| author | haftmann | 
| Wed, 15 Sep 2010 16:56:31 +0200 | |
| changeset 39422 | 9019b6afaa4a | 
| parent 31076 | 99fe356cbbc2 | 
| child 39968 | d841744718fe | 
| permissions | -rw-r--r-- | 
| 15600 | 1 | (* Title: HOLCF/Porder.thy | 
| 25773 | 2 | Author: Franz Regensburger and Brian Huffman | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | |
| 15587 
f363e6e080e7
added subsections and text for document generation
 huffman parents: 
15577diff
changeset | 5 | header {* Partial orders *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 6 | |
| 15577 | 7 | theory Porder | 
| 27317 | 8 | imports Main | 
| 15577 | 9 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 10 | |
| 15587 
f363e6e080e7
added subsections and text for document generation
 huffman parents: 
15577diff
changeset | 11 | subsection {* Type class for partial orders *}
 | 
| 
f363e6e080e7
added subsections and text for document generation
 huffman parents: 
15577diff
changeset | 12 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 13 | class below = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 14 | fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 31071 | 15 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 16 | |
| 23284 
07ae93e58fea
use new-style class for sq_ord; rename op << to sq_le
 huffman parents: 
21524diff
changeset | 17 | notation | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 18 | below (infixl "<<" 55) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 19 | |
| 23284 
07ae93e58fea
use new-style class for sq_ord; rename op << to sq_le
 huffman parents: 
21524diff
changeset | 20 | notation (xsymbols) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 21 | below (infixl "\<sqsubseteq>" 55) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 22 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 23 | lemma below_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c" | 
| 31071 | 24 | by (rule subst) | 
| 25 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 26 | lemma eq_below_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c" | 
| 31071 | 27 | by (rule ssubst) | 
| 28 | ||
| 29 | end | |
| 30 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 31 | class po = below + | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 32 | assumes below_refl [iff]: "x \<sqsubseteq> x" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 33 | assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 34 | assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" | 
| 31071 | 35 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 36 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 37 | text {* minimal fixes least element *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 38 | |
| 31071 | 39 | lemma minimal2UU[OF allI] : "\<forall>x. uu \<sqsubseteq> x \<Longrightarrow> uu = (THE u. \<forall>y. u \<sqsubseteq> y)" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 40 | by (blast intro: theI2 below_antisym) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 41 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 42 | text {* the reverse law of anti-symmetry of @{term "op <<"} *}
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 43 | (* Is this rule ever useful? *) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 44 | lemma below_antisym_inverse: "x = y \<Longrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x" | 
| 31071 | 45 | by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 46 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 47 | lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 48 | by (rule below_trans [OF below_trans]) | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 49 | |
| 31071 | 50 | lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 51 | by (fast intro!: below_antisym) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 52 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 53 | lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 54 | by (rule below_trans) | 
| 18647 | 55 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 56 | lemma not_below2not_eq: "\<not> x \<sqsubseteq> y \<Longrightarrow> x \<noteq> y" | 
| 31071 | 57 | by auto | 
| 58 | ||
| 59 | end | |
| 18647 | 60 | |
| 61 | lemmas HOLCF_trans_rules [trans] = | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 62 | below_trans | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 63 | below_antisym | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 64 | below_eq_trans | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 65 | eq_below_trans | 
| 18647 | 66 | |
| 31071 | 67 | context po | 
| 68 | begin | |
| 69 | ||
| 25777 | 70 | subsection {* Upper bounds *}
 | 
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 71 | |
| 31071 | 72 | definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "<|" 55) where | 
| 73 | "S <| x \<longleftrightarrow> (\<forall>y. y \<in> S \<longrightarrow> y \<sqsubseteq> x)" | |
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 74 | |
| 25777 | 75 | lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u" | 
| 31071 | 76 | by (simp add: is_ub_def) | 
| 25777 | 77 | |
| 78 | lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u" | |
| 31071 | 79 | by (simp add: is_ub_def) | 
| 25777 | 80 | |
| 81 | lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u" | |
| 31071 | 82 | unfolding is_ub_def by fast | 
| 25777 | 83 | |
| 84 | lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u" | |
| 31071 | 85 | unfolding is_ub_def by fast | 
| 25777 | 86 | |
| 87 | lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x" | |
| 31071 | 88 | unfolding is_ub_def by fast | 
| 25777 | 89 | |
| 90 | lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x" | |
| 31071 | 91 | unfolding is_ub_def by fast | 
| 25777 | 92 | |
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 93 | lemma is_ub_empty [simp]: "{} <| u"
 | 
| 31071 | 94 | unfolding is_ub_def by fast | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 95 | |
