}\ {\isasymlbrakk}x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}{\isacharequal}\ z\isanewline
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
    75
\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}{\isacharparenleft}x{\isasymColon}bool{\isacharparenright}\ y{\isasymColon}bool{\isachardot}\ {\isasymlbrakk}x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ x{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharequal}\ y\isanewline
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    76
\ {\isadigit{4}}{\isachardot}\ {\isasymAnd}{\isacharparenleft}x{\isasymColon}bool{\isacharparenright}\ y{\isasymColon}bool{\isachardot}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isasymand}\ x\ {\isasymnoteq}\ y{\isacharparenright}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    77
\end{isabelle}
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    78
Fortunately, the proof is easy for \isa{blast}
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    79
once we have unfolded the definitions
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    80
of \isa{{\isacharless}{\isacharless}} and \isa{{\isacharless}{\isacharless}{\isacharequal}} at type \isa{bool}:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    81
\end{isamarkuptxt}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    82
\isacommand{apply}{\isacharparenleft}simp{\isacharunderscore}all\ {\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}use{\isacharparenright}\ only{\isacharcolon}\ le{\isacharunderscore}bool{\isacharunderscore}def\ less{\isacharunderscore}bool{\isacharunderscore}def{\isacharparenright}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    83
\isacommand{by}{\isacharparenleft}blast{\isacharcomma}\ blast{\isacharcomma}\ blast{\isacharcomma}\ blast{\isacharparenright}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    84
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    85
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    86
Can you figure out why we have to include \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}use{\isacharparenright}}?
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    87
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    88
We can now apply our single lemma above in the context of booleans:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    89
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    90
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}P{\isacharcolon}{\isacharcolon}bool{\isacharparenright}\ {\isacharless}{\isacharless}\ Q\ {\isasymLongrightarrow}\ {\isasymnot}{\isacharparenleft}Q\ {\isacharless}{\isacharless}\ P{\isacharparenright}{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    91
\isacommand{by}\ simp%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    92
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    93
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
    94
The effect is not stunning, but it demonstrates the principle.  It also shows
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    95
that tools like the simplifier can deal with generic rules.
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    96
The main advantage of the axiomatic method is that
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
    97
theorems can be proved in the abstract and freely reused for each instance.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    98
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
    99
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   100
\isamarkupsubsubsection{Linear Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   101
}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   102
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   103
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   104
If any two elements of a partial order are comparable it is a
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   105
\textbf{linear} or \textbf{total} order:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   106
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   107
\isacommand{axclass}\ linord\ {\isacharless}\ parord\isanewline
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   108
linear{\isacharcolon}\ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isasymor}\ y\ {\isacharless}{\isacharless}{\isacharequal}\ x{\isachardoublequote}%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   109
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   110
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   111
By construction, \isa{linord} inherits all axioms from \isa{parord}.
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   112
Therefore we can show that linearity can be expressed in terms of \isa{{\isacharless}{\isacharless}}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   113
as follows:%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   114
\end{isamarkuptext}%
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   115
\isacommand{lemma}\ {\isachardoublequote}{\isasymAnd}x{\isacharcolon}{\isacharcolon}{\isacharprime}a{\isacharcolon}{\isacharcolon}linord{\isachardot}\ x\ {\isacharless}{\isacharless}\ y\ {\isasymor}\ x\ {\isacharequal}\ y\ {\isasymor}\ y\ {\isacharless}{\isacharless}\ x{\isachardoublequote}\isanewline
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   116
\isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}\ less{\isacharunderscore}le{\isacharparenright}\isanewline
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   117
\isacommand{apply}{\isacharparenleft}insert\ linear{\isacharparenright}\isanewline
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   118
\isacommand{apply}\ blast\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   119
\isacommand{done}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   120
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   121
Linear orders are an example of subclassing\index{subclasses}
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   122
by construction, which is the most
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   123
common case.  Subclass relationships can also be proved.  
