author | wenzelm |
Wed, 07 Sep 2011 00:08:09 +0200 | |
changeset 44762 | 8f9d09241a68 |
parent 43270 | bc72c1ccc89e |
permissions | -rw-r--r-- |
6580 | 1 |
\chapter{Higher-Order Logic} |
2 |
\index{higher-order logic|(} |
|
3 |
\index{HOL system@{\sc hol} system} |
|
4 |
||
5 |
\begin{figure} |
|
6 |
\begin{constants} |
|
7 |
\it name &\it meta-type & \it description \\ |
|
8 |
\cdx{Trueprop}& $bool\To prop$ & coercion to $prop$\\ |
|
7490 | 9 |
\cdx{Not} & $bool\To bool$ & negation ($\lnot$) \\ |
6580 | 10 |
\cdx{True} & $bool$ & tautology ($\top$) \\ |
11 |
\cdx{False} & $bool$ & absurdity ($\bot$) \\ |
|
12 |
\cdx{If} & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\ |
|
13 |
\cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder |
|
14 |
\end{constants} |
|
15 |
\subcaption{Constants} |
|
16 |
||
17 |
\begin{constants} |
|
18 |
\index{"@@{\tt\at} symbol} |
|
19 |
\index{*"! symbol}\index{*"? symbol} |
|
20 |
\index{*"?"! symbol}\index{*"E"X"! symbol} |
|
21 |
\it symbol &\it name &\it meta-type & \it description \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
22 |
\sdx{SOME} or \tt\at & \cdx{Eps} & $(\alpha\To bool)\To\alpha$ & |
6580 | 23 |
Hilbert description ($\varepsilon$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
24 |
\sdx{ALL} or {\tt!~} & \cdx{All} & $(\alpha\To bool)\To bool$ & |
6580 | 25 |
universal quantifier ($\forall$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
26 |
\sdx{EX} or {\tt?~} & \cdx{Ex} & $(\alpha\To bool)\To bool$ & |
6580 | 27 |
existential quantifier ($\exists$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
28 |
\texttt{EX!} or {\tt?!} & \cdx{Ex1} & $(\alpha\To bool)\To bool$ & |
6580 | 29 |
unique existence ($\exists!$)\\ |
30 |
\texttt{LEAST} & \cdx{Least} & $(\alpha::ord \To bool)\To\alpha$ & |
|
31 |
least element |
|
32 |
\end{constants} |
|
33 |
\subcaption{Binders} |
|
34 |
||
35 |
\begin{constants} |
|
36 |
\index{*"= symbol} |
|
37 |
\index{&@{\tt\&} symbol} |
|
43077
7d69154d824b
Workaround for bug involving makeindex, hyperref and the | symbol
paulson
parents:
42673
diff
changeset
|
38 |
\index{"!@{\tt\char124} symbol} %\char124 is vertical bar. We use ! because | stopped working |
6580 | 39 |
\index{*"-"-"> symbol} |
40 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
41 |
\sdx{o} & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & |
|
42 |
Left 55 & composition ($\circ$) \\ |
|
43 |
\tt = & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\ |
|
44 |
\tt < & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\ |
|
45 |
\tt <= & $[\alpha::ord,\alpha]\To bool$ & Left 50 & |
|
46 |
less than or equals ($\leq$)\\ |
|
47 |
\tt \& & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\ |
|
48 |
\tt | & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\ |
|
49 |
\tt --> & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$) |
|
50 |
\end{constants} |
|
51 |
\subcaption{Infixes} |
|
52 |
\caption{Syntax of \texttt{HOL}} \label{hol-constants} |
|
53 |
\end{figure} |
|
54 |
||
55 |
||
56 |
\begin{figure} |
|
57 |
\index{*let symbol} |
|
58 |
\index{*in symbol} |
|
59 |
\dquotes |
|
60 |
\[\begin{array}{rclcl} |
|
61 |
term & = & \hbox{expression of class~$term$} \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
62 |
& | & "SOME~" id " . " formula |
6580 | 63 |
& | & "\at~" id " . " formula \\ |
64 |
& | & |
|
65 |
\multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\ |
|
66 |
& | & |
|
67 |
\multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\ |
|
68 |
& | & "LEAST"~ id " . " formula \\[2ex] |
|
69 |
formula & = & \hbox{expression of type~$bool$} \\ |
|
70 |
& | & term " = " term \\ |
|
71 |
& | & term " \ttilde= " term \\ |
|
72 |
& | & term " < " term \\ |
|
73 |
& | & term " <= " term \\ |
|
74 |
& | & "\ttilde\ " formula \\ |
|
75 |
& | & formula " \& " formula \\ |
|
76 |
& | & formula " | " formula \\ |
|
77 |
& | & formula " --> " formula \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
78 |
& | & "ALL~" id~id^* " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
79 |
& | & "!~~~" id~id^* " . " formula \\ |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
80 |
& | & "EX~~" id~id^* " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
81 |
& | & "?~~~" id~id^* " . " formula \\ |
6580 | 82 |
& | & "EX!~" id~id^* " . " formula |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
83 |
& | & "?!~~" id~id^* " . " formula \\ |
6580 | 84 |
\end{array} |
85 |
\] |
|
9695 | 86 |
\caption{Full grammar for HOL} \label{hol-grammar} |
6580 | 87 |
\end{figure} |
88 |
||
89 |
||
90 |
\section{Syntax} |
|
91 |
||
92 |
Figure~\ref{hol-constants} lists the constants (including infixes and |
|
93 |
binders), while Fig.\ts\ref{hol-grammar} presents the grammar of |
|
94 |
higher-order logic. Note that $a$\verb|~=|$b$ is translated to |
|
7490 | 95 |
$\lnot(a=b)$. |
6580 | 96 |
|
97 |
\begin{warn} |
|
9695 | 98 |
HOL has no if-and-only-if connective; logical equivalence is expressed using |
99 |
equality. But equality has a high priority, as befitting a relation, while |
|
100 |
if-and-only-if typically has the lowest priority. Thus, $\lnot\lnot P=P$ |
|
101 |
abbreviates $\lnot\lnot (P=P)$ and not $(\lnot\lnot P)=P$. When using $=$ |
|
102 |
to mean logical equivalence, enclose both operands in parentheses. |
|
6580 | 103 |
\end{warn} |
104 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
105 |
\subsection{Types and overloading} |
6580 | 106 |
The universal type class of higher-order terms is called~\cldx{term}. |
107 |
By default, explicit type variables have class \cldx{term}. In |
|
108 |
particular the equality symbol and quantifiers are polymorphic over |
|
109 |
class \texttt{term}. |
|
110 |
||
111 |
The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus, |
|
112 |
formulae are terms. The built-in type~\tydx{fun}, which constructs |
|
113 |
function types, is overloaded with arity {\tt(term,\thinspace |
|
114 |
term)\thinspace term}. Thus, $\sigma\To\tau$ belongs to class~{\tt |
|
115 |
term} if $\sigma$ and~$\tau$ do, allowing quantification over |
|
116 |
functions. |
|
117 |
||
42907
dfd4ef8e73f6
updated and re-unified HOL typedef, with some live examples;
wenzelm
parents:
42673
diff
changeset
|
118 |
HOL allows new types to be declared as subsets of existing types, |
dfd4ef8e73f6
updated and re-unified HOL typedef, with some live examples;
wenzelm
parents:
42673
diff
changeset
|
119 |
either using the primitive \texttt{typedef} or the more convenient |
dfd4ef8e73f6
updated and re-unified HOL typedef, with some live examples;
wenzelm
parents:
42673
diff
changeset
|
120 |
\texttt{datatype} (see~{\S}\ref{sec:HOL:datatype}). |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
121 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
122 |
Several syntactic type classes --- \cldx{plus}, \cldx{minus}, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
123 |
\cldx{times} and |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
124 |
\cldx{power} --- permit overloading of the operators {\tt+},\index{*"+ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
125 |
symbol} {\tt-}\index{*"- symbol}, {\tt*}.\index{*"* symbol} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
126 |
and \verb|^|.\index{^@\verb.^. symbol} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
127 |
% |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
128 |
They are overloaded to denote the obvious arithmetic operations on types |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
129 |
\tdx{nat}, \tdx{int} and~\tdx{real}. (With the \verb|^| operator, the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
130 |
exponent always has type~\tdx{nat}.) Non-arithmetic overloadings are also |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
131 |
done: the operator {\tt-} can denote set difference, while \verb|^| can |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
132 |
denote exponentiation of relations (iterated composition). Unary minus is |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
133 |
also written as~{\tt-} and is overloaded like its 2-place counterpart; it even |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
134 |
can stand for set complement. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
135 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
136 |
The constant \cdx{0} is also overloaded. It serves as the zero element of |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
137 |
several types, of which the most important is \tdx{nat} (the natural |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
138 |
numbers). The type class \cldx{plus_ac0} comprises all types for which 0 |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
139 |
and~+ satisfy the laws $x+y=y+x$, $(x+y)+z = x+(y+z)$ and $0+x = x$. These |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
140 |
types include the numeric ones \tdx{nat}, \tdx{int} and~\tdx{real} and also |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
141 |
multisets. The summation operator \cdx{setsum} is available for all types in |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
142 |
this class. |
6580 | 143 |
|
144 |
Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
145 |
signatures. The relations $<$ and $\leq$ are polymorphic over this |
6580 | 146 |
class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and |
147 |
the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
148 |
\cldx{order} of \cldx{ord} which axiomatizes the types that are partially |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
149 |
ordered with respect to~$\leq$. A further subclass \cldx{linorder} of |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
150 |
\cldx{order} axiomatizes linear orderings. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
151 |
For details, see the file \texttt{Ord.thy}. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
152 |
|
6580 | 153 |
If you state a goal containing overloaded functions, you may need to include |
154 |
type constraints. Type inference may otherwise make the goal more |
|
155 |
polymorphic than you intended, with confusing results. For example, the |
|
7490 | 156 |
variables $i$, $j$ and $k$ in the goal $i \leq j \Imp i \leq j+k$ have type |
6580 | 157 |
$\alpha::\{ord,plus\}$, although you may have expected them to have some |
158 |
numeric type, e.g. $nat$. Instead you should have stated the goal as |
|
7490 | 159 |
$(i::nat) \leq j \Imp i \leq j+k$, which causes all three variables to have |
6580 | 160 |
type $nat$. |
161 |
||
162 |
\begin{warn} |
|
163 |
If resolution fails for no obvious reason, try setting |
|
164 |
\ttindex{show_types} to \texttt{true}, causing Isabelle to display |
|
165 |
types of terms. Possibly set \ttindex{show_sorts} to \texttt{true} as |
|
166 |
well, causing Isabelle to display type classes and sorts. |
|
167 |
||
168 |
\index{unification!incompleteness of} |
|
169 |
Where function types are involved, Isabelle's unification code does not |
|
170 |
guarantee to find instantiations for type variables automatically. Be |
|
171 |
prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac}, |
|
172 |
possibly instantiating type variables. Setting |
|
173 |
\ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report |
|
174 |
omitted search paths during unification.\index{tracing!of unification} |
|
175 |
\end{warn} |
|
176 |
||
177 |
||
178 |
\subsection{Binders} |
|
179 |
||
9695 | 180 |
Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for some~$x$ |
181 |
satisfying~$P$, if such exists. Since all terms in HOL denote something, a |
|
182 |
description is always meaningful, but we do not know its value unless $P$ |
|
183 |
defines it uniquely. We may write descriptions as \cdx{Eps}($\lambda x. |
|
184 |
P[x]$) or use the syntax \hbox{\tt SOME~$x$.~$P[x]$}. |
|
6580 | 185 |
|
186 |
Existential quantification is defined by |
|
187 |
\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \] |
|
188 |
The unique existence quantifier, $\exists!x. P$, is defined in terms |
|
189 |
of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested |
|
190 |
quantifications. For instance, $\exists!x\,y. P\,x\,y$ abbreviates |
|
191 |
$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there |
|
192 |
exists a unique pair $(x,y)$ satisfying~$P\,x\,y$. |
|
193 |
||
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
194 |
\medskip |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
195 |
|
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
196 |
\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} The |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
197 |
basic Isabelle/HOL binders have two notations. Apart from the usual |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
198 |
\texttt{ALL} and \texttt{EX} for $\forall$ and $\exists$, Isabelle/HOL also |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
199 |
supports the original notation of Gordon's {\sc hol} system: \texttt{!}\ |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
200 |
and~\texttt{?}. In the latter case, the existential quantifier \emph{must} be |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
201 |
followed by a space; thus {\tt?x} is an unknown, while \verb'? x. f x=y' is a |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
202 |
quantification. Both notations are accepted for input. The print mode |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
203 |
``\ttindexbold{HOL}'' governs the output notation. If enabled (e.g.\ by |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
204 |
passing option \texttt{-m HOL} to the \texttt{isabelle} executable), |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
205 |
then~{\tt!}\ and~{\tt?}\ are displayed. |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
206 |
|
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
207 |
\medskip |
6580 | 208 |
|
209 |
If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a |
|
210 |
variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined |
|
7490 | 211 |
to be the least (w.r.t.\ $\leq$) $x$ such that $P~x$ holds (see |
6580 | 212 |
Fig.~\ref{hol-defs}). The definition uses Hilbert's $\varepsilon$ |
213 |
choice operator, so \texttt{Least} is always meaningful, but may yield |
|
214 |
nothing useful in case there is not a unique least element satisfying |
|
215 |
$P$.\footnote{Class $ord$ does not require much of its instances, so |
