| 32556 |      1 | 
 | 
|  |      2 | header {* Various examples for transfer procedure *}
 | 
|  |      3 | 
 | 
|  |      4 | theory Transfer_Ex
 | 
| 35685 |      5 | imports Main
 | 
| 32556 |      6 | begin
 | 
|  |      7 | 
 | 
|  |      8 | lemma ex1: "(x::nat) + y = y + x"
 | 
|  |      9 |   by auto
 | 
|  |     10 | 
 | 
| 35685 |     11 | lemma "(0\<Colon>int) \<le> (y\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (x\<Colon>int) \<Longrightarrow> x + y = y + x"
 | 
|  |     12 |   by (fact ex1 [transferred])
 | 
| 32556 |     13 | 
 | 
|  |     14 | lemma ex2: "(a::nat) div b * b + a mod b = a"
 | 
|  |     15 |   by (rule mod_div_equality)
 | 
|  |     16 | 
 | 
| 35685 |     17 | lemma "(0\<Colon>int) \<le> (b\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (a\<Colon>int) \<Longrightarrow> a div b * b + a mod b = a"
 | 
|  |     18 |   by (fact ex2 [transferred])
 | 
| 32556 |     19 | 
 | 
|  |     20 | lemma ex3: "ALL (x::nat). ALL y. EX z. z >= x + y"
 | 
|  |     21 |   by auto
 | 
|  |     22 | 
 | 
| 35685 |     23 | lemma "\<forall>x\<ge>0\<Colon>int. \<forall>y\<ge>0\<Colon>int. \<exists>xa\<ge>0\<Colon>int. x + y \<le> xa"
 | 
|  |     24 |   by (fact ex3 [transferred nat_int])
 | 
| 32556 |     25 | 
 | 
|  |     26 | lemma ex4: "(x::nat) >= y \<Longrightarrow> (x - y) + y = x"
 | 
|  |     27 |   by auto
 | 
|  |     28 | 
 | 
| 35685 |     29 | lemma "(0\<Colon>int) \<le> (x\<Colon>int) \<Longrightarrow> (0\<Colon>int) \<le> (y\<Colon>int) \<Longrightarrow> y \<le> x \<Longrightarrow> tsub x y + y = x"
 | 
|  |     30 |   by (fact ex4 [transferred])
 | 
| 32556 |     31 | 
 | 
| 35685 |     32 | lemma ex5: "(2::nat) * \<Sum>{..n} = n * (n + 1)"
 | 
| 32556 |     33 |   by (induct n rule: nat_induct, auto)
 | 
|  |     34 | 
 | 
| 35685 |     35 | lemma "(0\<Colon>int) \<le> (n\<Colon>int) \<Longrightarrow> (2\<Colon>int) * \<Sum>{0\<Colon>int..n} = n * (n + (1\<Colon>int))"
 | 
|  |     36 |   by (fact ex5 [transferred])
 | 
|  |     37 | 
 | 
|  |     38 | lemma "(0\<Colon>nat) \<le> (n\<Colon>nat) \<Longrightarrow> (2\<Colon>nat) * \<Sum>{0\<Colon>nat..n} = n * (n + (1\<Colon>nat))"
 | 
|  |     39 |   by (fact ex5 [transferred, transferred])
 | 
| 32556 |     40 | 
 | 
|  |     41 | theorem ex6: "0 <= (n::int) \<Longrightarrow> 2 * \<Sum>{0..n} = n * (n + 1)"
 | 
|  |     42 |   by (rule ex5 [transferred])
 | 
|  |     43 | 
 | 
| 35685 |     44 | lemma "(0\<Colon>nat) \<le> (n\<Colon>nat) \<Longrightarrow> (2\<Colon>nat) * \<Sum>{0\<Colon>nat..n} = n * (n + (1\<Colon>nat))"
 | 
|  |     45 |   by (fact ex6 [transferred])
 | 
| 32556 |     46 | 
 | 
|  |     47 | end |