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 96 | lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)" | 
| 31071 | 97 | unfolding is_ub_def by fast | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 98 | |
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 99 | lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 100 | unfolding is_ub_def by (fast intro: below_trans) | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 101 | |
| 25777 | 102 | subsection {* Least upper bounds *}
 | 
| 103 | ||
| 31071 | 104 | definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "<<|" 55) where | 
| 105 | "S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)" | |
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 106 | |
| 31071 | 107 | definition lub :: "'a set \<Rightarrow> 'a" where | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
24728diff
changeset | 108 | "lub S = (THE x. S <<| x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 109 | |
| 31071 | 110 | end | 
| 111 | ||
| 25777 | 112 | syntax | 
| 113 |   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)
 | |
| 114 | ||
| 115 | syntax (xsymbols) | |
| 116 |   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)
 | |
| 117 | ||
| 118 | translations | |
| 119 | "LUB x:A. t" == "CONST lub ((%x. t) ` A)" | |
| 120 | ||
| 31071 | 121 | context po | 
| 122 | begin | |
| 123 | ||
| 21524 | 124 | abbreviation | 
| 125 | Lub (binder "LUB " 10) where | |
| 126 | "LUB n. t n == lub (range t)" | |
| 2394 | 127 | |
| 21524 | 128 | notation (xsymbols) | 
| 129 | Lub (binder "\<Squnion> " 10) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 130 | |
| 25813 | 131 | text {* access to some definition as inference rule *}
 | 
| 132 | ||
| 133 | lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x" | |
| 31071 | 134 | unfolding is_lub_def by fast | 
| 25813 | 135 | |
| 136 | lemma is_lub_lub: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u" | |
| 31071 | 137 | unfolding is_lub_def by fast | 
| 25813 | 138 | |
| 139 | lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x" | |
| 31071 | 140 | unfolding is_lub_def by fast | 
| 25813 | 141 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 142 | text {* lubs are unique *}
 | 
| 15562 | 143 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 144 | lemma unique_lub: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y" | 
| 15562 | 145 | apply (unfold is_lub_def is_ub_def) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 146 | apply (blast intro: below_antisym) | 
| 15562 | 147 | done | 
| 148 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 149 | text {* technical lemmas about @{term lub} and @{term is_lub} *}
 | 
| 15562 | 150 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 151 | lemma lubI: "M <<| x \<Longrightarrow> M <<| lub M" | 
| 15930 
145651bc64a8
Replaced all unnecessary uses of SOME with THE or LEAST
 huffman parents: 
15600diff
changeset | 152 | apply (unfold lub_def) | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 153 | apply (rule theI) | 
| 15930 
145651bc64a8
Replaced all unnecessary uses of SOME with THE or LEAST
 huffman parents: 
15600diff
changeset | 154 | apply assumption | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 155 | apply (erule (1) unique_lub) | 
| 15562 | 156 | done | 
| 157 | ||
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 158 | lemma thelubI: "M <<| l \<Longrightarrow> lub M = l" | 
| 31071 | 159 | by (rule unique_lub [OF lubI]) | 
| 15562 | 160 | |
| 25780 | 161 | lemma is_lub_singleton: "{x} <<| x"
 | 
| 31071 | 162 | by (simp add: is_lub_def) | 
| 25780 | 163 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 164 | lemma lub_singleton [simp]: "lub {x} = x"
 | 
| 31071 | 165 | by (rule thelubI [OF is_lub_singleton]) | 
| 25780 | 166 | |
| 167 | lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
 | |
| 31071 | 168 | by (simp add: is_lub_def) | 
| 25780 | 169 | |
| 170 | lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
 | |
| 31071 | 171 | by (rule is_lub_bin [THEN thelubI]) | 
| 15562 | 172 | |
| 25813 | 173 | lemma is_lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> S <<| x" | 
| 31071 | 174 | by (erule is_lubI, erule (1) is_ubD) | 
| 15562 | 175 | |
| 25813 | 176 | lemma lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> lub S = x" | 
| 31071 | 177 | by (rule is_lub_maximal [THEN thelubI]) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 178 | |
| 25695 | 179 | subsection {* Countable chains *}
 | 
| 180 | ||
| 31071 | 181 | definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where | 
| 25695 | 182 |   -- {* Here we use countable chains and I prefer to code them as functions! *}
 | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 183 | "chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))" | 
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 184 | |
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 185 | lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y" | 
| 31071 | 186 | unfolding chain_def by fast | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 187 | |
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 188 | lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)" | 
| 31071 | 189 | unfolding chain_def by fast | 
| 25695 | 190 | |
| 191 | text {* chains are monotone functions *}
 | |
| 192 | ||
| 27317 | 193 | lemma chain_mono_less: "\<lbrakk>chain Y; i < j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 194 | by (erule less_Suc_induct, erule chainE, erule below_trans) | 
| 25695 | 195 | |
| 27317 | 196 | lemma chain_mono: "\<lbrakk>chain Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j" | 
| 31071 | 197 | by (cases "i = j", simp, simp add: chain_mono_less) | 
| 15562 | 198 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 199 | lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))" | 
| 31071 | 200 | by (rule chainI, simp, erule chainE) | 
| 15562 | 201 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 202 | text {* technical lemmas about (least) upper bounds of chains *}
