| 
40107
 | 
     1  | 
(*  Title:      HOL/Tools/Function/partial_function.ML
  | 
| 
 | 
     2  | 
    Author:     Alexander Krauss, TU Muenchen
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
Partial function definitions based on least fixed points in ccpos.
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
signature PARTIAL_FUNCTION =
  | 
| 
 | 
     8  | 
sig
  | 
| 
 | 
     9  | 
  val setup: theory -> theory
  | 
| 
 | 
    10  | 
  val init: term -> term -> thm -> declaration
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
  val add_partial_function: string -> (binding * typ option * mixfix) list ->
  | 
| 
 | 
    13  | 
    Attrib.binding * term -> local_theory -> local_theory
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
  val add_partial_function_cmd: string -> (binding * string option * mixfix) list ->
  | 
| 
 | 
    16  | 
    Attrib.binding * string -> local_theory -> local_theory
  | 
| 
 | 
    17  | 
end;
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
structure Partial_Function: PARTIAL_FUNCTION =
  | 
| 
 | 
    21  | 
struct
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
(*** Context Data ***)
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
structure Modes = Generic_Data
  | 
| 
 | 
    26  | 
(
  | 
| 
 | 
    27  | 
  type T = ((term * term) * thm) Symtab.table;
  | 
| 
 | 
    28  | 
  val empty = Symtab.empty;
  | 
| 
 | 
    29  | 
  val extend = I;
  | 
| 
 | 
    30  | 
  fun merge (a, b) = Symtab.merge (K true) (a, b);
  | 
| 
 | 
    31  | 
)
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
fun init fixp mono fixp_eq phi =
  | 
| 
 | 
    34  | 
  let
  | 
| 
 | 
    35  | 
    val term = Morphism.term phi;
  | 
| 
 | 
    36  | 
    val data' = ((term fixp, term mono), Morphism.thm phi fixp_eq);
  | 
| 
 | 
    37  | 
    val mode = (* extract mode identifier from morphism prefix! *)
  | 
| 
 | 
    38  | 
      Binding.prefix_of (Morphism.binding phi (Binding.empty))
  | 
| 
 | 
    39  | 
      |> map fst |> space_implode ".";
  | 
| 
 | 
    40  | 
  in
  | 
| 
 | 
    41  | 
    if mode = "" then I
  | 
| 
 | 
    42  | 
    else Modes.map (Symtab.update (mode, data'))
  | 
| 
 | 
    43  | 
  end
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
val known_modes = Symtab.keys o Modes.get o Context.Proof;
  | 
| 
 | 
    46  | 
val lookup_mode = Symtab.lookup o Modes.get o Context.Proof;
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
structure Mono_Rules = Named_Thms
  | 
| 
 | 
    50  | 
(
  | 
| 
 | 
    51  | 
  val name = "partial_function_mono";
  | 
| 
 | 
    52  | 
  val description = "monotonicity rules for partial function definitions";
  | 
| 
 | 
    53  | 
);
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
(*** Automated monotonicity proofs ***)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
fun strip_cases ctac = ctac #> Seq.map snd;
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
(*rewrite conclusion with k-th assumtion*)
