| 
420
 | 
     1  | 
(*  Title:      LCF/ex.ML
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
420
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
0
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Some examples from Lawrence Paulson's book Logic and Computation.
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
  | 
| 
420
 | 
    10  | 
LCF_build_completed;    (*Cause examples to fail if LCF did*)
  | 
| 
0
 | 
    11  | 
  | 
| 
 | 
    12  | 
proof_timing := true;
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
(***  Section 10.4  ***)
  | 
| 
 | 
    15  | 
  | 
| 
420
 | 
    16  | 
val ex_thy =
  | 
| 
 | 
    17  | 
  thy
  | 
| 
 | 
    18  | 
  |> add_consts
  | 
| 
 | 
    19  | 
   [("P", "'a => tr", NoSyn),
 | 
| 
 | 
    20  | 
    ("G", "'a => 'a", NoSyn),
 | 
| 
 | 
    21  | 
    ("H", "'a => 'a", NoSyn),
 | 
| 
 | 
    22  | 
    ("K", "('a => 'a) => ('a => 'a)", NoSyn)]
 | 
| 
 | 
    23  | 
  |> add_axioms
  | 
| 
 | 
    24  | 
   [("P_strict", "P(UU) = UU"),
 | 
| 
 | 
    25  | 
    ("K", "K = (%h x. P(x) => x | h(h(G(x))))"),
 | 
| 
 | 
    26  | 
    ("H", "H = FIX(K)")]
 | 
| 
 | 
    27  | 
  |> add_thyname "Ex 10.4";
  | 
| 
 | 
    28  | 
  | 
| 
0
 | 
    29  | 
val ax = get_axiom ex_thy;
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
val P_strict = ax"P_strict";
  | 
| 
 | 
    32  | 
val K = ax"K";
  | 
| 
 | 
    33  | 
val H = ax"H";
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
val ex_ss = LCF_ss addsimps [P_strict,K];
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
val H_unfold = prove_goal ex_thy "H = K(H)"
  | 
| 
 | 
    39  | 
 (fn _ => [stac H 1, rtac (FIX_eq RS sym) 1]);
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
val H_strict = prove_goal ex_thy "H(UU)=UU"
  | 
| 
 | 
    42  | 
 (fn _ => [stac H_unfold 1, simp_tac ex_ss 1]);
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
val ex_ss = ex_ss addsimps [H_strict];
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
goal ex_thy "ALL x. H(FIX(K,x)) = FIX(K,x)";
  | 
| 
 | 
    47  | 
by(induct_tac "K" 1);
  | 
| 
 | 
    48  | 
by(simp_tac ex_ss 1);
  | 
| 
 | 
    49  | 
by(simp_tac (ex_ss setloop (split_tac [COND_cases_iff])) 1);
  | 
| 
 | 
    50  | 
by(strip_tac 1);
  | 
| 
 | 
    51  | 
by(stac H_unfold 1);
  | 
| 
 | 
    52  | 
by(asm_simp_tac ex_ss 1);
  | 
| 
 | 
    53  | 
val H_idemp_lemma = topthm();
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
val H_idemp = rewrite_rule [mk_meta_eq (H RS sym)] H_idemp_lemma;
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
(***  Example 3.8  ***)
  | 
| 
 | 
    59  | 
  | 
| 
420
 | 
    60  | 
val ex_thy =
  | 
| 
 | 
    61  | 
  thy
  | 
| 
 | 
    62  | 
  |> add_consts
  | 
| 
 | 
    63  | 
   [("P", "'a => tr", NoSyn),
 | 
| 
 | 
    64  | 
    ("F", "'a => 'a", NoSyn),
 | 
| 
 | 
    65  | 
    ("G", "'a => 'a", NoSyn),
 | 
| 
 | 
    66  | 
    ("H", "'a => 'b => 'b", NoSyn),
 | 
| 
 | 
    67  | 
    ("K", "('a => 'b => 'b) => ('a => 'b => 'b)", NoSyn)]
 | 
| 
 | 
    68  | 
  |> add_axioms
  | 
| 
 | 
    69  | 
   [("F_strict", "F(UU) = UU"),
 | 
| 
 | 
    70  | 
    ("K", "K = (%h x y. P(x) => y | F(h(G(x),y)))"),
 | 
| 
 | 
    71  | 
    ("H", "H = FIX(K)")]
 | 
| 
 | 
    72  | 
  |> add_thyname "Ex 3.8";
  | 
| 
 | 
    73  | 
  | 
| 
0
 | 
    74  | 
val ax = get_axiom ex_thy;
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
val F_strict = ax"F_strict";
  | 
| 
 | 
    77  | 
val K = ax"K";
  | 
| 
 | 
    78  | 
val H = ax"H";
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
val ex_ss = LCF_ss addsimps [F_strict,K];
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
goal ex_thy "ALL x. F(H(x::'a,y::'b)) = H(x,F(y))";
  | 
| 
 | 
    83  | 
by(stac H 1);
  | 
| 
 | 
    84  | 
by(induct_tac "K::('a=>'b=>'b)=>('a=>'b=>'b)" 1);
 | 
| 
 | 
    85  | 
by(simp_tac ex_ss 1);
  | 
| 
 | 
    86  | 
by(asm_simp_tac (ex_ss setloop (split_tac [COND_cases_iff])) 1);
  | 
| 
 | 
    87  | 
result();
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
(*** Addition with fixpoint of successor ***)
  | 
| 
 | 
    91  | 
  | 
| 
420
 | 
    92  | 
val ex_thy =
  | 
| 
 | 
    93  | 
  thy
  | 
| 
 | 
    94  | 
  |> add_consts
  | 
| 
 | 
    95  | 
   [("s", "'a => 'a", NoSyn),
 | 
| 
 | 
    96  | 
    ("p", "'a => 'a => 'a", NoSyn)]
 | 
| 
 | 
    97  | 
  |> add_axioms
  | 
| 
 | 
    98  | 
   [("p_strict", "p(UU) = UU"),
 | 
| 
 | 
    99  | 
    ("p_s", "p(s(x),y) = s(p(x,y))")]
 | 
| 
 | 
   100  | 
  |> add_thyname "fix ex";
  | 
| 
 | 
   101  | 
  | 
| 
0
 | 
   102  | 
val ax = get_axiom ex_thy;
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
val p_strict = ax"p_strict";
  | 
| 
 | 
   105  | 
val p_s = ax"p_s";
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
val ex_ss = LCF_ss addsimps [p_strict,p_s];
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
goal ex_thy "p(FIX(s),y) = FIX(s)";
  | 
| 
 | 
   110  | 
by(induct_tac "s" 1);
  | 
| 
 | 
   111  | 
by(simp_tac ex_ss 1);
  | 
| 
 | 
   112  | 
by(simp_tac ex_ss 1);
  | 
| 
 | 
   113  | 
result();
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
(*** Prefixpoints ***)
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
val asms = goal thy "[| f(p) << p; !!q. f(q) << q ==> p << q |] ==> FIX(f)=p";
  | 
| 
 | 
   119  | 
by(rewtac eq_def);
  | 
| 
 | 
   120  | 
by (rtac conjI 1);
  | 
| 
 | 
   121  | 
by(induct_tac "f" 1);
  | 
| 
 | 
   122  | 
by (rtac minimal 1);
  | 
| 
 | 
   123  | 
by(strip_tac 1);
  | 
| 
 | 
   124  | 
by (rtac less_trans 1);
  | 
| 
 | 
   125  | 
by (resolve_tac asms 2);
  | 
| 
 | 
   126  | 
by (etac less_ap_term 1);
  | 
| 
 | 
   127  | 
by (resolve_tac asms 1);
  | 
| 
 | 
   128  | 
by (rtac (FIX_eq RS eq_imp_less1) 1);
  | 
| 
 | 
   129  | 
result();
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
maketest"END: file for LCF examples";
  |