|
7490 | 216 |
$\leq$ need not be a well-ordering, not even an order at all!} |
6580 | 217 |
|
218 |
\medskip All these binders have priority 10. |
|
219 |
||
220 |
\begin{warn} |
|
221 |
The low priority of binders means that they need to be enclosed in |
|
222 |
parenthesis when they occur in the context of other operations. For example, |
|
223 |
instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$. |
|
224 |
\end{warn} |
|
225 |
||
226 |
||
6620 | 227 |
\subsection{The let and case constructions} |
6580 | 228 |
Local abbreviations can be introduced by a \texttt{let} construct whose |
229 |
syntax appears in Fig.\ts\ref{hol-grammar}. Internally it is translated into |
|
230 |
the constant~\cdx{Let}. It can be expanded by rewriting with its |
|
231 |
definition, \tdx{Let_def}. |
|
232 |
||
9695 | 233 |
HOL also defines the basic syntax |
6580 | 234 |
\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] |
235 |
as a uniform means of expressing \texttt{case} constructs. Therefore \texttt{case} |
|
236 |
and \sdx{of} are reserved words. Initially, this is mere syntax and has no |
|
237 |
logical meaning. By declaring translations, you can cause instances of the |
|
238 |
\texttt{case} construct to denote applications of particular case operators. |
|
239 |
This is what happens automatically for each \texttt{datatype} definition |
|
7490 | 240 |
(see~{\S}\ref{sec:HOL:datatype}). |
6580 | 241 |
|
242 |
\begin{warn} |
|
243 |
Both \texttt{if} and \texttt{case} constructs have as low a priority as |
|
244 |
quantifiers, which requires additional enclosing parentheses in the context |
|
245 |
of most other operations. For example, instead of $f~x = {\tt if\dots |
|
246 |
then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots |
|
247 |
else\dots})$. |
|
248 |
\end{warn} |
|
249 |
||
250 |
\section{Rules of inference} |
|
251 |
||
252 |
\begin{figure} |
|
253 |
\begin{ttbox}\makeatother |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
254 |
\tdx{refl} t = (t::'a) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
255 |
\tdx{subst} [| s = t; P s |] ==> P (t::'a) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
256 |
\tdx{ext} (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
257 |
\tdx{impI} (P ==> Q) ==> P-->Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
258 |
\tdx{mp} [| P-->Q; P |] ==> Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
259 |
\tdx{iff} (P-->Q) --> (Q-->P) --> (P=Q) |
9969 | 260 |
\tdx{someI} P(x::'a) ==> P(@x. P x) |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
261 |
\tdx{True_or_False} (P=True) | (P=False) |
6580 | 262 |
\end{ttbox} |
263 |
\caption{The \texttt{HOL} rules} \label{hol-rules} |
|
264 |
\end{figure} |
|
265 |
||
9695 | 266 |
Figure~\ref{hol-rules} shows the primitive inference rules of~HOL, with |
267 |
their~{\ML} names. Some of the rules deserve additional comments: |
|
6580 | 268 |
\begin{ttdescription} |
269 |
\item[\tdx{ext}] expresses extensionality of functions. |
|
270 |
\item[\tdx{iff}] asserts that logically equivalent formulae are |
|
271 |
equal. |
|
9969 | 272 |
\item[\tdx{someI}] gives the defining property of the Hilbert |
6580 | 273 |
$\varepsilon$-operator. It is a form of the Axiom of Choice. The derived rule |
9969 | 274 |
\tdx{some_equality} (see below) is often easier to use. |
6580 | 275 |
\item[\tdx{True_or_False}] makes the logic classical.\footnote{In |
276 |
fact, the $\varepsilon$-operator already makes the logic classical, as |
|
277 |
shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.} |
|
278 |
\end{ttdescription} |
|
279 |
||
280 |
||
281 |
\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message |
|
282 |
\begin{ttbox}\makeatother |
|
283 |
\tdx{True_def} True == ((\%x::bool. x)=(\%x. x)) |
|
284 |
\tdx{All_def} All == (\%P. P = (\%x. True)) |
|
285 |
\tdx{Ex_def} Ex == (\%P. P(@x. P x)) |
|
286 |
\tdx{False_def} False == (!P. P) |
|
287 |
\tdx{not_def} not == (\%P. P-->False) |
|
288 |
\tdx{and_def} op & == (\%P Q. !R. (P-->Q-->R) --> R) |
|
289 |
\tdx{or_def} op | == (\%P Q. !R. (P-->R) --> (Q-->R) --> R) |
|
290 |
\tdx{Ex1_def} Ex1 == (\%P. ? x. P x & (! y. P y --> y=x)) |
|
291 |
||
292 |
\tdx{o_def} op o == (\%(f::'b=>'c) g x::'a. f(g x)) |
|
293 |
\tdx{if_def} If P x y == |
|
294 |
(\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y)) |
|
295 |
\tdx{Let_def} Let s f == f s |
|
296 |
\tdx{Least_def} Least P == @x. P(x) & (ALL y. P(y) --> x <= y)" |
|
297 |
\end{ttbox} |
|
298 |
\caption{The \texttt{HOL} definitions} \label{hol-defs} |
|
299 |
\end{figure} |
|
300 |
||
301 |
||
9695 | 302 |
HOL follows standard practice in higher-order logic: only a few connectives |
303 |
are taken as primitive, with the remainder defined obscurely |
|
6580 | 304 |
(Fig.\ts\ref{hol-defs}). Gordon's {\sc hol} system expresses the |
305 |
corresponding definitions \cite[page~270]{mgordon-hol} using |
|
9695 | 306 |
object-equality~({\tt=}), which is possible because equality in higher-order |
307 |
logic may equate formulae and even functions over formulae. But theory~HOL, |
|
308 |
like all other Isabelle theories, uses meta-equality~({\tt==}) for |
|
309 |
definitions. |
|
6580 | 310 |
\begin{warn} |
311 |
The definitions above should never be expanded and are shown for completeness |
|
312 |
only. Instead users should reason in terms of the derived rules shown below |
|
42924 | 313 |
or, better still, using high-level tactics. |
6580 | 314 |
\end{warn} |
315 |
||
316 |
Some of the rules mention type variables; for example, \texttt{refl} |
|
317 |
mentions the type variable~{\tt'a}. This allows you to instantiate |
|
318 |
type variables explicitly by calling \texttt{res_inst_tac}. |
|
319 |
||
320 |
||
321 |
\begin{figure} |
|
322 |
\begin{ttbox} |
|
323 |
\tdx{sym} s=t ==> t=s |
|
324 |
\tdx{trans} [| r=s; s=t |] ==> r=t |
|
325 |
\tdx{ssubst} [| t=s; P s |] ==> P t |
|
326 |
\tdx{box_equals} [| a=b; a=c; b=d |] ==> c=d |
|
327 |
\tdx{arg_cong} x = y ==> f x = f y |
|
328 |
\tdx{fun_cong} f = g ==> f x = g x |
|
329 |
\tdx{cong} [| f = g; x = y |] ==> f x = g y |
|
330 |
\tdx{not_sym} t ~= s ==> s ~= t |
|
331 |
\subcaption{Equality} |
|
332 |
||
333 |
\tdx{TrueI} True |
|
334 |
\tdx{FalseE} False ==> P |
|
335 |
||
336 |
\tdx{conjI} [| P; Q |] ==> P&Q |
|
337 |
\tdx{conjunct1} [| P&Q |] ==> P |
|
338 |
\tdx{conjunct2} [| P&Q |] ==> Q |
|
339 |
\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R |
|
340 |
||
341 |
\tdx{disjI1} P ==> P|Q |
|
342 |
\tdx{disjI2} Q ==> P|Q |
|
343 |
\tdx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R |
|
344 |
||
345 |
\tdx{notI} (P ==> False) ==> ~ P |
|
346 |
\tdx{notE} [| ~ P; P |] ==> R |
|
347 |
\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R |
|
348 |
\subcaption{Propositional logic} |
|
349 |
||
350 |
\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q |
|
351 |
\tdx{iffD1} [| P=Q; P |] ==> Q |
|
352 |
\tdx{iffD2} [| P=Q; Q |] ==> P |
|
353 |
\tdx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R |
|
354 |
\subcaption{Logical equivalence} |
|
355 |
||
356 |
\end{ttbox} |
|
9695 | 357 |
\caption{Derived rules for HOL} \label{hol-lemmas1} |
6580 | 358 |
\end{figure} |
14013 | 359 |
% |
360 |
%\tdx{eqTrueI} P ==> P=True |
|
361 |
%\tdx{eqTrueE} P=True ==> P |
|
6580 | 362 |
|
363 |
||
364 |
\begin{figure} |
|
365 |
\begin{ttbox}\makeatother |
|
366 |
\tdx{allI} (!!x. P x) ==> !x. P x |
|
367 |
\tdx{spec} !x. P x ==> P x |
|
368 |
\tdx{allE} [| !x. P x; P x ==> R |] ==> R |
|
369 |
\tdx{all_dupE} [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R |
|
370 |
||
371 |
\tdx{exI} P x ==> ? x. P x |
|
372 |
\tdx{exE} [| ? x. P x; !!x. P x ==> Q |] ==> Q |
|
373 |
||
374 |
\tdx{ex1I} [| P a; !!x. P x ==> x=a |] ==> ?! x. P x |
|
375 |
\tdx{ex1E} [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R |
|
376 |
|] ==> R |
|
377 |
||
9969 | 378 |
\tdx{some_equality} [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a |
6580 | 379 |
\subcaption{Quantifiers and descriptions} |
380 |
||
381 |
\tdx{ccontr} (~P ==> False) ==> P |
|
382 |
\tdx{classical} (~P ==> P) ==> P |
|
383 |
\tdx{excluded_middle} ~P | P |
|
384 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
385 |
\tdx{disjCI} (~Q ==> P) ==> P|Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
386 |
\tdx{exCI} (! x. ~ P x ==> P a) ==> ? x. P x |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
387 |
\tdx{impCE} [| P-->Q; ~ P ==> R; Q ==> R |] ==> R |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
388 |
\tdx{iffCE} [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
389 |
\tdx{notnotD} ~~P ==> P |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
390 |
\tdx{swap} ~P ==> (~Q ==> P) ==> Q |
6580 | 391 |
\subcaption{Classical logic} |
392 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
393 |
\tdx{if_P} P ==> (if P then x else y) = x |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
394 |
\tdx{if_not_P} ~ P ==> (if P then x else y) = y |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
395 |
\tdx{split_if} P(if Q then x else y) = ((Q --> P x) & (~Q --> P y)) |
6580 | 396 |
\subcaption{Conditionals} |
397 |
\end{ttbox} |
|
398 |
\caption{More derived rules} \label{hol-lemmas2} |
|
399 |
\end{figure} |
|
400 |
||
401 |
Some derived rules are shown in Figures~\ref{hol-lemmas1} |
|
402 |
and~\ref{hol-lemmas2}, with their {\ML} names. These include natural rules |
|
403 |
for the logical connectives, as well as sequent-style elimination rules for |
|
404 |
conjunctions, implications, and universal quantifiers. |
|
405 |
||
406 |
Note the equality rules: \tdx{ssubst} performs substitution in |
|
407 |
backward proofs, while \tdx{box_equals} supports reasoning by |
|
408 |
simplifying both sides of an equation. |
|
409 |
||
410 |
The following simple tactics are occasionally useful: |
|
411 |
\begin{ttdescription} |
|
412 |
\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI} |
|
413 |
repeatedly to remove all outermost universal quantifiers and implications |
|
414 |
from subgoal $i$. |
|
8443 | 415 |
\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction on |
416 |
$P$ for subgoal $i$: the latter is replaced by two identical subgoals with |
|
417 |
the added assumptions $P$ and $\lnot P$, respectively. |
|
7490 | 418 |
\item[\ttindexbold{smp_tac} $j$ $i$] applies $j$ times \texttt{spec} and then |
419 |
\texttt{mp} in subgoal $i$, which is typically useful when forward-chaining |
|
420 |
from an induction hypothesis. As a generalization of \texttt{mp_tac}, |
|
421 |
if there are assumptions $\forall \vec{x}. P \vec{x} \imp Q \vec{x}$ and |
|
422 |
$P \vec{a}$, ($\vec{x}$ being a vector of $j$ variables) |
|
423 |
then it replaces the universally quantified implication by $Q \vec{a}$. |
|
424 |
It may instantiate unknowns. It fails if it can do nothing. |
|
6580 | 425 |
\end{ttdescription} |
426 |
||
427 |
||
428 |
\begin{figure} |
|
429 |
\begin{center} |
|
430 |
\begin{tabular}{rrr} |
|
431 |
\it name &\it meta-type & \it description \\ |
|
432 |
\index{{}@\verb'{}' symbol} |
|
433 |
\verb|{}| & $\alpha\,set$ & the empty set \\ |
|
434 |
\cdx{insert} & $[\alpha,\alpha\,set]\To \alpha\,set$ |
|
435 |
& insertion of element \\ |
|
436 |
\cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$ |
|
437 |
& comprehension \\ |
|
438 |
\cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
|
439 |
& intersection over a set\\ |
|
440 |
\cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
|
441 |
& union over a set\\ |
|
442 |
\cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$ |
|
443 |
&set of sets intersection \\ |
|
444 |
\cdx{Union} & $(\alpha\,set)set\To\alpha\,set$ |
|
445 |
&set of sets union \\ |
|
446 |
\cdx{Pow} & $\alpha\,set \To (\alpha\,set)set$ |
|
447 |
& powerset \\[1ex] |
|
448 |
\cdx{range} & $(\alpha\To\beta )\To\beta\,set$ |
|
449 |
& range of a function \\[1ex] |
|
450 |
\cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$ |
|
451 |
& bounded quantifiers |
|
452 |
\end{tabular} |
|
453 |
\end{center} |
|
454 |
\subcaption{Constants} |
|
455 |
||
456 |
\begin{center} |
|
457 |
\begin{tabular}{llrrr} |
|
458 |
\it symbol &\it name &\it meta-type & \it priority & \it description \\ |
|
459 |
\sdx{INT} & \cdx{INTER1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
460 |
intersection\\ |
6580 | 461 |
\sdx{UN} & \cdx{UNION1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
462 |
union |
6580 | 463 |
\end{tabular} |
464 |
\end{center} |
|
465 |
\subcaption{Binders} |
|
466 |
||
467 |
\begin{center} |
|
468 |
\index{*"`"` symbol} |
|
469 |
\index{*": symbol} |
|
470 |
\index{*"<"= symbol} |
|
471 |
\begin{tabular}{rrrr} |
|
472 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
473 |
\tt `` & $[\alpha\To\beta ,\alpha\,set]\To \beta\,set$ |
|
474 |
& Left 90 & image \\ |
|
475 |
\sdx{Int} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
|
476 |
& Left 70 & intersection ($\int$) \\ |
|
477 |
\sdx{Un} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
|
478 |
& Left 65 & union ($\un$) \\ |
|
479 |
\tt: & $[\alpha ,\alpha\,set]\To bool$ |
|
480 |
& Left 50 & membership ($\in$) \\ |
|
481 |
\tt <= & $[\alpha\,set,\alpha\,set]\To bool$ |
|
482 |
& Left 50 & subset ($\subseteq$) |
|
483 |
\end{tabular} |
|
484 |
\end{center} |
|
485 |
\subcaption{Infixes} |
|
486 |
\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax} |
|
487 |
\end{figure} |
|
488 |
||
489 |
||
490 |
\begin{figure} |
|
491 |
\begin{center} \tt\frenchspacing |
|
492 |
\index{*"! symbol} |
|
493 |
\begin{tabular}{rrr} |
|
494 |
\it external & \it internal & \it description \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
495 |
$a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm not in\\ |
6580 | 496 |
{\ttlbrace}$a@1$, $\ldots${\ttrbrace} & insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\ |
497 |
{\ttlbrace}$x$. $P[x]${\ttrbrace} & Collect($\lambda x. P[x]$) & |
|
498 |
\rm comprehension \\ |
|
499 |
\sdx{INT} $x$:$A$. $B[x]$ & INTER $A$ $\lambda x. B[x]$ & |
|
500 |
\rm intersection \\ |
|
501 |
\sdx{UN}{\tt\ } $x$:$A$. $B[x]$ & UNION $A$ $\lambda x. B[x]$ & |
|
502 |
\rm union \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
503 |
\sdx{ALL} $x$:$A$.\ $P[x]$ or \texttt{!} $x$:$A$.\ $P[x]$ & |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
504 |
Ball $A$ $\lambda x.\ P[x]$ & |
6580 | 505 |
\rm bounded $\forall$ \\ |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
506 |