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   124
This is the topic of the following
10654
458068404143 *** empty log message ***
nipkow
parents: 10645
diff changeset
   125
paragraph.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   126
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   127
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   128
\isamarkupsubsubsection{Strict Orders%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   129
}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   130
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   131
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   132
An alternative axiomatization of partial orders takes \isa{{\isacharless}{\isacharless}} rather than
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   133
\isa{{\isacharless}{\isacharless}{\isacharequal}} as the primary concept. The result is a \textbf{strict} order:%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   134
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   135
\isacommand{axclass}\ strord\ {\isacharless}\ ordrel\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   136
irrefl{\isacharcolon}\ \ \ \ \ {\isachardoublequote}{\isasymnot}\ x\ {\isacharless}{\isacharless}\ x{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   137
less{\isacharunderscore}trans{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ x\ {\isacharless}{\isacharless}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}\ z\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}\ z{\isachardoublequote}\isanewline
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   138
le{\isacharunderscore}less{\isacharcolon}\ \ \ \ {\isachardoublequote}x\ {\isacharless}{\isacharless}{\isacharequal}\ y\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}\ y\ {\isasymor}\ x\ {\isacharequal}\ y{\isacharparenright}{\isachardoublequote}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   139
\begin{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   140
\noindent
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   141
It is well known that partial orders are the same as strict orders. Let us
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   142
prove one direction, namely that partial orders are a subclass of strict
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   143
orders.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   144
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   145
\isacommand{instance}\ parord\ {\isacharless}\ strord\isanewline
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   146
\isacommand{apply}\ intro{\isacharunderscore}classes%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   147
\begin{isamarkuptxt}%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   148
\noindent
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   149
\begin{isabelle}%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   150
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isasymColon}{\isacharprime}a{\isachardot}\ {\isasymnot}\ x\ {\isacharless}{\isacharless}\ x\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   151
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}{\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharparenleft}y{\isasymColon}{\isacharprime}a{\isacharparenright}\ z{\isasymColon}{\isacharprime}a{\isachardot}\ {\isasymlbrakk}x\ {\isacharless}{\isacharless}\ y{\isacharsemicolon}\ y\ {\isacharless}{\isacharless}\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isacharless}{\isacharless}\ z\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   152
\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}{\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isacharparenright}\ y{\isasymColon}{\isacharprime}a{\isachardot}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}{\isacharequal}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharless}{\isacharless}\ y\ {\isasymor}\ x\ {\isacharequal}\ y{\isacharparenright}\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   153
type\ variables{\isacharcolon}\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   154
\isaindent{\ \ }{\isacharprime}a\ {\isacharcolon}{\isacharcolon}\ parord%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   155
\end{isabelle}
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   156
Assuming \isa{{\isacharprime}a\ {\isacharcolon}{\isacharcolon}\ parord}, the three axioms of class \isa{strord}
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   157
are easily proved:%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   158
\end{isamarkuptxt}%
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   159
\ \ \isacommand{apply}{\isacharparenleft}simp{\isacharunderscore}all\ {\isacharparenleft}no{\isacharunderscore}asm{\isacharunderscore}use{\isacharparenright}\ add{\isacharcolon}less{\isacharunderscore}le{\isacharparenright}\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   160
\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ trans\ antisym{\isacharparenright}\isanewline
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   161
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ refl{\isacharparenright}\isanewline
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   162
\isacommand{done}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   163
\begin{isamarkuptext}%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   164
The subclass relation must always be acyclic. Therefore Isabelle will
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   165
complain if you also prove the relationship \isa{strord\ {\isacharless}\ parord}.%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   166
\end{isamarkuptext}%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   167
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   168
\isamarkupsubsubsection{Multiple Inheritance and Sorts%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   169
}
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   170
%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   171
\begin{isamarkuptext}%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   172
A class may inherit from more than one direct superclass. This is called
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   173
\bfindex{multiple inheritance}.  For example, we could define
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   174
the classes of well-founded orderings and well-orderings:%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   175
\end{isamarkuptext}%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   176
\isacommand{axclass}\ wford\ {\isacharless}\ parord\isanewline
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   177
wford{\isacharcolon}\ {\isachardoublequote}wf\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ y\ {\isacharless}{\isacharless}\ x{\isacharbraceright}{\isachardoublequote}\isanewline
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   178
\isanewline
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   179
\isacommand{axclass}\ wellord\ {\isacharless}\ linord{\isacharcomma}\ wford%
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   180
\begin{isamarkuptext}%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   181
\noindent
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   182
The last line expresses the usual definition: a well-ordering is a linear
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   183
well-founded ordering. The result is the subclass diagram in
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   184
Figure~\ref{fig:subclass}.