  | 
| 
 | 
    61  | 
fun rewrite_with_asm_tac ctxt k =
  | 
| 
 | 
    62  | 
  Subgoal.FOCUS (fn {context=ctxt', prems, ...} =>
 | 
| 
 | 
    63  | 
    Local_Defs.unfold_tac ctxt' [nth prems k]) ctxt;
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
fun dest_case thy t =
  | 
| 
 | 
    66  | 
  case strip_comb t of
  | 
| 
 | 
    67  | 
    (Const (case_comb, _), args) =>
  | 
| 
 | 
    68  | 
      (case Datatype.info_of_case thy case_comb of
  | 
| 
 | 
    69  | 
         NONE => NONE
  | 
| 
 | 
    70  | 
       | SOME {case_rewrites, ...} =>
 | 
| 
 | 
    71  | 
           let
  | 
| 
 | 
    72  | 
             val lhs = prop_of (hd case_rewrites)
  | 
| 
 | 
    73  | 
               |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst;
  | 
| 
 | 
    74  | 
             val arity = length (snd (strip_comb lhs));
  | 
| 
 | 
    75  | 
             val conv = funpow (length args - arity) Conv.fun_conv
  | 
| 
 | 
    76  | 
               (Conv.rewrs_conv (map mk_meta_eq case_rewrites));
  | 
| 
 | 
    77  | 
           in
  | 
| 
 | 
    78  | 
             SOME (nth args (arity - 1), conv)
  | 
| 
 | 
    79  | 
           end)
  | 
| 
 | 
    80  | 
  | _ => NONE;
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
(*split on case expressions*)
  | 
| 
 | 
    83  | 
val split_cases_tac = Subgoal.FOCUS_PARAMS (fn {context=ctxt, ...} =>
 | 
| 
 | 
    84  | 
  SUBGOAL (fn (t, i) => case t of
  | 
| 
 | 
    85  | 
    _ $ (_ $ Abs (_, _, body)) =>
  | 
| 
 | 
    86  | 
      (case dest_case (ProofContext.theory_of ctxt) body of
  | 
| 
 | 
    87  | 
         NONE => no_tac
  | 
| 
 | 
    88  | 
       | SOME (arg, conv) =>
  | 
| 
 | 
    89  | 
           let open Conv in
  | 
| 
 | 
    90  | 
              if not (null (loose_bnos arg)) then no_tac
  | 
| 
 | 
    91  | 
              else ((DETERM o strip_cases o Induct.cases_tac ctxt false [[SOME arg]] NONE [])
  | 
| 
 | 
    92  | 
                THEN_ALL_NEW (rewrite_with_asm_tac ctxt 0)
  | 
| 
 | 
    93  | 
                THEN_ALL_NEW etac @{thm thin_rl}
 | 
| 
 | 
    94  | 
                THEN_ALL_NEW (CONVERSION
  | 
| 
 | 
    95  | 
                  (params_conv ~1 (fn ctxt' =>
  | 
| 
 | 
    96  | 
                    arg_conv (arg_conv (abs_conv (K conv) ctxt'))) ctxt))) i
  | 
| 
 | 
    97  | 
           end)
  | 
| 
 | 
    98  | 
  | _ => no_tac) 1);
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
(*monotonicity proof: apply rules + split case expressions*)
  | 
| 
 | 
   101  | 
fun mono_tac ctxt =
  | 
| 
 | 
   102  | 
  K (Local_Defs.unfold_tac ctxt [@{thm curry_def}])
 | 
| 
 | 
   103  | 
  THEN' (TRY o REPEAT_ALL_NEW
  | 
| 
 | 
   104  | 
   (resolve_tac (Mono_Rules.get ctxt)
  | 
| 
 | 
   105  | 
     ORELSE' split_cases_tac ctxt));
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
(*** Auxiliary functions ***)
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
(*positional instantiation with computed type substitution.