\sdx{EX}{\tt\ } $x$:$A$.\ $P[x]$ or \texttt{?} $x$:$A$.\ $P[x]$ & |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
507 |
Bex $A$ $\lambda x.\ P[x]$ & \rm bounded $\exists$ |
6580 | 508 |
\end{tabular} |
509 |
\end{center} |
|
510 |
\subcaption{Translations} |
|
511 |
||
512 |
\dquotes |
|
513 |
\[\begin{array}{rclcl} |
|
514 |
term & = & \hbox{other terms\ldots} \\ |
|
515 |
& | & "{\ttlbrace}{\ttrbrace}" \\ |
|
516 |
& | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\ |
|
517 |
& | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\ |
|
518 |
& | & term " `` " term \\ |
|
519 |
& | & term " Int " term \\ |
|
520 |
& | & term " Un " term \\ |
|
521 |
& | & "INT~~" id ":" term " . " term \\ |
|
522 |
& | & "UN~~~" id ":" term " . " term \\ |
|
523 |
& | & "INT~~" id~id^* " . " term \\ |
|
524 |
& | & "UN~~~" id~id^* " . " term \\[2ex] |
|
525 |
formula & = & \hbox{other formulae\ldots} \\ |
|
526 |
& | & term " : " term \\ |
|
527 |
& | & term " \ttilde: " term \\ |
|
528 |
& | & term " <= " term \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
529 |
& | & "ALL " id ":" term " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
530 |
& | & "!~" id ":" term " . " formula \\ |
6580 | 531 |
& | & "EX~~" id ":" term " . " formula |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
532 |
& | & "?~" id ":" term " . " formula \\ |
6580 | 533 |
\end{array} |
534 |
\] |
|
535 |
\subcaption{Full Grammar} |
|
536 |
\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2} |
|
537 |
\end{figure} |
|
538 |
||
539 |
||
540 |
\section{A formulation of set theory} |
|
541 |
Historically, higher-order logic gives a foundation for Russell and |
|
542 |
Whitehead's theory of classes. Let us use modern terminology and call them |
|
9695 | 543 |
{\bf sets}, but note that these sets are distinct from those of ZF set theory, |
544 |
and behave more like ZF classes. |
|
6580 | 545 |
\begin{itemize} |
546 |
\item |
|
547 |
Sets are given by predicates over some type~$\sigma$. Types serve to |
|
548 |
define universes for sets, but type-checking is still significant. |
|
549 |
\item |
|
550 |
There is a universal set (for each type). Thus, sets have complements, and |
|
551 |
may be defined by absolute comprehension. |
|
552 |
\item |
|
553 |
Although sets may contain other sets as elements, the containing set must |
|
554 |
have a more complex type. |
|
555 |
\end{itemize} |
|
9695 | 556 |
Finite unions and intersections have the same behaviour in HOL as they do |
557 |
in~ZF. In HOL the intersection of the empty set is well-defined, denoting the |
|
558 |
universal set for the given type. |
|
6580 | 559 |
|
560 |
\subsection{Syntax of set theory}\index{*set type} |
|
9695 | 561 |
HOL's set theory is called \thydx{Set}. The type $\alpha\,set$ is essentially |
562 |
the same as $\alpha\To bool$. The new type is defined for clarity and to |
|
563 |
avoid complications involving function types in unification. The isomorphisms |
|
564 |
between the two types are declared explicitly. They are very natural: |
|
565 |
\texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while \hbox{\tt op :} |
|
566 |
maps in the other direction (ignoring argument order). |
|
6580 | 567 |
|
568 |
Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax |
|
569 |
translations. Figure~\ref{hol-set-syntax2} presents the grammar of the new |
|
570 |
constructs. Infix operators include union and intersection ($A\un B$ |
|
571 |
and $A\int B$), the subset and membership relations, and the image |
|
572 |
operator~{\tt``}\@. Note that $a$\verb|~:|$b$ is translated to |
|
7490 | 573 |
$\lnot(a\in b)$. |
6580 | 574 |
|
575 |
The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in |
|
576 |
the obvious manner using~\texttt{insert} and~$\{\}$: |
|
577 |
\begin{eqnarray*} |
|
578 |
\{a, b, c\} & \equiv & |
|
579 |
\texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\})) |
|
580 |
\end{eqnarray*} |
|
581 |
||
9695 | 582 |
The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of |
583 |
suitable type) that satisfy~$P[x]$, where $P[x]$ is a formula that may contain |
|
584 |
free occurrences of~$x$. This syntax expands to \cdx{Collect}$(\lambda x. |
|
585 |
P[x])$. It defines sets by absolute comprehension, which is impossible in~ZF; |
|
586 |
the type of~$x$ implicitly restricts the comprehension. |
|
6580 | 587 |
|
588 |
The set theory defines two {\bf bounded quantifiers}: |
|
589 |
\begin{eqnarray*} |
|
590 |
\forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\ |
|
591 |
\exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x] |
|
592 |
\end{eqnarray*} |
|
593 |
The constants~\cdx{Ball} and~\cdx{Bex} are defined |
|
594 |
accordingly. Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may |
|
595 |
write\index{*"! symbol}\index{*"? symbol} |
|
596 |
\index{*ALL symbol}\index{*EX symbol} |
|
597 |
% |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
598 |
\hbox{\tt ALL~$x$:$A$.\ $P[x]$} and \hbox{\tt EX~$x$:$A$.\ $P[x]$}. The |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
599 |
original notation of Gordon's {\sc hol} system is supported as well: |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
600 |
\texttt{!}\ and \texttt{?}. |
6580 | 601 |
|
602 |
Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and |
|
603 |
$\bigcap@{x\in A}B[x]$, are written |
|
604 |
\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and |
|
605 |
\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}. |
|
606 |
||
607 |
Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x |
|
608 |
B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and |
|
609 |
\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}. They are equivalent to the previous |
|
610 |
union and intersection operators when $A$ is the universal set. |
|
611 |
||
612 |
The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets. They are |
|
613 |
not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$, |
|
614 |
respectively. |
|
615 |
||
616 |
||
617 |
||
618 |
\begin{figure} \underscoreon |
|
619 |
\begin{ttbox} |
|
620 |
\tdx{mem_Collect_eq} (a : {\ttlbrace}x. P x{\ttrbrace}) = P a |
|
621 |
\tdx{Collect_mem_eq} {\ttlbrace}x. x:A{\ttrbrace} = A |
|
622 |
||
623 |
\tdx{empty_def} {\ttlbrace}{\ttrbrace} == {\ttlbrace}x. False{\ttrbrace} |
|
624 |
\tdx{insert_def} insert a B == {\ttlbrace}x. x=a{\ttrbrace} Un B |
|
625 |
\tdx{Ball_def} Ball A P == ! x. x:A --> P x |
|
626 |
\tdx{Bex_def} Bex A P == ? x. x:A & P x |
|
627 |
\tdx{subset_def} A <= B == ! x:A. x:B |
|
628 |
\tdx{Un_def} A Un B == {\ttlbrace}x. x:A | x:B{\ttrbrace} |
|
629 |
\tdx{Int_def} A Int B == {\ttlbrace}x. x:A & x:B{\ttrbrace} |
|
630 |
\tdx{set_diff_def} A - B == {\ttlbrace}x. x:A & x~:B{\ttrbrace} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
631 |
\tdx{Compl_def} -A == {\ttlbrace}x. ~ x:A{\ttrbrace} |
6580 | 632 |
\tdx{INTER_def} INTER A B == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace} |
633 |
\tdx{UNION_def} UNION A B == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace} |
|
634 |
\tdx{INTER1_def} INTER1 B == INTER {\ttlbrace}x. True{\ttrbrace} B |
|
635 |
\tdx{UNION1_def} UNION1 B == UNION {\ttlbrace}x. True{\ttrbrace} B |
|
636 |
\tdx{Inter_def} Inter S == (INT x:S. x) |
|
637 |
\tdx{Union_def} Union S == (UN x:S. x) |
|
638 |
\tdx{Pow_def} Pow A == {\ttlbrace}B. B <= A{\ttrbrace} |
|
639 |
\tdx{image_def} f``A == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace} |
|
640 |
\tdx{range_def} range f == {\ttlbrace}y. ? x. y=f x{\ttrbrace} |
|
641 |
\end{ttbox} |
|
642 |
\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules} |
|
643 |
\end{figure} |
|
644 |
||
645 |
||
646 |
\begin{figure} \underscoreon |
|
647 |
\begin{ttbox} |
|
648 |
\tdx{CollectI} [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace} |
|
649 |
\tdx{CollectD} [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a |
|
650 |
\tdx{CollectE} [| a : {\ttlbrace}x. P x{\ttrbrace}; P a ==> W |] ==> W |
|
651 |
||
652 |
\tdx{ballI} [| !!x. x:A ==> P x |] ==> ! x:A. P x |
|
653 |
\tdx{bspec} [| ! x:A. P x; x:A |] ==> P x |
|
654 |
\tdx{ballE} [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q |
|
655 |
||
656 |
\tdx{bexI} [| P x; x:A |] ==> ? x:A. P x |
|
657 |
\tdx{bexCI} [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x |
|
658 |
\tdx{bexE} [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q |
|
659 |
\subcaption{Comprehension and Bounded quantifiers} |
|
660 |
||
661 |
\tdx{subsetI} (!!x. x:A ==> x:B) ==> A <= B |
|
662 |
\tdx{subsetD} [| A <= B; c:A |] ==> c:B |
|
663 |
\tdx{subsetCE} [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P |
|
664 |
||
665 |
\tdx{subset_refl} A <= A |
|
666 |
\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C |
|
667 |
||
668 |
\tdx{equalityI} [| A <= B; B <= A |] ==> A = B |
|
669 |
\tdx{equalityD1} A = B ==> A<=B |
|
670 |
\tdx{equalityD2} A = B ==> B<=A |
|
671 |
\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P |
|
672 |
||
673 |
\tdx{equalityCE} [| A = B; [| c:A; c:B |] ==> P; |
|
674 |
[| ~ c:A; ~ c:B |] ==> P |
|
675 |
|] ==> P |
|
676 |
\subcaption{The subset and equality relations} |
|
677 |
\end{ttbox} |
|
678 |
\caption{Derived rules for set theory} \label{hol-set1} |
|
679 |
\end{figure} |
|
680 |
||
681 |
||
682 |
\begin{figure} \underscoreon |
|
683 |
\begin{ttbox} |
|
684 |
\tdx{emptyE} a : {\ttlbrace}{\ttrbrace} ==> P |
|
685 |
||
686 |
\tdx{insertI1} a : insert a B |
|
687 |
\tdx{insertI2} a : B ==> a : insert b B |
|
688 |
\tdx{insertE} [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P |
|
689 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
690 |
\tdx{ComplI} [| c:A ==> False |] ==> c : -A |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
691 |
\tdx{ComplD} [| c : -A |] ==> ~ c:A |
6580 | 692 |
|
693 |
\tdx{UnI1} c:A ==> c : A Un B |
|
694 |
\tdx{UnI2} c:B ==> c : A Un B |
|
695 |
\tdx{UnCI} (~c:B ==> c:A) ==> c : A Un B |
|
696 |
\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P |
|
697 |
||
698 |
\tdx{IntI} [| c:A; c:B |] ==> c : A Int B |
|
699 |
\tdx{IntD1} c : A Int B ==> c:A |
|
700 |
\tdx{IntD2} c : A Int B ==> c:B |
|
701 |
\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P |
|
702 |
||
703 |
\tdx{UN_I} [| a:A; b: B a |] ==> b: (UN x:A. B x) |
|
704 |
\tdx{UN_E} [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R |
|
705 |
||
706 |
\tdx{INT_I} (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x) |
|
707 |
\tdx{INT_D} [| b: (INT x:A. B x); a:A |] ==> b: B a |
|
708 |
\tdx{INT_E} [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R |
|
709 |
||
710 |
\tdx{UnionI} [| X:C; A:X |] ==> A : Union C |
|
711 |
\tdx{UnionE} [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R |
|
712 |
||
713 |
\tdx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter C |
|
714 |
\tdx{InterD} [| A : Inter C; X:C |] ==> A:X |
|
715 |
\tdx{InterE} [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R |
|
716 |
||
717 |
\tdx{PowI} A<=B ==> A: Pow B |
|
718 |
\tdx{PowD} A: Pow B ==> A<=B |
|
719 |
||
720 |
\tdx{imageI} [| x:A |] ==> f x : f``A |
|
721 |
\tdx{imageE} [| b : f``A; !!x.[| b=f x; x:A |] ==> P |] ==> P |
|
722 |
||
723 |
\tdx{rangeI} f x : range f |
|
724 |
\tdx{rangeE} [| b : range f; !!x.[| b=f x |] ==> P |] ==> P |
|
725 |
\end{ttbox} |
|
726 |
\caption{Further derived rules for set theory} \label{hol-set2} |
|
727 |
\end{figure} |
|
728 |
||
729 |
||
730 |
\subsection{Axioms and rules of set theory} |
|
731 |
Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}. The |
|
732 |
axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert |
|
733 |
that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms. Of |
|
734 |
course, \hbox{\tt op :} also serves as the membership relation. |
|
735 |
||
736 |
All the other axioms are definitions. They include the empty set, bounded |
|
737 |
quantifiers, unions, intersections, complements and the subset relation. |
|
738 |
They also include straightforward constructions on functions: image~({\tt``}) |
|
739 |
and \texttt{range}. |
|
740 |
||
741 |
%The predicate \cdx{inj_on} is used for simulating type definitions. |
|
742 |
%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the |
|
743 |
%set~$A$, which specifies a subset of its domain type. In a type |
|
744 |
%definition, $f$ is the abstraction function and $A$ is the set of valid |
|
745 |
%representations; we should not expect $f$ to be injective outside of~$A$. |
|
746 |
||
747 |
%\begin{figure} \underscoreon |
|
748 |
%\begin{ttbox} |
|
749 |
%\tdx{Inv_f_f} inj f ==> Inv f (f x) = x |
|
750 |
%\tdx{f_Inv_f} y : range f ==> f(Inv f y) = y |
|
751 |
% |
|
752 |
%\tdx{Inv_injective} |
|
753 |
% [| Inv f x=Inv f y; x: range f; y: range f |] ==> x=y |
|
754 |
% |
|
755 |
% |
|
756 |
%\tdx{monoI} [| !!A B. A <= B ==> f A <= f B |] ==> mono f |
|
757 |
%\tdx{monoD} [| mono f; A <= B |] ==> f A <= f B |
|
758 |
% |
|
759 |
%\tdx{injI} [| !! x y. f x = f y ==> x=y |] ==> inj f |
|
760 |
%\tdx{inj_inverseI} (!!x. g(f x) = x) ==> inj f |
|
761 |
%\tdx{injD} [| inj f; f x = f y |] ==> x=y |
|
762 |
% |
|
763 |
%\tdx{inj_onI} (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A |
|
764 |
%\tdx{inj_onD} [| inj_on f A; f x=f y; x:A; y:A |] ==> x=y |
|
765 |
% |
|
766 |
%\tdx{inj_on_inverseI} |
|
767 |
% (!!x. x:A ==> g(f x) = x) ==> inj_on f A |
|
768 |
%\tdx{inj_on_contraD} |
|
769 |
% [| inj_on f A; x~=y; x:A; y:A |] ==> ~ f x=f y |
|
770 |
%\end{ttbox} |
|
771 |
%\caption{Derived rules involving functions} \label{hol-fun} |
|
772 |
%\end{figure} |
|
773 |
||
774 |
||
775 |
\begin{figure} \underscoreon |
|
776 |
\begin{ttbox} |
|
777 |
\tdx{Union_upper} B:A ==> B <= Union A |
|
778 |
\tdx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union A <= C |
|
779 |
||
780 |
\tdx{Inter_lower} B:A ==> Inter A <= B |
|
781 |
\tdx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter A |
|
782 |
||
783 |
\tdx{Un_upper1} A <= A Un B |
|
784 |
\tdx{Un_upper2} B <= A Un B |
|
785 |
\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C |
|
786 |
||
787 |
\tdx{Int_lower1} A Int B <= A |
|
788 |
\tdx{Int_lower2} A Int B <= B |
|
789 |
\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B |
|
790 |
\end{ttbox} |
|
791 |
\caption{Derived rules involving subsets} \label{hol-subset} |
|
792 |
\end{figure} |
|
793 |
||
794 |
||
795 |
\begin{figure} \underscoreon \hfuzz=4pt%suppress "Overfull \hbox" message |
|
796 |
\begin{ttbox} |
|
797 |
\tdx{Int_absorb} A Int A = A |
|
798 |
\tdx{Int_commute} A Int B = B Int A |