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   185
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   186
\begin{figure}[htbp]
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   187
\[
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   188
\begin{array}{r@ {}r@ {}c@ {}l@ {}l}
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   189
& & \isa{term}\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   190
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   191
& & \isa{ordrel}\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   192
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   193
& & \isa{strord}\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   194
& & |\\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   195
& & \isa{parord} \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   196
& / & & \backslash \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   197
\isa{linord} & & & & \isa{wford} \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   198
& \backslash & & / \\
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   199
& & \isa{wellord}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   200
\end{array}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   201
\]
10878
b254d5ad6dd4 auto update
paulson
parents: 10845
diff changeset
   202
\caption{Subclass Diagram}
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   203
\label{fig:subclass}
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   204
\end{figure}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   205
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   206
Since class \isa{wellord} does not introduce any new axioms, it can simply
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   207
be viewed as the intersection of the two classes \isa{linord} and \isa{wford}. Such intersections need not be given a new name but can be created on
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   208
the fly: the expression $\{C@1,\dots,C@n\}$, where the $C@i$ are classes,
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   209
represents the intersection of the $C@i$. Such an expression is called a
11428
332347b9b942 tidying the index
paulson
parents: 11196
diff changeset
   210
\textbf{sort},\index{sorts} and sorts can appear in most places where we have only shown
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   211
classes so far, for example in type constraints: \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}{\isacharbraceleft}linord{\isacharcomma}wford{\isacharbraceright}}.
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10878
diff changeset
   212
In fact, \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}C} is short for \isa{{\isacharprime}a{\isacharcolon}{\isacharcolon}{\isacharbraceleft}C{\isacharbraceright}}.
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   213
However, we do not pursue this rarefied concept further.
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   214
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   215
This concludes our demonstration of type classes based on orderings.  We
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   216
remind our readers that \isa{Main} contains a theory of
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   217
orderings phrased in terms of the usual \isa{{\isasymle}} and \isa{{\isacharless}}.
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   218
If possible, base your own ordering relations on this theory.%
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   219
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   220
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   221
\isamarkupsubsubsection{Inconsistencies%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   222
}
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   223
%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   224
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11428
diff changeset
   225
The reader may be wondering what happens if we
10328
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   226
attach an inconsistent set of axioms to a class. So far we have always
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   227
avoided to add new axioms to HOL for fear of inconsistencies and suddenly it
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   228
seems that we are throwing all caution to the wind. So why is there no
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   229
problem?
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   230
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   231
The point is that by construction, all type variables in the axioms of an
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   232
\isacommand{axclass} are automatically constrained with the class being
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   233
defined (as shown for axiom \isa{refl} above). These constraints are
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   234
always carried around and Isabelle takes care that they are never lost,
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   235
unless the type variable is instantiated with a type that has been shown to
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   236
belong to that class. Thus you may be able to prove \isa{False}
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   237
from your axioms, but Isabelle will remind you that this
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   238
theorem has the hidden hypothesis that the class is non-empty.%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   239
\end{isamarkuptext}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   240
\end{isabellebody}%
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   241
%%% Local Variables:
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   242
%%% mode: latex
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   243
%%% TeX-master: "root"
bf33cbd76c05 *** empty log message ***
nipkow
parents:
diff changeset
   244
%%% End: