| author | wenzelm | 
| Thu, 31 May 2001 20:53:49 +0200 | |
| changeset 11356 | 8fbb19b84f94 | 
| parent 11049 | 7eef34adb852 | 
| child 11549 | e7265e70fd7c | 
| permissions | -rw-r--r-- | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 1 | (* Title: HOL/NumberTheory/WilsonRuss.thy | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 2 | ID: $Id$ | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 3 | Author: Thomas M. Rasmussen | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 4 | Copyright 2000 University of Cambridge | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 5 | *) | 
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 6 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 7 | header {* Wilson's Theorem according to Russinoff *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 8 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 9 | theory WilsonRuss = EulerFermat: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 10 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 11 | text {*
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 12 | Wilson's Theorem following quite closely Russinoff's approach | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 13 | using Boyer-Moore (using finite sets instead of lists, though). | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 14 | *} | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 15 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 16 | subsection {* Definitions and lemmas *}
 | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 17 | |
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 18 | consts | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 19 | inv :: "int => int => int" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 20 | wset :: "int * int => int set" | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 21 | |
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 22 | defs | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 23 | inv_def: "inv p a == (a^(nat (p - #2))) mod p" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 24 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 25 | recdef wset | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 26 | "measure ((\<lambda>(a, p). nat a) :: int * int => nat)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 27 | "wset (a, p) = | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 28 | (if #1 < a then | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 29 | let ws = wset (a - #1, p) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 30 |       in (if a \<in> ws then ws else insert a (insert (inv p a) ws)) else {})"
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 31 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 32 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 33 | text {* \medskip @{term [source] inv} *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 34 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 35 | lemma aux: "#1 < m ==> Suc (nat (m - #2)) = nat (m - #1)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 36 | apply (subst int_int_eq [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 37 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 38 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 39 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 40 | lemma inv_is_inv: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 41 | "p \<in> zprime \<Longrightarrow> #0 < a \<Longrightarrow> a < p ==> [a * inv p a = #1] (mod p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 42 | apply (unfold inv_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 43 | apply (subst zcong_zmod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 44 | apply (subst zmod_zmult1_eq [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 45 | apply (subst zcong_zmod [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 46 | apply (subst power_Suc [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 47 | apply (subst aux) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 48 | apply (erule_tac [2] Little_Fermat) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 49 | apply (erule_tac [2] zdvd_not_zless) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 50 | apply (unfold zprime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 51 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 52 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 53 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 54 | lemma inv_distinct: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 55 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> a \<noteq> inv p a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 56 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 57 | apply (cut_tac a = a and p = p in zcong_square) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 58 | apply (cut_tac [3] a = a and p = p in inv_is_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 59 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 60 | apply (subgoal_tac "a = #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 61 | apply (rule_tac [2] m = p in zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 62 | apply (subgoal_tac [7] "a = p - #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 63 | apply (rule_tac [8] m = p in zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 64 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 65 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 66 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 67 | lemma inv_not_0: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 68 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> inv p a \<noteq> #0" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 69 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 70 | apply (cut_tac a = a and p = p in inv_is_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 71 | apply (unfold zcong_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 72 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 73 | apply (subgoal_tac "\<not> p dvd #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 74 | apply (rule_tac [2] zdvd_not_zless) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 75 | apply (subgoal_tac "p dvd #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 76 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 77 | apply (subst zdvd_zminus_iff [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 78 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 79 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 80 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 81 | lemma inv_not_1: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 82 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> inv p a \<noteq> #1" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 83 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 84 | apply (cut_tac a = a and p = p in inv_is_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 85 | prefer 4 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 86 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 87 | apply (subgoal_tac "a = #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 88 | apply (rule_tac [2] zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 89 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 90 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 91 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 92 | lemma aux: "[a * (p - #1) = #1] (mod p) = [a = p - #1] (mod p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 