|
799 |
\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C) |
|
800 |
\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C) |
|
801 |
||
802 |
\tdx{Un_absorb} A Un A = A |
|
803 |
\tdx{Un_commute} A Un B = B Un A |
|
804 |
\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C) |
|
805 |
\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C) |
|
806 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
807 |
\tdx{Compl_disjoint} A Int (-A) = {\ttlbrace}x. False{\ttrbrace} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
808 |
\tdx{Compl_partition} A Un (-A) = {\ttlbrace}x. True{\ttrbrace} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
809 |
\tdx{double_complement} -(-A) = A |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
810 |
\tdx{Compl_Un} -(A Un B) = (-A) Int (-B) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
811 |
\tdx{Compl_Int} -(A Int B) = (-A) Un (-B) |
6580 | 812 |
|
813 |
\tdx{Union_Un_distrib} Union(A Un B) = (Union A) Un (Union B) |
|
814 |
\tdx{Int_Union} A Int (Union B) = (UN C:B. A Int C) |
|
815 |
||
816 |
\tdx{Inter_Un_distrib} Inter(A Un B) = (Inter A) Int (Inter B) |
|
817 |
\tdx{Un_Inter} A Un (Inter B) = (INT C:B. A Un C) |
|
14013 | 818 |
|
6580 | 819 |
\end{ttbox} |
820 |
\caption{Set equalities} \label{hol-equalities} |
|
821 |
\end{figure} |
|
14013 | 822 |
%\tdx{Un_Union_image} (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C) |
823 |
%\tdx{Int_Inter_image} (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C) |
|
6580 | 824 |
|
825 |
Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules. Most are |
|
9695 | 826 |
obvious and resemble rules of Isabelle's ZF set theory. Certain rules, such |
827 |
as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, are designed for classical |
|
828 |
reasoning; the rules \tdx{subsetD}, \tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are |
|
829 |
not strictly necessary but yield more natural proofs. Similarly, |
|
830 |
\tdx{equalityCE} supports classical reasoning about extensionality, after the |
|
831 |
fashion of \tdx{iffCE}. See the file \texttt{HOL/Set.ML} for proofs |
|
832 |
pertaining to set theory. |
|
6580 | 833 |
|
834 |
Figure~\ref{hol-subset} presents lattice properties of the subset relation. |
|
835 |
Unions form least upper bounds; non-empty intersections form greatest lower |
|
836 |
bounds. Reasoning directly about subsets often yields clearer proofs than |
|
837 |
reasoning about the membership relation. See the file \texttt{HOL/subset.ML}. |
|
838 |
||
839 |
Figure~\ref{hol-equalities} presents many common set equalities. They |
|
840 |
include commutative, associative and distributive laws involving unions, |
|
841 |
intersections and complements. For a complete listing see the file {\tt |
|
842 |
HOL/equalities.ML}. |
|
843 |
||
844 |
\begin{warn} |
|
845 |
\texttt{Blast_tac} proves many set-theoretic theorems automatically. |
|
846 |
Hence you seldom need to refer to the theorems above. |
|
847 |
\end{warn} |
|
848 |
||
849 |
\begin{figure} |
|
850 |
\begin{center} |
|
851 |
\begin{tabular}{rrr} |
|
852 |
\it name &\it meta-type & \it description \\ |
|
853 |
\cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$ |
|
854 |
& injective/surjective \\ |
|
855 |
\cdx{inj_on} & $[\alpha\To\beta ,\alpha\,set]\To bool$ |
|
856 |
& injective over subset\\ |
|
857 |
\cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function |
|
858 |
\end{tabular} |
|
859 |
\end{center} |
|
860 |
||
861 |
\underscoreon |
|
862 |
\begin{ttbox} |
|
863 |
\tdx{inj_def} inj f == ! x y. f x=f y --> x=y |
|
864 |
\tdx{surj_def} surj f == ! y. ? x. y=f x |
|
865 |
\tdx{inj_on_def} inj_on f A == !x:A. !y:A. f x=f y --> x=y |
|
866 |
\tdx{inv_def} inv f == (\%y. @x. f(x)=y) |
|
867 |
\end{ttbox} |
|
868 |
\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun} |
|
869 |
\end{figure} |
|
870 |
||
871 |
\subsection{Properties of functions}\nopagebreak |
|
872 |
Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions. |
|
873 |
Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse |
|
874 |
of~$f$. See the file \texttt{HOL/Fun.ML} for a complete listing of the derived |
|
875 |
rules. Reasoning about function composition (the operator~\sdx{o}) and the |
|
876 |
predicate~\cdx{surj} is done simply by expanding the definitions. |
|
877 |
||
878 |
There is also a large collection of monotonicity theorems for constructions |
|
879 |
on sets in the file \texttt{HOL/mono.ML}. |
|
880 |
||
7283 | 881 |
|
42924 | 882 |
\section{Simplification and substitution} |
6580 | 883 |
|
884 |
Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset |
|
885 |
(\texttt{simpset()}), which works for most purposes. A quite minimal |
|
886 |
simplification set for higher-order logic is~\ttindexbold{HOL_ss}; |
|
887 |
even more frugal is \ttindexbold{HOL_basic_ss}. Equality~($=$), which |
|
888 |
also expresses logical equivalence, may be used for rewriting. See |
|
889 |
the file \texttt{HOL/simpdata.ML} for a complete listing of the basic |
|
890 |
simplification rules. |
|
891 |
||
892 |
See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% |
|
893 |
{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution |
|
894 |
and simplification. |
|
895 |
||
896 |
\begin{warn}\index{simplification!of conjunctions}% |
|
897 |
Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous. The |
|
898 |
left part of a conjunction helps in simplifying the right part. This effect |
|
899 |
is not available by default: it can be slow. It can be obtained by |
|
900 |
including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$. |
|
901 |
\end{warn} |
|
902 |
||
8604 | 903 |
\begin{warn}\index{simplification!of \texttt{if}}\label{if-simp}% |
904 |
By default only the condition of an \ttindex{if} is simplified but not the |
|
905 |
\texttt{then} and \texttt{else} parts. Of course the latter are simplified |
|
906 |
once the condition simplifies to \texttt{True} or \texttt{False}. To ensure |
|
907 |
full simplification of all parts of a conditional you must remove |
|
908 |
\ttindex{if_weak_cong} from the simpset, \verb$delcongs [if_weak_cong]$. |
|
909 |
\end{warn} |
|
910 |
||
6580 | 911 |
If the simplifier cannot use a certain rewrite rule --- either because |
912 |
of nontermination or because its left-hand side is too flexible --- |
|
913 |
then you might try \texttt{stac}: |
|
914 |
\begin{ttdescription} |
|
915 |
\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$, |
|
916 |
replaces in subgoal $i$ instances of $lhs$ by corresponding instances of |
|
917 |
$rhs$. In case of multiple instances of $lhs$ in subgoal $i$, backtracking |
|
918 |
may be necessary to select the desired ones. |
|
919 |
||
920 |
If $thm$ is a conditional equality, the instantiated condition becomes an |
|
921 |
additional (first) subgoal. |
|
922 |
\end{ttdescription} |
|
923 |
||
9695 | 924 |
HOL provides the tactic \ttindex{hyp_subst_tac}, which substitutes for an |
925 |
equality throughout a subgoal and its hypotheses. This tactic uses HOL's |
|
926 |
general substitution rule. |
|
6580 | 927 |
|
42924 | 928 |
\subsection{Case splitting} |
6580 | 929 |
\label{subsec:HOL:case:splitting} |
930 |
||
9695 | 931 |
HOL also provides convenient means for case splitting during rewriting. Goals |
932 |
containing a subterm of the form \texttt{if}~$b$~{\tt then\dots else\dots} |
|
933 |
often require a case distinction on $b$. This is expressed by the theorem |
|
934 |
\tdx{split_if}: |
|
6580 | 935 |
$$ |
936 |
\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~ |
|
7490 | 937 |
((\Var{b} \to \Var{P}(\Var{x})) \land (\lnot \Var{b} \to \Var{P}(\Var{y}))) |
6580 | 938 |
\eqno{(*)} |
939 |
$$ |
|
940 |
For example, a simple instance of $(*)$ is |
|
941 |
\[ |
|
942 |
x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~ |
|
943 |
((x \in A \to x \in A) \land (x \notin A \to x \in \{x\})) |
|
944 |
\] |
|
945 |
Because $(*)$ is too general as a rewrite rule for the simplifier (the |
|
946 |
left-hand side is not a higher-order pattern in the sense of |
|
947 |
\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}% |
|
948 |
{Chap.\ts\ref{chap:simplification}}), there is a special infix function |
|
949 |
\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset} |
|
950 |
(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a |
|
951 |
simpset, as in |
|
952 |
\begin{ttbox} |
|
953 |
by(simp_tac (simpset() addsplits [split_if]) 1); |
|
954 |
\end{ttbox} |
|
955 |
The effect is that after each round of simplification, one occurrence of |
|
956 |
\texttt{if} is split acording to \texttt{split_if}, until all occurences of |
|
957 |
\texttt{if} have been eliminated. |
|
958 |
||
959 |
It turns out that using \texttt{split_if} is almost always the right thing to |
|
960 |
do. Hence \texttt{split_if} is already included in the default simpset. If |
|
961 |
you want to delete it from a simpset, use \ttindexbold{delsplits}, which is |
|
962 |
the inverse of \texttt{addsplits}: |
|
963 |
\begin{ttbox} |
|
964 |
by(simp_tac (simpset() delsplits [split_if]) 1); |
|
965 |
\end{ttbox} |
|
966 |
||
967 |
In general, \texttt{addsplits} accepts rules of the form |
|
968 |
\[ |
|
969 |
\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs |
|
970 |
\] |
|
971 |
where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the |
|
972 |
right form because internally the left-hand side is |
|
973 |
$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples |
|
7490 | 974 |
are splitting rules for \texttt{case} expressions (see~{\S}\ref{subsec:list} |
975 |
and~{\S}\ref{subsec:datatype:basics}). |
|
6580 | 976 |
|
977 |
Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also |
|
978 |
imperative versions of \texttt{addsplits} and \texttt{delsplits} |
|
979 |
\begin{ttbox} |
|
980 |
\ttindexbold{Addsplits}: thm list -> unit |
|
981 |
\ttindexbold{Delsplits}: thm list -> unit |
|
982 |
\end{ttbox} |
|
983 |
for adding splitting rules to, and deleting them from the current simpset. |
|
984 |
||
7283 | 985 |
|
6580 | 986 |
\section{Types}\label{sec:HOL:Types} |
9695 | 987 |
This section describes HOL's basic predefined types ($\alpha \times \beta$, |
988 |
$\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for introducing new |
|
989 |
types in general. The most important type construction, the |
|
990 |
\texttt{datatype}, is treated separately in {\S}\ref{sec:HOL:datatype}. |
|
6580 | 991 |
|
992 |
||
993 |
\subsection{Product and sum types}\index{*"* type}\index{*"+ type} |
|
994 |
\label{subsec:prod-sum} |
|
995 |
||
996 |
\begin{figure}[htbp] |
|
997 |
\begin{constants} |
|
998 |
\it symbol & \it meta-type & & \it description \\ |
|
999 |
\cdx{Pair} & $[\alpha,\beta]\To \alpha\times\beta$ |
|
1000 |
& & ordered pairs $(a,b)$ \\ |
|
1001 |
\cdx{fst} & $\alpha\times\beta \To \alpha$ & & first projection\\ |
|
1002 |
\cdx{snd} & $\alpha\times\beta \To \beta$ & & second projection\\ |
|
1003 |
\cdx{split} & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ |
|
1004 |
& & generalized projection\\ |
|
1005 |
\cdx{Sigma} & |
|
1006 |
$[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ & |
|
1007 |
& general sum of sets |
|
1008 |
\end{constants} |
|
1009 |
%\tdx{fst_def} fst p == @a. ? b. p = (a,b) |
|
1010 |
%\tdx{snd_def} snd p == @b. ? a. p = (a,b) |
|
1011 |
%\tdx{split_def} split c p == c (fst p) (snd p) |
|
14013 | 1012 |
\begin{ttbox}\makeatletter |
6580 | 1013 |
\tdx{Sigma_def} Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace} |
1014 |
||
1015 |
\tdx{Pair_eq} ((a,b) = (a',b')) = (a=a' & b=b') |
|
1016 |
\tdx{Pair_inject} [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R |
|
1017 |
\tdx{PairE} [| !!x y. p = (x,y) ==> Q |] ==> Q |
|
1018 |
||
1019 |
\tdx{fst_conv} fst (a,b) = a |
|
1020 |
\tdx{snd_conv} snd (a,b) = b |
|
1021 |
\tdx{surjective_pairing} p = (fst p,snd p) |
|
1022 |
||
1023 |
\tdx{split} split c (a,b) = c a b |
|
1024 |
\tdx{split_split} R(split c p) = (! x y. p = (x,y) --> R(c x y)) |
|
1025 |
||
1026 |
\tdx{SigmaI} [| a:A; b:B a |] ==> (a,b) : Sigma A B |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1027 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1028 |
\tdx{SigmaE} [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1029 |
|] ==> P |
6580 | 1030 |
\end{ttbox} |
1031 |
\caption{Type $\alpha\times\beta$}\label{hol-prod} |
|
1032 |
\end{figure} |
|
1033 |
||
1034 |
Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type |
|
1035 |
$\alpha\times\beta$, with the ordered pair syntax $(a, b)$. General |
|
1036 |
tuples are simulated by pairs nested to the right: |
|
1037 |
\begin{center} |
|
1038 |
\begin{tabular}{c|c} |
|
1039 |
external & internal \\ |
|
1040 |
\hline |
|
1041 |
$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\ |
|
1042 |
\hline |
|
1043 |
$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\ |
|
1044 |
\end{tabular} |
|
1045 |
\end{center} |
|
1046 |
In addition, it is possible to use tuples |
|
1047 |
as patterns in abstractions: |
|
1048 |
\begin{center} |
|
1049 |
{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} |
|
1050 |
\end{center} |
|
1051 |
Nested patterns are also supported. They are translated stepwise: |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1052 |
\begin{eqnarray*} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1053 |
\hbox{\tt\%($x$,$y$,$z$).\ $t$} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1054 |
& \leadsto & \hbox{\tt\%($x$,($y$,$z$)).\ $t$} \\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1055 |
& \leadsto & \hbox{\tt split(\%$x$.\%($y$,$z$).\ $t$)}\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1056 |
& \leadsto & \hbox{\tt split(\%$x$.\ split(\%$y$ $z$.\ $t$))} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1057 |
\end{eqnarray*} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1058 |
The reverse translation is performed upon printing. |
6580 | 1059 |
\begin{warn} |
1060 |
The translation between patterns and \texttt{split} is performed automatically |
|
1061 |
by the parser and printer. Thus the internal and external form of a term |
|
1062 |
may differ, which can affects proofs. For example the term {\tt |
|
1063 |
(\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the |
|
1064 |
default simpset) to rewrite to {\tt(b,a)}. |
|
1065 |
\end{warn} |
|
1066 |
In addition to explicit $\lambda$-abstractions, patterns can be used in any |
|
1067 |
variable binding construct which is internally described by a |