  | 
| 
 | 
   111  | 
  internal version of  attribute "[of s t u]".*)
  | 
| 
 | 
   112  | 
fun cterm_instantiate' cts thm =
  | 
| 
 | 
   113  | 
  let
  | 
| 
 | 
   114  | 
    val thy = Thm.theory_of_thm thm;
  | 
| 
 | 
   115  | 
    val vs = rev (Term.add_vars (prop_of thm) [])
  | 
| 
 | 
   116  | 
      |> map (Thm.cterm_of thy o Var);
  | 
| 
 | 
   117  | 
  in
  | 
| 
 | 
   118  | 
    cterm_instantiate (zip_options vs cts) thm
  | 
| 
 | 
   119  | 
  end;
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
(*Returns t $ u, but instantiates the type of t to make the
  | 
| 
 | 
   122  | 
application type correct*)
  | 
| 
 | 
   123  | 
fun apply_inst ctxt t u =
  | 
| 
 | 
   124  | 
  let
  | 
| 
 | 
   125  | 
    val thy = ProofContext.theory_of ctxt;
  | 
| 
 | 
   126  | 
    val T = domain_type (fastype_of t);
  | 
| 
 | 
   127  | 
    val T' = fastype_of u;
  | 
| 
 | 
   128  | 
    val subst = Type.typ_match (Sign.tsig_of thy) (T, T') Vartab.empty
  | 
| 
 | 
   129  | 
      handle Type.TYPE_MATCH => raise TYPE ("apply_inst", [T, T'], [t, u])
 | 
| 
 | 
   130  | 
  in
  | 
| 
 | 
   131  | 
    map_types (Envir.norm_type subst) t $ u
  | 
| 
 | 
   132  | 
  end;
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
fun head_conv cv ct =
  | 
| 
 | 
   135  | 
  if can Thm.dest_comb ct then Conv.fun_conv (head_conv cv) ct else cv ct;
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
(*** currying transformation ***)
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
fun curry_const (A, B, C) =
  | 
| 
 | 
   141  | 
  Const (@{const_name Product_Type.curry},
 | 
| 
 | 
   142  | 
    [HOLogic.mk_prodT (A, B) --> C, A, B] ---> C);
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
fun mk_curry f =
  | 
| 
 | 
   145  | 
  case fastype_of f of
  | 
| 
 | 
   146  | 
    Type ("fun", [Type (_, [S, T]), U]) =>
 | 
| 
 | 
   147  | 
      curry_const (S, T, U) $ f
  | 
| 
 | 
   148  | 
  | T => raise TYPE ("mk_curry", [T], [f]);
 | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
(* iterated versions. Nonstandard left-nested tuples arise naturally
  | 
| 
 | 
   151  | 
from "split o split o split"*)
  | 
| 
 | 
   152  | 
fun curry_n arity = funpow (arity - 1) mk_curry;
  | 
| 
 | 
   153  | 
fun uncurry_n arity = funpow (arity - 1) HOLogic.mk_split;
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
val curry_uncurry_ss = HOL_basic_ss addsimps
  | 
| 
 | 
   156  | 
  [@{thm Product_Type.curry_split}, @{thm Product_Type.split_curry}]
 | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
(*** partial_function definition ***)
  | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
fun gen_add_partial_function prep mode fixes_raw eqn_raw lthy =
  | 
| 
 | 
   162  | 
  let
  | 
| 
 | 
   163  | 
    val ((fixp, mono), fixp_eq) = the (lookup_mode lthy mode)
  | 
| 
 | 
   164  | 
      handle Option.Option => error (cat_lines ["Unknown mode " ^ quote mode ^ ".",
  | 
| 
 | 
   165  | 
        "Known modes are " ^ commas_quote (known_modes lthy) ^ "."]);
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
    val ((fixes, [(eq_abinding, eqn)]), _) = prep fixes_raw [eqn_raw] lthy;
  | 
| 
 | 
   168  | 
    val (_, _, plain_eqn) = Function_Lib.dest_all_all_ctx lthy eqn;
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
    val ((f_binding, fT), mixfix) = the_single fixes;
  | 
| 
 | 
   171  | 
    val fname = Binding.name_of f_binding;
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
    val cert = cterm_of (ProofContext.theory_of lthy);
  | 
| 
 | 
   174  | 
    val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop plain_eqn);
  | 
| 
 | 
   175  | 
    val (head, args) = strip_comb lhs;
  | 
| 
 | 
   176  | 
    val F = fold_rev lambda (head :: args) rhs;