93 | apply (unfold zcong_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 94 | apply (simp add: zdiff_zdiff_eq zdiff_zdiff_eq2 zdiff_zmult_distrib2) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 95 | apply (rule_tac s = "p dvd -((a + #1) + (p * -a))" in trans) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 96 | apply (simp add: zmult_commute zminus_zdiff_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 97 | apply (subst zdvd_zminus_iff) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 98 | apply (subst zdvd_reduce) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 99 | apply (rule_tac s = "p dvd (a + #1) + (p * -#1)" in trans) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 100 | apply (subst zdvd_reduce) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 101 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 102 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 103 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 104 | lemma inv_not_p_minus_1: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 105 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> inv p a \<noteq> p - #1" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 106 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 107 | apply (cut_tac a = a and p = p in inv_is_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 108 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 109 | apply (simp add: aux) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 110 | apply (subgoal_tac "a = p - #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 111 | apply (rule_tac [2] zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 112 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 113 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 114 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 115 | lemma inv_g_1: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 116 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> #1 < inv p a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 117 | apply (case_tac "#0\<le> inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 118 | apply (subgoal_tac "inv p a \<noteq> #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 119 | apply (subgoal_tac "inv p a \<noteq> #0") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 120 | apply (subst order_less_le) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 121 | apply (subst zle_add1_eq_le [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 122 | apply (subst order_less_le) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 123 | apply (rule_tac [2] inv_not_0) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 124 | apply (rule_tac [5] inv_not_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 125 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 126 | apply (unfold inv_def zprime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 127 | apply (simp add: pos_mod_sign) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 128 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 129 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 130 | lemma inv_less_p_minus_1: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 131 | "p \<in> zprime \<Longrightarrow> #1 < a \<Longrightarrow> a < p - #1 ==> inv p a < p - #1" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 132 | apply (case_tac "inv p a < p") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 133 | apply (subst order_less_le) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 134 | apply (simp add: inv_not_p_minus_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 135 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 136 | apply (unfold inv_def zprime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 137 | apply (simp add: pos_mod_bound) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 138 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 139 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 140 | lemma aux: "#5 \<le> p ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 141 | nat (p - #2) * nat (p - #2) = Suc (nat (p - #1) * nat (p - #3))" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 142 | apply (subst int_int_eq [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 143 | apply (simp add: zmult_int [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 144 | apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 145 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 146 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 147 | lemma zcong_zpower_zmult: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 148 | "[x^y = #1] (mod p) \<Longrightarrow> [x^(y * z) = #1] (mod p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 149 | apply (induct z) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 150 | apply (auto simp add: zpower_zadd_distrib) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 151 | apply (subgoal_tac "zcong (x^y * x^(y * n)) (#1 * #1) p") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 152 | apply (rule_tac [2] zcong_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 153 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 154 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 155 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 156 | lemma inv_inv: "p \<in> zprime \<Longrightarrow> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 157 | #5 \<le> p \<Longrightarrow> #0 < a \<Longrightarrow> a < p ==> inv p (inv p a) = a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 158 | apply (unfold inv_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 159 | apply (subst zpower_zmod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 160 | apply (subst zpower_zpower) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 161 | apply (rule zcong_zless_imp_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 162 | prefer 5 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 163 | apply (subst zcong_zmod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 164 | apply (subst mod_mod_trivial) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 165 | apply (subst zcong_zmod [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 166 | apply (subst aux) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 167 | apply (subgoal_tac [2] | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 168 | "zcong (a * a^(nat (p - #1) * nat (p - #3))) (a * #1) p") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 169 | apply (rule_tac [3] zcong_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 170 | apply (rule_tac [4] zcong_zpower_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 171 | apply (erule_tac [4] Little_Fermat) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 172 | apply (rule_tac [4] zdvd_not_zless) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 173 | apply (simp_all add: pos_mod_bound pos_mod_sign) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 174 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 175 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 176 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 177 | text {* \medskip @{term wset} *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 178 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 179 | declare wset.simps [simp del] | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 180 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 181 | lemma wset_induct: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 182 |   "(!!a p. P {} a p) \<Longrightarrow>