|
1068 |
$\lambda$-abstraction. Some important examples are |
|
1069 |
\begin{description} |
|
1070 |
\item[Let:] \texttt{let {\it pattern} = $t$ in $u$} |
|
10109 | 1071 |
\item[Quantifiers:] \texttt{ALL~{\it pattern}:$A$.~$P$} |
1072 |
\item[Choice:] {\underscoreon \tt SOME~{\it pattern}.~$P$} |
|
6580 | 1073 |
\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$} |
10109 | 1074 |
\item[Sets:] \texttt{{\ttlbrace}{\it pattern}.~$P${\ttrbrace}} |
6580 | 1075 |
\end{description} |
1076 |
||
1077 |
There is a simple tactic which supports reasoning about patterns: |
|
1078 |
\begin{ttdescription} |
|
1079 |
\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all |
|
1080 |
{\tt!!}-quantified variables of product type by individual variables for |
|
1081 |
each component. A simple example: |
|
1082 |
\begin{ttbox} |
|
1083 |
{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p} |
|
1084 |
by(split_all_tac 1); |
|
1085 |
{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)} |
|
1086 |
\end{ttbox} |
|
1087 |
\end{ttdescription} |
|
1088 |
||
1089 |
Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit} |
|
1090 |
which contains only a single element named {\tt()} with the property |
|
1091 |
\begin{ttbox} |
|
1092 |
\tdx{unit_eq} u = () |
|
1093 |
\end{ttbox} |
|
1094 |
\bigskip |
|
1095 |
||
1096 |
Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$ |
|
1097 |
which associates to the right and has a lower priority than $*$: $\tau@1 + |
|
1098 |
\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$. |
|
1099 |
||
1100 |
The definition of products and sums in terms of existing types is not |
|
1101 |
shown. The constructions are fairly standard and can be found in the |
|
7325 | 1102 |
respective theory files. Although the sum and product types are |
1103 |
constructed manually for foundational reasons, they are represented as |
|
42909 | 1104 |
actual datatypes later. |
6580 | 1105 |
|
1106 |
\begin{figure} |
|
1107 |
\begin{constants} |
|
1108 |
\it symbol & \it meta-type & & \it description \\ |
|
1109 |
\cdx{Inl} & $\alpha \To \alpha+\beta$ & & first injection\\ |
|
1110 |
\cdx{Inr} & $\beta \To \alpha+\beta$ & & second injection\\ |
|
1111 |
\cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$ |
|
1112 |
& & conditional |
|
1113 |
\end{constants} |
|
1114 |
\begin{ttbox}\makeatletter |
|
1115 |
\tdx{Inl_not_Inr} Inl a ~= Inr b |
|
1116 |
||
1117 |
\tdx{inj_Inl} inj Inl |
|
1118 |
\tdx{inj_Inr} inj Inr |
|
1119 |
||
1120 |
\tdx{sumE} [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s |
|
1121 |
||
1122 |
\tdx{sum_case_Inl} sum_case f g (Inl x) = f x |
|
1123 |
\tdx{sum_case_Inr} sum_case f g (Inr x) = g x |
|
1124 |
||
1125 |
\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s |
|
7325 | 1126 |
\tdx{sum.split_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) & |
6580 | 1127 |
(! y. s = Inr(y) --> R(g(y)))) |
1128 |
\end{ttbox} |
|
1129 |
\caption{Type $\alpha+\beta$}\label{hol-sum} |
|
1130 |
\end{figure} |
|
1131 |
||
1132 |
\begin{figure} |
|
1133 |
\index{*"< symbol} |
|
1134 |
\index{*"* symbol} |
|
1135 |
\index{*div symbol} |
|
1136 |
\index{*mod symbol} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1137 |
\index{*dvd symbol} |
6580 | 1138 |
\index{*"+ symbol} |
1139 |
\index{*"- symbol} |
|
1140 |
\begin{constants} |
|
1141 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1142 |
\cdx{0} & $\alpha$ & & zero \\ |
6580 | 1143 |
\cdx{Suc} & $nat \To nat$ & & successor function\\ |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1144 |
\tt * & $[\alpha,\alpha]\To \alpha$ & Left 70 & multiplication \\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1145 |
\tt div & $[\alpha,\alpha]\To \alpha$ & Left 70 & division\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1146 |
\tt mod & $[\alpha,\alpha]\To \alpha$ & Left 70 & modulus\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1147 |
\tt dvd & $[\alpha,\alpha]\To bool$ & Left 70 & ``divides'' relation\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1148 |
\tt + & $[\alpha,\alpha]\To \alpha$ & Left 65 & addition\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1149 |
\tt - & $[\alpha,\alpha]\To \alpha$ & Left 65 & subtraction |
6580 | 1150 |
\end{constants} |
1151 |
\subcaption{Constants and infixes} |
|
1152 |
||
1153 |
\begin{ttbox}\makeatother |
|
1154 |
\tdx{nat_induct} [| P 0; !!n. P n ==> P(Suc n) |] ==> P n |
|
1155 |
||
1156 |
\tdx{Suc_not_Zero} Suc m ~= 0 |
|
1157 |
\tdx{inj_Suc} inj Suc |
|
1158 |
\tdx{n_not_Suc_n} n~=Suc n |
|
1159 |
\subcaption{Basic properties} |
|
1160 |
\end{ttbox} |
|
1161 |
\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1} |
|
1162 |
\end{figure} |
|
1163 |
||
1164 |
||
1165 |
\begin{figure} |
|
1166 |
\begin{ttbox}\makeatother |
|
1167 |
0+n = n |
|
1168 |
(Suc m)+n = Suc(m+n) |
|
1169 |
||
1170 |
m-0 = m |
|
1171 |
0-n = n |
|
1172 |
Suc(m)-Suc(n) = m-n |
|
1173 |
||
1174 |
0*n = 0 |
|
1175 |
Suc(m)*n = n + m*n |
|
1176 |
||
1177 |
\tdx{mod_less} m<n ==> m mod n = m |
|
1178 |
\tdx{mod_geq} [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n |
|
1179 |
||
1180 |
\tdx{div_less} m<n ==> m div n = 0 |
|
1181 |
\tdx{div_geq} [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n) |
|
1182 |
\end{ttbox} |
|
1183 |
\caption{Recursion equations for the arithmetic operators} \label{hol-nat2} |
|
1184 |
\end{figure} |
|
1185 |
||
1186 |
\subsection{The type of natural numbers, \textit{nat}} |
|
1187 |
\index{nat@{\textit{nat}} type|(} |
|
1188 |
||
15455 | 1189 |
The theory \thydx{Nat} defines the natural numbers in a roundabout but |
6580 | 1190 |
traditional way. The axiom of infinity postulates a type~\tydx{ind} of |
1191 |
individuals, which is non-empty and closed under an injective operation. The |
|
1192 |
natural numbers are inductively generated by choosing an arbitrary individual |
|
1193 |
for~0 and using the injective operation to take successors. This is a least |
|
15455 | 1194 |
fixedpoint construction. |
6580 | 1195 |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1196 |
Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the overloaded |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1197 |
functions of this class (especially \cdx{<} and \cdx{<=}, but also \cdx{min}, |
15455 | 1198 |
\cdx{max} and \cdx{LEAST}) available on \tydx{nat}. Theory \thydx{Nat} |
1199 |
also shows that {\tt<=} is a linear order, so \tydx{nat} is |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1200 |
also an instance of class \cldx{linorder}. |
6580 | 1201 |
|
15455 | 1202 |
Theory \thydx{NatArith} develops arithmetic on the natural numbers. It defines |
6580 | 1203 |
addition, multiplication and subtraction. Theory \thydx{Divides} defines |
1204 |
division, remainder and the ``divides'' relation. The numerous theorems |
|
1205 |
proved include commutative, associative, distributive, identity and |
|
1206 |
cancellation laws. See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}. The |
|
1207 |
recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on |
|
1208 |
\texttt{nat} are part of the default simpset. |
|
1209 |
||
1210 |
Functions on \tydx{nat} can be defined by primitive or well-founded recursion; |
|
7490 | 1211 |
see {\S}\ref{sec:HOL:recursive}. A simple example is addition. |
6580 | 1212 |
Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following |
1213 |
the standard convention. |
|
1214 |
\begin{ttbox} |
|
1215 |
\sdx{primrec} |
|
1216 |
"0 + n = n" |
|
1217 |
"Suc m + n = Suc (m + n)" |
|
1218 |
\end{ttbox} |
|
1219 |
There is also a \sdx{case}-construct |
|
1220 |
of the form |
|
1221 |
\begin{ttbox} |
|
1222 |
case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\) |
|
1223 |
\end{ttbox} |
|
1224 |
Note that Isabelle insists on precisely this format; you may not even change |
|
1225 |
the order of the two cases. |
|
1226 |
Both \texttt{primrec} and \texttt{case} are realized by a recursion operator |
|
7325 | 1227 |
\cdx{nat_rec}, which is available because \textit{nat} is represented as |
42909 | 1228 |
a datatype. |
6580 | 1229 |
|
1230 |
%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded. |
|
1231 |
%Recursion along this relation resembles primitive recursion, but is |
|
1232 |
%stronger because we are in higher-order logic; using primitive recursion to |
|
1233 |
%define a higher-order function, we can easily Ackermann's function, which |
|
1234 |
%is not primitive recursive \cite[page~104]{thompson91}. |
|
1235 |
%The transitive closure of \cdx{pred_nat} is~$<$. Many functions on the |
|
1236 |
%natural numbers are most easily expressed using recursion along~$<$. |
|
1237 |
||
1238 |
Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$ |
|
1239 |
in subgoal~$i$ using theorem \texttt{nat_induct}. There is also the derived |
|
1240 |
theorem \tdx{less_induct}: |
|
1241 |
\begin{ttbox} |
|
1242 |
[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n |
|
1243 |
\end{ttbox} |
|
1244 |
||
1245 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1246 |
\subsection{Numerical types and numerical reasoning} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1247 |
|
9695 | 1248 |
The integers (type \tdx{int}) are also available in HOL, and the reals (type |
14024 | 1249 |
\tdx{real}) are available in the logic image \texttt{HOL-Complex}. They support |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1250 |
the expected operations of addition (\texttt{+}), subtraction (\texttt{-}) and |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1251 |
multiplication (\texttt{*}), and much else. Type \tdx{int} provides the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1252 |
\texttt{div} and \texttt{mod} operators, while type \tdx{real} provides real |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1253 |
division and other operations. Both types belong to class \cldx{linorder}, so |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1254 |
they inherit the relational operators and all the usual properties of linear |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1255 |
orderings. For full details, please survey the theories in subdirectories |
14024 | 1256 |
\texttt{Integ}, \texttt{Real}, and \texttt{Complex}. |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1257 |
|
13012 | 1258 |
All three numeric types admit numerals of the form \texttt{$sd\ldots d$}, |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1259 |
where $s$ is an optional minus sign and $d\ldots d$ is a string of digits. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1260 |
Numerals are represented internally by a datatype for binary notation, which |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1261 |
allows numerical calculations to be performed by rewriting. For example, the |
13012 | 1262 |
integer division of \texttt{54342339} by \texttt{3452} takes about five |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1263 |
seconds. By default, the simplifier cancels like terms on the opposite sites |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1264 |
of relational operators (reducing \texttt{z+x<x+y} to \texttt{z<y}, for |
13012 | 1265 |
instance. The simplifier also collects like terms, replacing \texttt{x+y+x*3} |
1266 |
by \texttt{4*x+y}. |
|
1267 |
||
1268 |
Sometimes numerals are not wanted, because for example \texttt{n+3} does not |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1269 |
match a pattern of the form \texttt{Suc $k$}. You can re-arrange the form of |
13012 | 1270 |
an arithmetic expression by proving (via \texttt{subgoal_tac}) a lemma such as |
1271 |
\texttt{n+3 = Suc (Suc (Suc n))}. As an alternative, you can disable the |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1272 |
fancier simplifications by using a basic simpset such as \texttt{HOL_ss} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1273 |
rather than the default one, \texttt{simpset()}. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1274 |
|
15455 | 1275 |
Reasoning about arithmetic inequalities can be tedious. Fortunately, HOL |
1276 |
provides a decision procedure for \emph{linear arithmetic}: formulae involving |
|
1277 |
addition and subtraction. The simplifier invokes a weak version of this |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1278 |
decision procedure automatically. If this is not sufficent, you can invoke the |
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
30686
diff
changeset
|
1279 |
full procedure \ttindex{Lin_Arith.tac} explicitly. It copes with arbitrary |
6580 | 1280 |
formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt |
15455 | 1281 |
min}, {\tt max} and numerical constants. Other subterms are treated as |
1282 |
atomic, while subformulae not involving numerical types are ignored. Quantified |
|
6580 | 1283 |
subformulae are ignored unless they are positive universal or negative |
15455 | 1284 |
existential. The running time is exponential in the number of |
6580 | 1285 |
occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case |
15455 | 1286 |
distinctions. |
1287 |
If {\tt k} is a numeral, then {\tt div k}, {\tt mod k} and |
|
1288 |
{\tt k dvd} are also supported. The former two are eliminated |
|
1289 |
by case distinctions, again blowing up the running time. |
|
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
30686
diff
changeset
|
1290 |
If the formula involves explicit quantifiers, \texttt{Lin_Arith.tac} may take |
15455 | 1291 |
super-exponential time and space. |
1292 |
||
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
30686
diff
changeset
|
1293 |
If \texttt{Lin_Arith.tac} fails, try to find relevant arithmetic results in |
22921
475ff421a6a3
consts in consts_code Isar commands are now referred to by usual term syntax
haftmann
parents:
17662
diff
changeset
|
1294 |
the library. The theories \texttt{Nat} and \texttt{NatArith} contain |
475ff421a6a3
consts in consts_code Isar commands are now referred to by usual term syntax
haftmann
parents:
17662
diff
changeset
|
1295 |
theorems about {\tt<}, {\tt<=}, \texttt{+}, \texttt{-} and \texttt{*}. |
475ff421a6a3
consts in consts_code Isar commands are now referred to by usual term syntax
haftmann
parents:
17662
diff
changeset
|
1296 |
Theory \texttt{Divides} contains theorems about \texttt{div} and |
475ff421a6a3
consts in consts_code Isar commands are now referred to by usual term syntax
haftmann
parents:
17662
diff
changeset
|
1297 |