  | 
| 
 | 
   177  | 
  | 
| 
 | 
   178  | 
    val arity = length args;
  | 
| 
 | 
   179  | 
    val (aTs, bTs) = chop arity (binder_types fT);
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
    val tupleT = foldl1 HOLogic.mk_prodT aTs;
  | 
| 
 | 
   182  | 
    val fT_uc = tupleT :: bTs ---> body_type fT;
  | 
| 
 | 
   183  | 
    val f_uc = Var ((fname, 0), fT_uc);
  | 
| 
 | 
   184  | 
    val x_uc = Var (("x", 0), tupleT);
 | 
| 
 | 
   185  | 
    val uncurry = lambda head (uncurry_n arity head);
  | 
| 
 | 
   186  | 
    val curry = lambda f_uc (curry_n arity f_uc);
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
    val F_uc =
  | 
| 
 | 
   189  | 
      lambda f_uc (uncurry_n arity (F $ curry_n arity f_uc));
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
    val mono_goal = apply_inst lthy mono (lambda f_uc (F_uc $ f_uc $ x_uc))
  | 
| 
 | 
   192  | 
      |> HOLogic.mk_Trueprop
  | 
| 
 | 
   193  | 
      |> Logic.all x_uc;
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
    val mono_thm = Goal.prove_internal [] (cert mono_goal)
  | 
| 
 | 
   196  | 
        (K (mono_tac lthy 1))
  | 
| 
 | 
   197  | 
      |> Thm.forall_elim (cert x_uc);
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
    val f_def_rhs = curry_n arity (apply_inst lthy fixp F_uc);
  | 
| 
 | 
   200  | 
    val f_def_binding = Binding.conceal (Binding.name (Thm.def_name fname));
  | 
| 
 | 
   201  | 
    val ((f, (_, f_def)), lthy') = Local_Theory.define
  | 
| 
 | 
   202  | 
      ((f_binding, mixfix), ((f_def_binding, []), f_def_rhs)) lthy;
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
    val eqn = HOLogic.mk_eq (list_comb (f, args),
  | 
| 
 | 
   205  | 
        Term.betapplys (F, f :: args))
  | 
| 
 | 
   206  | 
      |> HOLogic.mk_Trueprop;
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
    val unfold =
  | 
| 
 | 
   209  | 
      (cterm_instantiate' (map (SOME o cert) [uncurry, F, curry]) fixp_eq
  | 
| 
 | 
   210  | 
        OF [mono_thm, f_def])
  | 
| 
 | 
   211  | 
      |> Tactic.rule_by_tactic lthy (Simplifier.simp_tac curry_uncurry_ss 1);
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
    val rec_rule = let open Conv in
  | 
| 
 | 
   214  | 
      Goal.prove lthy' (map (fst o dest_Free) args) [] eqn (fn _ =>
  | 
| 
 | 
   215  | 
        CONVERSION ((arg_conv o arg1_conv o head_conv o rewr_conv) (mk_meta_eq unfold)) 1
  | 
| 
 | 
   216  | 
        THEN rtac @{thm refl} 1) end;
 | 
| 
 | 
   217  | 
  in
  | 
| 
 | 
   218  | 
    lthy'
  | 
| 
 | 
   219  | 
    |> Local_Theory.note (eq_abinding, [rec_rule])
  | 
| 
 | 
   220  | 
    |-> (fn (_, rec') =>
  | 
| 
40180
 | 
   221  | 
      Spec_Rules.add Spec_Rules.Equational ([f], rec')
  | 
| 
 | 
   222  | 
      #> Local_Theory.note ((Binding.qualify true fname (Binding.name "simps"), []), rec') #> snd)
  | 
| 
40107
 | 
   223  | 
  end;
  | 
| 
 | 
   224  | 
  | 
| 
 | 
   225  | 
val add_partial_function = gen_add_partial_function Specification.check_spec;
  | 
| 
 | 
   226  | 
val add_partial_function_cmd = gen_add_partial_function Specification.read_spec;
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
val mode = Parse.$$$ "(" |-- Parse.xname --| Parse.$$$ ")";
 | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
val _ = Outer_Syntax.local_theory
  | 
| 
40186
 | 
   231  | 
  "partial_function" "define partial function" Keyword.thy_decl
  | 
| 
40107
 | 
   232  | 
  ((mode -- (Parse.fixes -- (Parse.where_ |-- Parse_Spec.spec)))
  | 
| 
 | 
   233  | 
     >> (fn (mode, (fixes, spec)) => add_partial_function_cmd mode fixes spec));
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
val setup = Mono_Rules.setup;
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
end
  |