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 183 | (!!a p. #1 < (a::int) \<Longrightarrow> P (wset (a - #1, p)) (a - #1) p | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 184 | ==> P (wset (a, p)) a p) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 185 | ==> P (wset (u, v)) u v" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 186 | proof - | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 187 | case antecedent | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 188 | show ?thesis | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 189 | apply (rule wset.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 190 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 191 | apply (case_tac [2] "#1 < a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 192 | apply (rule_tac [2] antecedent) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 193 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 194 | apply (simp_all add: wset.simps antecedent) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 195 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 196 | qed | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 197 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 198 | lemma wset_mem_imp_or [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 199 | "#1 < a \<Longrightarrow> b \<notin> wset (a - #1, p) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 200 | ==> b \<in> wset (a, p) --> b = a \<or> b = inv p a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 201 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 202 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 203 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 204 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 205 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 206 | lemma wset_mem_mem [simp]: "#1 < a ==> a \<in> wset (a, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 207 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 208 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 209 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 210 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 211 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 212 | lemma wset_subset: "#1 < a \<Longrightarrow> b \<in> wset (a - #1, p) ==> b \<in> wset (a, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 213 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 214 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 215 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 216 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 217 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 218 | lemma wset_g_1 [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 219 | "p \<in> zprime --> a < p - #1 --> b \<in> wset (a, p) --> #1 < b" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 220 | apply (induct a p rule: wset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 221 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 222 | apply (case_tac "b = a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 223 | apply (case_tac [2] "b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 224 | apply (subgoal_tac [3] "b = a \<or> b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 225 | apply (rule_tac [4] wset_mem_imp_or) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 226 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 227 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 228 | apply (rule inv_g_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 229 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 230 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 231 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 232 | lemma wset_less [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 233 | "p \<in> zprime --> a < p - #1 --> b \<in> wset (a, p) --> b < p - #1" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 234 | apply (induct a p rule: wset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 235 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 236 | apply (case_tac "b = a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 237 | apply (case_tac [2] "b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 238 | apply (subgoal_tac [3] "b = a \<or> b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 239 | apply (rule_tac [4] wset_mem_imp_or) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 240 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 241 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 242 | apply (rule inv_less_p_minus_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 243 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 244 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 245 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 246 | lemma wset_mem [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 247 | "p \<in> zprime --> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 248 | a < p - #1 --> #1 < b --> b \<le> a --> b \<in> wset (a, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 249 | apply (induct a p rule: wset.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 250 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 251 | apply (subgoal_tac "b = a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 252 | apply (rule_tac [2] zle_anti_sym) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 253 | apply (rule_tac [4] wset_subset) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 254 | apply (simp (no_asm_simp)) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 255 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 256 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 257 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 258 | lemma wset_mem_inv_mem [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 259 | "p \<in> zprime --> #5 \<le> p --> a < p - #1 --> b \<in> wset (a, p) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 260 | --> inv p b \<in> wset (a, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 261 | apply (induct a p rule: wset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 262 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 263 | apply (case_tac "b = a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 264 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 265 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 266 | apply (rule_tac [3] wset_subset) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 267 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 268 | apply (case_tac "b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 269 | apply (simp (no_asm_simp)) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 270 | apply (subst inv_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 271 | apply (subgoal_tac [6] "b = a \<or> b = inv p a") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 272 | apply (rule_tac [7] wset_mem_imp_or) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 273 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 274 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 275 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 276 | lemma wset_inv_mem_mem: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 277 | "p \<in> zprime \<Longrightarrow> #5 \<le> p \<Longrightarrow> a < p - #1 \<Longrightarrow> #1 < b \<Longrightarrow> b < p - #1 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 278 | \<Longrightarrow> inv p b \<in> wset (a, p) \<Longrightarrow> b \<in> wset (a, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 