\texttt{mod}. Use Proof General's \emph{find} button (or other search |
475ff421a6a3
consts in consts_code Isar commands are now referred to by usual term syntax
haftmann
parents:
17662
diff
changeset
|
1298 |
facilities) to locate them. |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1299 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1300 |
\index{nat@{\textit{nat}} type|)} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1301 |
|
6580 | 1302 |
|
1303 |
\begin{figure} |
|
1304 |
\index{#@{\tt[]} symbol} |
|
1305 |
\index{#@{\tt\#} symbol} |
|
1306 |
\index{"@@{\tt\at} symbol} |
|
1307 |
\index{*"! symbol} |
|
1308 |
\begin{constants} |
|
1309 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
1310 |
\tt[] & $\alpha\,list$ & & empty list\\ |
|
1311 |
\tt \# & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & |
|
1312 |
list constructor \\ |
|
1313 |
\cdx{null} & $\alpha\,list \To bool$ & & emptiness test\\ |
|
1314 |
\cdx{hd} & $\alpha\,list \To \alpha$ & & head \\ |
|
1315 |
\cdx{tl} & $\alpha\,list \To \alpha\,list$ & & tail \\ |
|
1316 |
\cdx{last} & $\alpha\,list \To \alpha$ & & last element \\ |
|
1317 |
\cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\ |
|
1318 |
\tt\at & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\ |
|
1319 |
\cdx{map} & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$ |
|
1320 |
& & apply to all\\ |
|
1321 |
\cdx{filter} & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$ |
|
1322 |
& & filter functional\\ |
|
1323 |
\cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\ |
|
1324 |
\sdx{mem} & $\alpha \To \alpha\,list \To bool$ & Left 55 & membership\\ |
|
1325 |
\cdx{foldl} & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ & |
|
1326 |
& iteration \\ |
|
1327 |
\cdx{concat} & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\ |
|
1328 |
\cdx{rev} & $\alpha\,list \To \alpha\,list$ & & reverse \\ |
|
1329 |
\cdx{length} & $\alpha\,list \To nat$ & & length \\ |
|
1330 |
\tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\ |
|
1331 |
\cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ && |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1332 |
take/drop a prefix \\ |
6580 | 1333 |
\cdx{takeWhile},\\ |
1334 |
\cdx{dropWhile} & |
|
1335 |
$(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ && |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1336 |
take/drop a prefix |
6580 | 1337 |
\end{constants} |
1338 |
\subcaption{Constants and infixes} |
|
1339 |
||
1340 |
\begin{center} \tt\frenchspacing |
|
1341 |
\begin{tabular}{rrr} |
|
1342 |
\it external & \it internal & \it description \\{} |
|
1343 |
[$x@1$, $\dots$, $x@n$] & $x@1$ \# $\cdots$ \# $x@n$ \# [] & |
|
1344 |
\rm finite list \\{} |
|
1345 |
[$x$:$l$. $P$] & filter ($\lambda x{.}P$) $l$ & |
|
1346 |
\rm list comprehension |
|
1347 |
\end{tabular} |
|
1348 |
\end{center} |
|
1349 |
\subcaption{Translations} |
|
1350 |
\caption{The theory \thydx{List}} \label{hol-list} |
|
1351 |
\end{figure} |
|
1352 |
||
1353 |
||
1354 |
\begin{figure} |
|
1355 |
\begin{ttbox}\makeatother |
|
1356 |
null [] = True |
|
1357 |
null (x#xs) = False |
|
1358 |
||
1359 |
hd (x#xs) = x |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1360 |
|
6580 | 1361 |
tl (x#xs) = xs |
1362 |
tl [] = [] |
|
1363 |
||
1364 |
[] @ ys = ys |
|
1365 |
(x#xs) @ ys = x # xs @ ys |
|
1366 |
||
1367 |
set [] = \ttlbrace\ttrbrace |
|
1368 |
set (x#xs) = insert x (set xs) |
|
1369 |
||
1370 |
x mem [] = False |
|
1371 |
x mem (y#ys) = (if y=x then True else x mem ys) |
|
1372 |
||
1373 |
concat([]) = [] |
|
1374 |
concat(x#xs) = x @ concat(xs) |
|
1375 |
||
1376 |
rev([]) = [] |
|
1377 |
rev(x#xs) = rev(xs) @ [x] |
|
1378 |
||
1379 |
length([]) = 0 |
|
1380 |
length(x#xs) = Suc(length(xs)) |
|
1381 |
||
1382 |
xs!0 = hd xs |
|
1383 |
xs!(Suc n) = (tl xs)!n |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1384 |
\end{ttbox} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1385 |
\caption{Simple list processing functions} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1386 |
\label{fig:HOL:list-simps} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1387 |
\end{figure} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1388 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1389 |
\begin{figure} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1390 |
\begin{ttbox}\makeatother |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1391 |
map f [] = [] |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1392 |
map f (x#xs) = f x # map f xs |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1393 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1394 |
filter P [] = [] |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1395 |
filter P (x#xs) = (if P x then x#filter P xs else filter P xs) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1396 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1397 |
foldl f a [] = a |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1398 |
foldl f a (x#xs) = foldl f (f a x) xs |
6580 | 1399 |
|
1400 |
take n [] = [] |
|
1401 |
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs) |
|
1402 |
||
1403 |
drop n [] = [] |
|
1404 |
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs) |
|
1405 |
||
1406 |
takeWhile P [] = [] |
|
1407 |
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else []) |
|
1408 |
||
1409 |
dropWhile P [] = [] |
|
1410 |
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs) |
|
1411 |
\end{ttbox} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1412 |
\caption{Further list processing functions} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1413 |
\label{fig:HOL:list-simps2} |
6580 | 1414 |
\end{figure} |
1415 |
||
1416 |
||
1417 |
\subsection{The type constructor for lists, \textit{list}} |
|
1418 |
\label{subsec:list} |
|
1419 |
\index{list@{\textit{list}} type|(} |
|
1420 |
||
1421 |
Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list |
|
1422 |
operations with their types and syntax. Type $\alpha \; list$ is |
|
1423 |
defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}. |
|
1424 |
As a result the generic structural induction and case analysis tactics |
|
8424 | 1425 |
\texttt{induct\_tac} and \texttt{cases\_tac} also become available for |
6580 | 1426 |
lists. A \sdx{case} construct of the form |
1427 |
\begin{center}\tt |
|
1428 |
case $e$ of [] => $a$ | \(x\)\#\(xs\) => b |
|
1429 |
\end{center} |
|
7490 | 1430 |
is defined by translation. For details see~{\S}\ref{sec:HOL:datatype}. There |
6580 | 1431 |
is also a case splitting rule \tdx{split_list_case} |
1432 |
\[ |
|
1433 |
\begin{array}{l} |
|
1434 |
P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~ |
|
1435 |
x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\ |
|
1436 |
((e = \texttt{[]} \to P(a)) \land |
|
1437 |
(\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs))) |
|
1438 |
\end{array} |
|
1439 |
\] |
|
1440 |
which can be fed to \ttindex{addsplits} just like |
|
7490 | 1441 |
\texttt{split_if} (see~{\S}\ref{subsec:HOL:case:splitting}). |
6580 | 1442 |
|
1443 |
\texttt{List} provides a basic library of list processing functions defined by |
|
42912 | 1444 |
primitive recursion. The recursion equations |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1445 |
are shown in Figs.\ts\ref{fig:HOL:list-simps} and~\ref{fig:HOL:list-simps2}. |
6580 | 1446 |
|
1447 |
\index{list@{\textit{list}} type|)} |
|
1448 |
||
1449 |
||
1450 |
\section{Datatype definitions} |
|
1451 |
\label{sec:HOL:datatype} |
|
1452 |
\index{*datatype|(} |
|
1453 |
||
6626 | 1454 |
Inductive datatypes, similar to those of \ML, frequently appear in |
6580 | 1455 |
applications of Isabelle/HOL. In principle, such types could be defined by |
42907
dfd4ef8e73f6
updated and re-unified HOL typedef, with some live examples;
wenzelm
parents:
42673
diff
changeset
|
1456 |
hand via \texttt{typedef}, but this would be far too |
6626 | 1457 |
tedious. The \ttindex{datatype} definition package of Isabelle/HOL (cf.\ |
1458 |
\cite{Berghofer-Wenzel:1999:TPHOL}) automates such chores. It generates an |
|
1459 |
appropriate \texttt{typedef} based on a least fixed-point construction, and |
|
1460 |
proves freeness theorems and induction rules, as well as theorems for |
|
1461 |
recursion and case combinators. The user just has to give a simple |
|
1462 |
specification of new inductive types using a notation similar to {\ML} or |
|
1463 |
Haskell. |
|
6580 | 1464 |
|
1465 |
The current datatype package can handle both mutual and indirect recursion. |
|
1466 |
It also offers to represent existing types as datatypes giving the advantage |
|
1467 |
of a more uniform view on standard theories. |
|
1468 |
||
1469 |
||
1470 |
\subsection{Basics} |
|
1471 |
\label{subsec:datatype:basics} |
|
1472 |
||
1473 |
A general \texttt{datatype} definition is of the following form: |
|
1474 |
\[ |
|
1475 |
\begin{array}{llcl} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1476 |
\mathtt{datatype} & (\vec{\alpha})t@1 & = & |
6580 | 1477 |
C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~ |
1478 |
C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\ |
|
1479 |
& & \vdots \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1480 |
\mathtt{and} & (\vec{\alpha})t@n & = & |
6580 | 1481 |
C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~ |
1482 |
C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}} |
|
1483 |
\end{array} |
|
1484 |
\] |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1485 |
where $\vec{\alpha} = (\alpha@1,\ldots,\alpha@h)$ is a list of type variables, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1486 |
$C^j@i$ are distinct constructor names and $\tau^j@{i,i'}$ are {\em |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1487 |
admissible} types containing at most the type variables $\alpha@1, \ldots, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1488 |
\alpha@h$. A type $\tau$ occurring in a \texttt{datatype} definition is {\em |
9258 | 1489 |
admissible} if and only if |
6580 | 1490 |
\begin{itemize} |
1491 |
\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the |
|
1492 |
newly defined type constructors $t@1,\ldots,t@n$, or |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1493 |
\item $\tau = (\vec{\alpha})t@{j'}$ where $1 \leq j' \leq n$, or |
6580 | 1494 |
\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is |
1495 |
the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$ |
|
1496 |
are admissible types. |
|
7490 | 1497 |
\item $\tau = \sigma \to \tau'$, where $\tau'$ is an admissible |
7044
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1498 |
type and $\sigma$ is non-recursive (i.e. the occurrences of the newly defined |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1499 |
types are {\em strictly positive}) |
6580 | 1500 |
\end{itemize} |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1501 |
If some $(\vec{\alpha})t@{j'}$ occurs in a type $\tau^j@{i,i'}$ |
6580 | 1502 |
of the form |
1503 |
\[ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1504 |
(\ldots,\ldots ~ (\vec{\alpha})t@{j'} ~ \ldots,\ldots)t' |
6580 | 1505 |
\] |
1506 |
this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple |
|
1507 |
example of a datatype is the type \texttt{list}, which can be defined by |
|
1508 |
\begin{ttbox} |
|
1509 |
datatype 'a list = Nil |
|
1510 |
| Cons 'a ('a list) |
|
1511 |
\end{ttbox} |
|
1512 |
Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled |
|
1513 |
by the mutually recursive datatype definition |
|
1514 |
\begin{ttbox} |
|
1515 |
datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp) |
|
1516 |
| Sum ('a aexp) ('a aexp) |
|
1517 |
| Diff ('a aexp) ('a aexp) |
|
1518 |
| Var 'a |
|
1519 |
| Num nat |
|
1520 |
and 'a bexp = Less ('a aexp) ('a aexp) |
|
1521 |
| And ('a bexp) ('a bexp) |
|
1522 |
| Or ('a bexp) ('a bexp) |
|
1523 |
\end{ttbox} |
|
1524 |
The datatype \texttt{term}, which is defined by |
|
1525 |
\begin{ttbox} |
|
1526 |
datatype ('a, 'b) term = Var 'a |
|
1527 |
| App 'b ((('a, 'b) term) list) |
|
1528 |
\end{ttbox} |
|
7044
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1529 |
is an example for a datatype with nested recursion. Using nested recursion |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1530 |
involving function spaces, we may also define infinitely branching datatypes, e.g. |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1531 |
\begin{ttbox} |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1532 |
datatype 'a tree = Atom 'a | Branch "nat => 'a tree" |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1533 |
\end{ttbox} |
6580 | 1534 |
|
1535 |
\medskip |
|
1536 |
||
1537 |
Types in HOL must be non-empty. Each of the new datatypes |
|
9258 | 1538 |
$(\vec{\alpha})t@j$ with $1 \leq j \leq n$ is non-empty if and only if it has a |
6580 | 1539 |
constructor $C^j@i$ with the following property: for all argument types |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1540 |
$\tau^j@{i,i'}$ of the form $(\vec{\alpha})t@{j'}$ the datatype |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1541 |
$(\vec{\alpha})t@{j'}$ is non-empty. |
6580 | 1542 |
|
1543 |
If there are no nested occurrences of the newly defined datatypes, obviously |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1544 |
at least one of the newly defined datatypes $(\vec{\alpha})t@j$ |
6580 | 1545 |
must have a constructor $C^j@i$ without recursive arguments, a \emph{base |
1546 |
case}, to ensure that the new types are non-empty. If there are nested |
|
1547 |
occurrences, a datatype can even be non-empty without having a base case |
|
1548 |
itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t |
|
1549 |
list)} is non-empty as well. |
|
1550 |
||
1551 |
||
1552 |
\subsubsection{Freeness of the constructors} |
|
1553 |
||
1554 |
The datatype constructors are automatically defined as functions of their |
|
1555 |
respective type: |
|
1556 |
\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \] |
|
1557 |
These functions have certain {\em freeness} properties. They construct |
|
1558 |
distinct values: |
|
1559 |
\[ |
|
1560 |
C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad |
|
1561 |
\mbox{for all}~ i \neq i'. |
|
1562 |
\] |
|
1563 |
The constructor functions are injective: |
|
1564 |
\[ |
|
1565 |
(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) = |
|
1566 |
(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i}) |
|
1567 |
\] |
|
7044
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1568 |
Since the number of distinctness inequalities is quadratic in the number of |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1569 |
constructors, the datatype package avoids proving them separately if there are |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1570 |
too many constructors. Instead, specific inequalities are proved by a suitable |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1571 |
simplification procedure on demand.\footnote{This procedure, which is already part |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1572 |
of the default simpset, may be referred to by the ML identifier |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1573 |
\texttt{DatatypePackage.distinct_simproc}.} |
6580 | 1574 |
|
1575 |
\subsubsection{Structural induction} |
|
1576 |
||
1577 |
The datatype package also provides structural induction rules. For |
|
1578 |
datatypes without nested recursion, this is of the following form: |
|
1579 |
\[ |
|
7490 | 1580 |
\infer{P@1~x@1 \land \dots \land P@n~x@n} |
6580 | 1581 |
{\begin{array}{lcl} |
1582 |
\Forall x@1 \dots x@{m^1@1}. |
|
1583 |
\List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots; |
|
1584 |
P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp & |
|
1585 |
P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\ |
|
1586 |
& \vdots \\ |
|
1587 |
\Forall x@1 \dots x@{m^1@{k@1}}. |
|
1588 |
\List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots; |
|
1589 |
P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp & |
|
1590 |
P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\ |
|
1591 |
& \vdots \\ |
|
1592 |
\Forall x@1 \dots x@{m^n@1}. |
|
1593 |
\List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots; |
|
1594 |
P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp & |
|
1595 |
P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\ |
|
1596 |
& \vdots \\ |
|
1597 |
\Forall x@1 \dots x@{m^n@{k@n}}. |
|
1598 |
\List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots |
|
1599 |
P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp & |
|
1600 |
P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right) |
|
1601 |
\end{array}} |
|
1602 |
\] |
|
1603 |
where |
|
1604 |
\[ |
|
1605 |
\begin{array}{rcl} |
|
1606 |
Rec^j@i & := & |
|
1607 |
\left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots, |
|
1608 |
\left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex] |
|
1609 |
&& \left\{(i',i'')~\left|~ |
|
7490 | 1610 |
1\leq i' \leq m^j@i \land 1 \leq i'' \leq n \land |
6580 | 1611 |
\tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\} |
1612 |
\end{array} |
|
1613 |
\] |
|
1614 |
i.e.\ the properties $P@j$ can be assumed for all recursive arguments. |
|
1615 |
||
1616 |
For datatypes with nested recursion, such as the \texttt{term} example from |
|
1617 |
above, things are a bit more complicated. Conceptually, Isabelle/HOL unfolds |
|
1618 |
a definition like |
|
1619 |
\begin{ttbox} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1620 |
datatype ('a,'b) term = Var 'a |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1621 |
| App 'b ((('a, 'b) term) list) |
6580 | 1622 |
\end{ttbox} |
1623 |
to an equivalent definition without nesting: |
|
1624 |
\begin{ttbox} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1625 |
datatype ('a,'b) term = Var |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1626 |
| App 'b (('a, 'b) term_list) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1627 |
and ('a,'b) term_list = Nil' |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1628 |
| Cons' (('a,'b) term) (('a,'b) term_list) |
6580 | 1629 |
\end{ttbox} |
1630 |
Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt |
|
1631 |
Nil'} and \texttt{Cons'} are not really introduced. One can directly work with |
|
1632 |
the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing |
|
1633 |
constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for |
|
1634 |
\texttt{term} gets the form |
|
1635 |
\[ |
|
7490 | 1636 |
\infer{P@1~x@1 \land P@2~x@2} |
6580 | 1637 |
{\begin{array}{l} |
1638 |
\Forall x.~P@1~(\mathtt{Var}~x) \\ |
|
1639 |
\Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\ |
|
1640 |
P@2~\mathtt{Nil} \\ |
|
1641 |
\Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2) |
|
1642 |
\end{array}} |
|
1643 |
\] |
|
1644 |
Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term} |
|
1645 |
and one for the type \texttt{(('a, 'b) term) list}. |
|
1646 |
||
7044
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1647 |
For a datatype with function types such as \texttt{'a tree}, the induction rule |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1648 |
is of the form |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1649 |
\[ |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1650 |
\infer{P~t} |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1651 |
{\Forall a.~P~(\mathtt{Atom}~a) & |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1652 |
\Forall ts.~(\forall x.~P~(ts~x)) \Imp P~(\mathtt{Branch}~ts)} |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1653 |
\] |
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1654 |
|
6580 | 1655 |
\medskip In principle, inductive types are already fully determined by |
1656 |
freeness and structural induction. For convenience in applications, |
|
1657 |
the following derived constructions are automatically provided for any |
|
1658 |
datatype. |
|
1659 |
||
1660 |
\subsubsection{The \sdx{case} construct} |
|
1661 |
||
1662 |
The type comes with an \ML-like \texttt{case}-construct: |
|
1663 |
\[ |
|
1664 |
\begin{array}{rrcl} |
|
1665 |
\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\ |
|
1666 |
\vdots \\ |
|
1667 |
\mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j} |
|
1668 |
\end{array} |
|
1669 |
\] |
|
1670 |
where the $x@{i,j}$ are either identifiers or nested tuple patterns as in |
|
7490 | 1671 |
{\S}\ref{subsec:prod-sum}. |
6580 | 1672 |
\begin{warn} |
1673 |
All constructors must be present, their order is fixed, and nested patterns |
|
1674 |
are not supported (with the exception of tuples). Violating this |
|
1675 |
restriction results in strange error messages. |
|
1676 |
\end{warn} |
|
1677 |
||
1678 |
To perform case distinction on a goal containing a \texttt{case}-construct, |
|
1679 |
the theorem $t@j.$\texttt{split} is provided: |
|
1680 |
\[ |
|
1681 |
\begin{array}{@{}rcl@{}} |
|
1682 |
P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=& |
|
1683 |
\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to |
|
1684 |
P(f@1~x@1\dots x@{m^j@1})) \\ |
|
1685 |
&&\!\!\! ~\land~ \dots ~\land \\ |
|
1686 |
&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to |
|
1687 |
P(f@{k@j}~x@1\dots x@{m^j@{k@j}}))) |
|
1688 |
\end{array} |
|
1689 |
\] |
|
1690 |
where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct. |
|
1691 |
This theorem can be added to a simpset via \ttindex{addsplits} |
|
7490 | 1692 |
(see~{\S}\ref{subsec:HOL:case:splitting}). |
6580 | 1693 |
|
10109 | 1694 |
Case splitting on assumption works as well, by using the rule |
1695 |
$t@j.$\texttt{split_asm} in the same manner. Both rules are available under |
|
1696 |
$t@j.$\texttt{splits} (this name is \emph{not} bound in ML, though). |
|
1697 |
||
8604 | 1698 |
\begin{warn}\index{simplification!of \texttt{case}}% |
1699 |
By default only the selector expression ($e$ above) in a |
|
1700 |
\texttt{case}-construct is simplified, in analogy with \texttt{if} (see |
|
1701 |
page~\pageref{if-simp}). Only if that reduces to a constructor is one of |
|
1702 |
the arms of the \texttt{case}-construct exposed and simplified. To ensure |
|
1703 |
full simplification of all parts of a \texttt{case}-construct for datatype |
|
1704 |
$t$, remove $t$\texttt{.}\ttindexbold{case_weak_cong} from the simpset, for |
|
1705 |
example by \texttt{delcongs [thm "$t$.weak_case_cong"]}. |
|
1706 |
\end{warn} |
|
1707 |
||
6580 | 1708 |
\subsubsection{The function \cdx{size}}\label{sec:HOL:size} |
1709 |
||
15455 | 1710 |
Theory \texttt{NatArith} declares a generic function \texttt{size} of type |
6580 | 1711 |
$\alpha\To nat$. Each datatype defines a particular instance of \texttt{size} |
1712 |
by overloading according to the following scheme: |
|
1713 |
%%% FIXME: This formula is too big and is completely unreadable |
|
1714 |
\[ |
|
1715 |
size(C^j@i~x@1~\dots~x@{m^j@i}) = \! |
|
1716 |
\left\{ |
|
1717 |
\begin{array}{ll} |
|
1718 |
0 & \!\mbox{if $Rec^j@i = \emptyset$} \\ |
|
7044
193a8601fabd
Documented usage of function types in datatype specifications.
berghofe
parents:
6626
diff
changeset
|
1719 |
1+\sum\limits@{h=1}^{l^j@i}size~x@{r^j@{i,h}} & |
6580 | 1720 |
\!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots, |
1721 |
\left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$} |
|
1722 |
\end{array} |
|
1723 |
\right. |
|
1724 |
\] |
|
1725 |
where $Rec^j@i$ is defined above. Viewing datatypes as generalised trees, the |
|
1726 |
size of a leaf is 0 and the size of a node is the sum of the sizes of its |
|
1727 |
subtrees ${}+1$. |
|
1728 |
||
1729 |
\subsection{Defining datatypes} |
|
1730 |
||
42628
50f257ea2aba
removed obsolete rail diagrams (which were about old-style theory syntax);
wenzelm
parents:
42627
diff
changeset
|
1731 |
The theory syntax for datatype definitions is given in the |
50f257ea2aba
removed obsolete rail diagrams (which were about old-style theory syntax);
wenzelm
parents:
42627
diff
changeset
|
1732 |
Isabelle/Isar reference manual. In order to be well-formed, a |
50f257ea2aba
removed obsolete rail diagrams (which were about old-style theory syntax);
wenzelm
parents:
42627
diff
changeset
|
1733 |
datatype definition has to obey the rules stated in the previous |
50f257ea2aba
removed obsolete rail diagrams (which were about old-style theory syntax);
wenzelm
parents:
42627
diff
changeset
|
1734 |
section. As a result the theory is extended with the new types, the |
50f257ea2aba
removed obsolete rail diagrams (which were about old-style theory syntax);
wenzelm
parents:
42627
diff
changeset
|
1735 |
constructors, and the theorems listed in the previous section. |
6580 | 1736 |
|
1737 |
Most of the theorems about datatypes become part of the default simpset and |
|
1738 |
you never need to see them again because the simplifier applies them |
|
8424 | 1739 |
automatically. Only induction or case distinction are usually invoked by hand. |
6580 | 1740 |
\begin{ttdescription} |
1741 |
\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] |
|
1742 |
applies structural induction on variable $x$ to subgoal $i$, provided the |
|
1743 |
type of $x$ is a datatype. |
|
7846 | 1744 |
\item[\texttt{induct_tac} |
1745 |
{\tt"}$x@1$ $\ldots$ $x@n${\tt"} $i$] applies simultaneous |
|
6580 | 1746 |
structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$. This |
1747 |
is the canonical way to prove properties of mutually recursive datatypes |
|
1748 |
such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as |
|
1749 |
\texttt{term}. |
|
1750 |
\end{ttdescription} |
|
1751 |
In some cases, induction is overkill and a case distinction over all |
|
1752 |
constructors of the datatype suffices. |
|
1753 |
\begin{ttdescription} |
|
8443 | 1754 |
\item[\ttindexbold{case_tac} {\tt"}$u${\tt"} $i$] |
8424 | 1755 |
performs a case analysis for the term $u$ whose type must be a datatype. |
1756 |
If the datatype has $k@j$ constructors $C^j@1$, \dots $C^j@{k@j}$, subgoal |
|
1757 |
$i$ is replaced by $k@j$ new subgoals which contain the additional |
|
1758 |
assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for $i'=1$, $\dots$,~$k@j$. |
|
6580 | 1759 |
\end{ttdescription} |
1760 |
||
1761 |
Note that induction is only allowed on free variables that should not occur |
|
8424 | 1762 |
among the premises of the subgoal. Case distinction applies to arbitrary terms. |
6580 | 1763 |
|
1764 |
\bigskip |
|
1765 |
||
1766 |
||
1767 |
For the technically minded, we exhibit some more details. Processing the |
|
1768 |
theory file produces an \ML\ structure which, in addition to the usual |
|
1769 |
components, contains a structure named $t$ for each datatype $t$ defined in |
|
1770 |
the file. Each structure $t$ contains the following elements: |
|
1771 |
\begin{ttbox} |
|
1772 |
val distinct : thm list |
|
1773 |
val inject : thm list |
|
1774 |
val induct : thm |
|
1775 |
val exhaust : thm |
|
1776 |
val cases : thm list |
|
1777 |
val split : thm |
|
1778 |
val split_asm : thm |
|
1779 |
val recs : thm list |
|
1780 |
val size : thm list |
|
1781 |
val simps : thm list |
|
1782 |
\end{ttbox} |
|
1783 |
\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size} |
|
1784 |
and \texttt{split} contain the theorems |
|
1785 |
described above. For user convenience, \texttt{distinct} contains |
|
1786 |
inequalities in both directions. The reduction rules of the {\tt |
|
1787 |
case}-construct are in \texttt{cases}. All theorems from {\tt |
|
1788 |
distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}. |
|
1789 |
In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct} |
|
1790 |
and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$. |
|
1791 |
||
1792 |
||
42912 | 1793 |
\section{Old-style recursive function definitions}\label{sec:HOL:recursive} |
6580 | 1794 |
\index{recursion!general|(} |
1795 |
\index{*recdef|(} |
|
1796 |
||
42912 | 1797 |
Old-style recursive definitions via \texttt{recdef} requires that you |
1798 |
supply a well-founded relation that governs the recursion. Recursive |
|
1799 |
calls are only allowed if they make the argument decrease under the |
|
1800 |
relation. Complicated recursion forms, such as nested recursion, can |
|
1801 |
be dealt with. Termination can even be proved at a later time, though |
|
1802 |
having unsolved termination conditions around can make work |
|
1803 |
difficult.% |
|
1804 |
\footnote{This facility is based on Konrad Slind's TFL |
|
1805 |
package~\cite{slind-tfl}. Thanks are due to Konrad for implementing |
|
1806 |
TFL and assisting with its installation.} |
|
1807 |
||
6580 | 1808 |
Using \texttt{recdef}, you can declare functions involving nested recursion |
1809 |
and pattern-matching. Recursion need not involve datatypes and there are few |
|
1810 |
syntactic restrictions. Termination is proved by showing that each recursive |
|
1811 |
call makes the argument smaller in a suitable sense, which you specify by |