279 | apply (rule_tac s = "inv p (inv p b)" and t = b in subst) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 280 | apply (rule_tac [2] wset_mem_inv_mem) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 281 | apply (rule inv_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 282 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 283 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 284 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 285 | lemma wset_fin: "finite (wset (a, p))" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 286 | apply (induct a p rule: wset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 287 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 288 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 289 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 290 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 291 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 292 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 293 | lemma wset_zcong_prod_1 [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 294 | "p \<in> zprime --> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 295 | #5 \<le> p --> a < p - #1 --> [setprod (wset (a, p)) = #1] (mod p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 296 | apply (induct a p rule: wset_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 297 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 298 | apply (subst wset.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 299 | apply (unfold Let_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 300 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 301 | apply (subst setprod_insert) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 302 |     apply (tactic {* stac (thm "setprod_insert") 3 *})
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 303 | apply (subgoal_tac [5] | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 304 | "zcong (a * inv p a * setprod (wset (a - #1, p))) (#1 * #1) p") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 305 | prefer 5 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 306 | apply (simp add: zmult_assoc) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 307 | apply (rule_tac [5] zcong_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 308 | apply (rule_tac [5] inv_is_inv) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 309 | apply (tactic "Clarify_tac 4") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 310 | apply (subgoal_tac [4] "a \<in> wset (a - #1, p)") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 311 | apply (rule_tac [5] wset_inv_mem_mem) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 312 | apply (simp_all add: wset_fin) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 313 | apply (rule inv_distinct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 314 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 315 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 316 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 317 | lemma d22set_eq_wset: "p \<in> zprime ==> d22set (p - #2) = wset (p - #2, p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 318 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 319 | apply (erule wset_mem) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 320 | apply (rule_tac [2] d22set_g_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 321 | apply (rule_tac [3] d22set_le) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 322 | apply (rule_tac [4] d22set_mem) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 323 | apply (erule_tac [4] wset_g_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 324 | prefer 6 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 325 | apply (subst zle_add1_eq_le [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 326 | apply (subgoal_tac "p - #2 + #1 = p - #1") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 327 | apply (simp (no_asm_simp)) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 328 | apply (erule wset_less) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 329 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 330 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 331 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 332 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 333 | subsection {* Wilson *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 334 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 335 | lemma prime_g_5: "p \<in> zprime \<Longrightarrow> p \<noteq> #2 \<Longrightarrow> p \<noteq> #3 ==> #5 \<le> p" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 336 | apply (unfold zprime_def dvd_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 337 | apply (case_tac "p = #4") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 338 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 339 | apply (rule notE) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 340 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 341 | apply assumption | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 342 | apply (simp (no_asm)) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 343 | apply (rule_tac x = "#2" in exI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 344 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 345 | apply (rule_tac x = "#2" in exI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 346 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 347 | apply arith | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 348 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 349 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 350 | theorem Wilson_Russ: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 351 | "p \<in> zprime ==> [zfact (p - #1) = #-1] (mod p)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 352 | apply (subgoal_tac "[(p - #1) * zfact (p - #2) = #-1 * #1] (mod p)") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 353 | apply (rule_tac [2] zcong_zmult) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 354 | apply (simp only: zprime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 355 | apply (subst zfact.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 356 | apply (rule_tac t = "p - #1 - #1" and s = "p - #2" in subst) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 357 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 358 | apply (simp only: zcong_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 359 | apply (simp (no_asm_simp)) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 360 | apply (case_tac "p = #2") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 361 | apply (simp add: zfact.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 362 | apply (case_tac "p = #3") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 363 | apply (simp add: zfact.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 364 | apply (subgoal_tac "#5 \<le> p") | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 365 | apply (erule_tac [2] prime_g_5) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 366 | apply (subst d22set_prod_zfact [symmetric]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 367 | apply (subst d22set_eq_wset) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 368 | apply (rule_tac [2] wset_zcong_prod_1) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 369 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 370 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 371 | |
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 372 | end |