|
1812 |
supplying a well-founded relation. |
|
1813 |
||
1814 |
Here is a simple example, the Fibonacci function. The first line declares |
|
1815 |
\texttt{fib} to be a constant. The well-founded relation is simply~$<$ (on |
|
1816 |
the natural numbers). Pattern-matching is used here: \texttt{1} is a |
|
1817 |
macro for \texttt{Suc~0}. |
|
1818 |
\begin{ttbox} |
|
1819 |
consts fib :: "nat => nat" |
|
1820 |
recdef fib "less_than" |
|
1821 |
"fib 0 = 0" |
|
1822 |
"fib 1 = 1" |
|
1823 |
"fib (Suc(Suc x)) = (fib x + fib (Suc x))" |
|
1824 |
\end{ttbox} |
|
1825 |
||
1826 |
With \texttt{recdef}, function definitions may be incomplete, and patterns may |
|
1827 |
overlap, as in functional programming. The \texttt{recdef} package |
|
1828 |
disambiguates overlapping patterns by taking the order of rules into account. |
|
1829 |
For missing patterns, the function is defined to return a default value. |
|
1830 |
||
1831 |
%For example, here is a declaration of the list function \cdx{hd}: |
|
1832 |
%\begin{ttbox} |
|
1833 |
%consts hd :: 'a list => 'a |
|
1834 |
%recdef hd "\{\}" |
|
1835 |
% "hd (x#l) = x" |
|
1836 |
%\end{ttbox} |
|
1837 |
%Because this function is not recursive, we may supply the empty well-founded |
|
1838 |
%relation, $\{\}$. |
|
1839 |
||
1840 |
The well-founded relation defines a notion of ``smaller'' for the function's |
|
1841 |
argument type. The relation $\prec$ is \textbf{well-founded} provided it |
|
1842 |
admits no infinitely decreasing chains |
|
1843 |
\[ \cdots\prec x@n\prec\cdots\prec x@1. \] |
|
1844 |
If the function's argument has type~$\tau$, then $\prec$ has to be a relation |
|
1845 |
over~$\tau$: it must have type $(\tau\times\tau)set$. |
|
1846 |
||
1847 |
Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection |
|
1848 |
of operators for building well-founded relations. The package recognises |
|
1849 |
these operators and automatically proves that the constructed relation is |
|
1850 |
well-founded. Here are those operators, in order of importance: |
|
1851 |
\begin{itemize} |
|
1852 |
\item \texttt{less_than} is ``less than'' on the natural numbers. |
|
1853 |
(It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$. |
|
1854 |
||
1855 |
\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the |
|
9258 | 1856 |
relation~$\prec$ on type~$\tau$ such that $x\prec y$ if and only if |
1857 |
$f(x)<f(y)$. |
|
6580 | 1858 |
Typically, $f$ takes the recursive function's arguments (as a tuple) and |
1859 |
returns a result expressed in terms of the function \texttt{size}. It is |
|
1860 |
called a \textbf{measure function}. Recall that \texttt{size} is overloaded |
|
7490 | 1861 |
and is defined on all datatypes (see {\S}\ref{sec:HOL:size}). |
6580 | 1862 |
|
9258 | 1863 |
\item $\mathop{\mathtt{inv_image}} R\;f$ is a generalisation of |
1864 |
\texttt{measure}. It specifies a relation such that $x\prec y$ if and only |
|
1865 |
if $f(x)$ |
|
6580 | 1866 |
is less than $f(y)$ according to~$R$, which must itself be a well-founded |
1867 |
relation. |
|
1868 |
||
11242
81fe09ce5fc9
lexicographic product of two relations: updated HOL.tex
paulson
parents:
10109
diff
changeset
|
1869 |
\item $R@1\texttt{<*lex*>}R@2$ is the lexicographic product of two relations. |
81fe09ce5fc9
lexicographic product of two relations: updated HOL.tex
paulson
parents:
10109
diff
changeset
|
1870 |
It |
9258 | 1871 |
is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ if and only |
1872 |
if $x@1$ |
|
6580 | 1873 |
is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$ |
1874 |
is less than $y@2$ according to~$R@2$. |
|
1875 |
||
1876 |
\item \texttt{finite_psubset} is the proper subset relation on finite sets. |
|
1877 |
\end{itemize} |
|
1878 |
||
1879 |
We can use \texttt{measure} to declare Euclid's algorithm for the greatest |
|
1880 |
common divisor. The measure function, $\lambda(m,n). n$, specifies that the |
|
1881 |
recursion terminates because argument~$n$ decreases. |
|
1882 |
\begin{ttbox} |
|
1883 |
recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)" |
|
1884 |
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))" |
|
1885 |
\end{ttbox} |
|
1886 |
||
1887 |
The general form of a well-founded recursive definition is |
|
1888 |
\begin{ttbox} |
|
1889 |
recdef {\it function} {\it rel} |
|
1890 |
congs {\it congruence rules} {\bf(optional)} |
|
1891 |
simpset {\it simplification set} {\bf(optional)} |
|
1892 |
{\it reduction rules} |
|
1893 |
\end{ttbox} |
|
1894 |
where |
|
1895 |
\begin{itemize} |
|
1896 |
\item \textit{function} is the name of the function, either as an \textit{id} |
|
1897 |
or a \textit{string}. |
|
1898 |
||
9695 | 1899 |
\item \textit{rel} is a HOL expression for the well-founded termination |
6580 | 1900 |
relation. |
1901 |
||
1902 |
\item \textit{congruence rules} are required only in highly exceptional |
|
1903 |
circumstances. |
|
1904 |
||
1905 |
\item The \textit{simplification set} is used to prove that the supplied |
|
1906 |
relation is well-founded. It is also used to prove the \textbf{termination |
|
1907 |
conditions}: assertions that arguments of recursive calls decrease under |
|
1908 |
\textit{rel}. By default, simplification uses \texttt{simpset()}, which |
|
1909 |
is sufficient to prove well-foundedness for the built-in relations listed |
|
1910 |
above. |
|
1911 |
||
1912 |
\item \textit{reduction rules} specify one or more recursion equations. Each |
|
1913 |
left-hand side must have the form $f\,t$, where $f$ is the function and $t$ |
|
1914 |
is a tuple of distinct variables. If more than one equation is present then |
|
1915 |
$f$ is defined by pattern-matching on components of its argument whose type |
|
1916 |
is a \texttt{datatype}. |
|
1917 |
||
8628 | 1918 |
The \ML\ identifier $f$\texttt{.simps} contains the reduction rules as |
1919 |
a list of theorems. |
|
6580 | 1920 |
\end{itemize} |
1921 |
||
1922 |
With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to |
|
1923 |
prove one termination condition. It remains as a precondition of the |
|
8628 | 1924 |
recursion theorems: |
6580 | 1925 |
\begin{ttbox} |
8628 | 1926 |
gcd.simps; |
6580 | 1927 |
{\out ["! m n. n ~= 0 --> m mod n < n} |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1928 |
{\out ==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"] } |
6580 | 1929 |
{\out : thm list} |
1930 |
\end{ttbox} |
|
1931 |
The theory \texttt{HOL/ex/Primes} illustrates how to prove termination |
|
1932 |
conditions afterwards. The function \texttt{Tfl.tgoalw} is like the standard |
|
1933 |
function \texttt{goalw}, which sets up a goal to prove, but its argument |
|
8628 | 1934 |
should be the identifier $f$\texttt{.simps} and its effect is to set up a |
6580 | 1935 |
proof of the termination conditions: |
1936 |
\begin{ttbox} |
|
8628 | 1937 |
Tfl.tgoalw thy [] gcd.simps; |
6580 | 1938 |
{\out Level 0} |
1939 |
{\out ! m n. n ~= 0 --> m mod n < n} |
|
1940 |
{\out 1. ! m n. n ~= 0 --> m mod n < n} |
|
1941 |
\end{ttbox} |
|
1942 |
This subgoal has a one-step proof using \texttt{simp_tac}. Once the theorem |
|
1943 |
is proved, it can be used to eliminate the termination conditions from |
|
8628 | 1944 |
elements of \texttt{gcd.simps}. Theory \texttt{HOL/Subst/Unify} is a much |
6580 | 1945 |
more complicated example of this process, where the termination conditions can |
1946 |
only be proved by complicated reasoning involving the recursive function |
|
1947 |
itself. |
|
1948 |
||
1949 |
Isabelle/HOL can prove the \texttt{gcd} function's termination condition |
|
1950 |
automatically if supplied with the right simpset. |
|
1951 |
\begin{ttbox} |
|
1952 |
recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)" |
|
1953 |
simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]" |
|
1954 |
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))" |
|
1955 |
\end{ttbox} |
|
1956 |
||
8628 | 1957 |
If all termination conditions were proved automatically, $f$\texttt{.simps} |
1958 |
is added to the simpset automatically, just as in \texttt{primrec}. |
|
1959 |
The simplification rules corresponding to clause $i$ (where counting starts |
|
1960 |
at 0) are called $f$\texttt{.}$i$ and can be accessed as \texttt{thms |
|
1961 |
"$f$.$i$"}, |
|
1962 |
which returns a list of theorems. Thus you can, for example, remove specific |
|
1963 |
clauses from the simpset. Note that a single clause may give rise to a set of |
|
1964 |
simplification rules in order to capture the fact that if clauses overlap, |
|
1965 |
their order disambiguates them. |
|
1966 |
||
6580 | 1967 |
A \texttt{recdef} definition also returns an induction rule specialised for |
1968 |
the recursive function. For the \texttt{gcd} function above, the induction |
|
1969 |
rule is |
|
1970 |
\begin{ttbox} |
|
1971 |
gcd.induct; |
|
1972 |
{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm} |
|
1973 |
\end{ttbox} |
|
1974 |
This rule should be used to reason inductively about the \texttt{gcd} |
|
1975 |
function. It usually makes the induction hypothesis available at all |
|
1976 |
recursive calls, leading to very direct proofs. If any termination conditions |
|
1977 |
remain unproved, they will become additional premises of this rule. |
|
1978 |
||
1979 |
\index{recursion!general|)} |
|
1980 |
\index{*recdef|)} |
|
1981 |
||
1982 |
||
1983 |
\section{Example: Cantor's Theorem}\label{sec:hol-cantor} |
|
1984 |
Cantor's Theorem states that every set has more subsets than it has |
|
1985 |
elements. It has become a favourite example in higher-order logic since |
|
1986 |
it is so easily expressed: |
|
1987 |
\[ \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool. |
|
1988 |
\forall x::\alpha. f~x \not= S |
|
1989 |
\] |
|
1990 |
% |
|
1991 |
Viewing types as sets, $\alpha\To bool$ represents the powerset |
|
1992 |
of~$\alpha$. This version states that for every function from $\alpha$ to |
|
1993 |
its powerset, some subset is outside its range. |
|
1994 |
||
9695 | 1995 |
The Isabelle proof uses HOL's set theory, with the type $\alpha\,set$ and |
6580 | 1996 |
the operator \cdx{range}. |
1997 |
\begin{ttbox} |
|
1998 |
context Set.thy; |
|
1999 |
\end{ttbox} |
|
2000 |
The set~$S$ is given as an unknown instead of a |
|
2001 |
quantified variable so that we may inspect the subset found by the proof. |
|
2002 |
\begin{ttbox} |
|
2003 |
Goal "?S ~: range\thinspace(f :: 'a=>'a set)"; |
|
2004 |
{\out Level 0} |
|
2005 |
{\out ?S ~: range f} |
|
2006 |
{\out 1. ?S ~: range f} |
|
2007 |
\end{ttbox} |
|
2008 |
The first two steps are routine. The rule \tdx{rangeE} replaces |
|
2009 |
$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$. |
|
2010 |
\begin{ttbox} |
|
2011 |
by (resolve_tac [notI] 1); |
|
2012 |
{\out Level 1} |
|
2013 |
{\out ?S ~: range f} |
|
2014 |
{\out 1. ?S : range f ==> False} |
|
2015 |
\ttbreak |
|
2016 |
by (eresolve_tac [rangeE] 1); |
|
2017 |
{\out Level 2} |
|
2018 |
{\out ?S ~: range f} |
|
2019 |
{\out 1. !!x. ?S = f x ==> False} |
|
2020 |
\end{ttbox} |
|
2021 |
Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$, |
|
2022 |
we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for |
|
2023 |
any~$\Var{c}$. |
|
2024 |
\begin{ttbox} |
|
2025 |
by (eresolve_tac [equalityCE] 1); |
|
2026 |
{\out Level 3} |
|
2027 |
{\out ?S ~: range f} |
|
2028 |
{\out 1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False} |
|
2029 |
{\out 2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False} |
|
2030 |
\end{ttbox} |
|
2031 |
Now we use a bit of creativity. Suppose that~$\Var{S}$ has the form of a |
|
2032 |
comprehension. Then $\Var{c}\in\{x.\Var{P}~x\}$ implies |
|
2033 |
$\Var{P}~\Var{c}$. Destruct-resolution using \tdx{CollectD} |
|
2034 |
instantiates~$\Var{S}$ and creates the new assumption. |
|
2035 |
\begin{ttbox} |
|
2036 |
by (dresolve_tac [CollectD] 1); |
|
2037 |
{\out Level 4} |
|
2038 |
{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f} |
|
2039 |
{\out 1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False} |
|
2040 |
{\out 2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False} |
|
2041 |
\end{ttbox} |
|
2042 |
Forcing a contradiction between the two assumptions of subgoal~1 |
|
2043 |
completes the instantiation of~$S$. It is now the set $\{x. x\not\in |
|
2044 |
f~x\}$, which is the standard diagonal construction. |
|
2045 |
\begin{ttbox} |
|
2046 |
by (contr_tac 1); |
|
2047 |
{\out Level 5} |
|
2048 |
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} |
|
2049 |
{\out 1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False} |
|
2050 |
\end{ttbox} |
|
2051 |
The rest should be easy. To apply \tdx{CollectI} to the negated |
|
2052 |
assumption, we employ \ttindex{swap_res_tac}: |
|
2053 |
\begin{ttbox} |
|
2054 |
by (swap_res_tac [CollectI] 1); |
|
2055 |
{\out Level 6} |
|
2056 |
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} |
|
2057 |
{\out 1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x} |
|
2058 |
\ttbreak |
|
2059 |
by (assume_tac 1); |
|
2060 |
{\out Level 7} |
|
2061 |
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} |
|
2062 |
{\out No subgoals!} |
|
2063 |
\end{ttbox} |
|
2064 |
How much creativity is required? As it happens, Isabelle can prove this |
|
9695 | 2065 |
theorem automatically. The default classical set \texttt{claset()} contains |
2066 |
rules for most of the constructs of HOL's set theory. We must augment it with |
|
2067 |
\tdx{equalityCE} to break up set equalities, and then apply best-first search. |
|
2068 |
Depth-first search would diverge, but best-first search successfully navigates |
|
2069 |
through the large search space. \index{search!best-first} |
|
6580 | 2070 |
\begin{ttbox} |
2071 |
choplev 0; |
|
2072 |
{\out Level 0} |
|
2073 |
{\out ?S ~: range f} |
|
2074 |
{\out 1. ?S ~: range f} |
|
2075 |
\ttbreak |
|
2076 |
by (best_tac (claset() addSEs [equalityCE]) 1); |
|
2077 |
{\out Level 1} |
|
2078 |
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} |
|
2079 |
{\out No subgoals!} |
|
2080 |
\end{ttbox} |
|
2081 |
If you run this example interactively, make sure your current theory contains |
|
2082 |
theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}. |
|
2083 |
Otherwise the default claset may not contain the rules for set theory. |
|
2084 |
\index{higher-order logic|)} |
|
2085 |
||
2086 |
%%% Local Variables: |
|
2087 |
%%% mode: latex |
|
10109 | 2088 |
%%% TeX-master: "logics-HOL" |
6580 | 2089 |
%%% End: |