 | 
| 15562 | 203 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 204 | lemma is_ub_lub: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x" | 
| 31071 | 205 | by (rule is_lubD1 [THEN ub_rangeD]) | 
| 15562 | 206 | |
| 16318 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 207 | lemma is_ub_range_shift: | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 208 | "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x" | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 209 | apply (rule iffI) | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 210 | apply (rule ub_rangeI) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 211 | apply (rule_tac y="S (i + j)" in below_trans) | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 212 | apply (erule chain_mono) | 
| 16318 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 213 | apply (rule le_add1) | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 214 | apply (erule ub_rangeD) | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 215 | apply (rule ub_rangeI) | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 216 | apply (erule ub_rangeD) | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 217 | done | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 218 | |
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 219 | lemma is_lub_range_shift: | 
| 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 220 | "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x" | 
| 31071 | 221 | by (simp add: is_lub_def is_ub_range_shift) | 
| 16318 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 222 | |
| 25695 | 223 | text {* the lub of a constant chain is the constant *}
 | 
| 224 | ||
| 225 | lemma chain_const [simp]: "chain (\<lambda>i. c)" | |
| 31071 | 226 | by (simp add: chainI) | 
| 25695 | 227 | |
| 228 | lemma lub_const: "range (\<lambda>x. c) <<| c" | |
| 229 | by (blast dest: ub_rangeD intro: is_lubI ub_rangeI) | |
| 230 | ||
| 231 | lemma thelub_const [simp]: "(\<Squnion>i. c) = c" | |
| 31071 | 232 | by (rule lub_const [THEN thelubI]) | 
| 25695 | 233 | |
| 234 | subsection {* Finite chains *}
 | |
| 235 | ||
| 31071 | 236 | definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" where | 
| 25695 | 237 |   -- {* finite chains, needed for monotony of continuous functions *}
 | 
| 31071 | 238 | "max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)" | 
| 25695 | 239 | |
| 31071 | 240 | definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where | 
| 25695 | 241 | "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))" | 
| 242 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 243 | text {* results about finite chains *}
 | 
| 15562 | 244 | |
| 25878 | 245 | lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y" | 
| 31071 | 246 | unfolding max_in_chain_def by fast | 
| 25878 | 247 | |
| 248 | lemma max_in_chainD: "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i = Y j" | |
| 31071 | 249 | unfolding max_in_chain_def by fast | 
| 25878 | 250 | |
| 27317 | 251 | lemma finite_chainI: | 
| 252 | "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> finite_chain C" | |
| 31071 | 253 | unfolding finite_chain_def by fast | 
| 27317 | 254 | |
| 255 | lemma finite_chainE: | |
| 256 | "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" | |
| 31071 | 257 | unfolding finite_chain_def by fast | 
| 27317 | 258 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 259 | lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i" | 
| 15562 | 260 | apply (rule is_lubI) | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 261 | apply (rule ub_rangeI, rename_tac j) | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 262 | apply (rule_tac x=i and y=j in linorder_le_cases) | 
| 25878 | 263 | apply (drule (1) max_in_chainD, simp) | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 264 | apply (erule (1) chain_mono) | 
| 15562 | 265 | apply (erule ub_rangeD) | 
| 266 | done | |
| 267 | ||
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
24728diff
changeset | 268 | lemma lub_finch2: | 
| 27317 | 269 | "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)" | 
| 270 | apply (erule finite_chainE) | |
| 271 | apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"]) | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 272 | apply (erule (1) lub_finch1) | 
| 15562 | 273 | done | 
| 274 | ||
| 19621 | 275 | lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)" | 
| 27317 | 276 | apply (erule finite_chainE) | 
| 277 |  apply (rule_tac B="Y ` {..i}" in finite_subset)
 | |
| 19621 | 278 | apply (rule subsetI) | 
| 279 | apply (erule rangeE, rename_tac j) | |
| 280 | apply (rule_tac x=i and y=j in linorder_le_cases) | |
| 281 | apply (subgoal_tac "Y j = Y i", simp) | |
| 282 | apply (simp add: max_in_chain_def) | |
| 283 | apply simp | |
| 27317 | 284 | apply simp | 
| 19621 | 285 | done | 
| 286 | ||
| 27317 | 287 | lemma finite_range_has_max: | 
| 288 | fixes f :: "nat \<Rightarrow> 'a" and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 289 | assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)" | |
| 290 | assumes finite_range: "finite (range f)" | |
| 291 | shows "\<exists>k. \<forall>i. r (f i) (f k)" | |
| 292 | proof (intro exI allI) | |
| 293 | fix i :: nat | |
| 294 | let ?j = "LEAST k. f k = f i" | |
| 295 | let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)" | |
| 296 | have "?j \<le> ?k" | |
| 297 | proof (rule Max_ge) | |
| 298 | show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)" | |
| 299 | using finite_range by (rule finite_imageI) | |
| 300 | show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f" | |
| 301 | by (intro imageI rangeI) | |
| 302 | qed | |
| 303 | hence "r (f ?j) (f ?k)" | |
| 304 | by (rule mono) | |
| 305 | also have "f ?j = f i" | |
| 306 | by (rule LeastI, rule refl) | |
| 307 | finally show "r (f i) (f ?k)" . | |
| 308 | qed | |
| 309 | ||
| 19621 | 310 | lemma finite_range_imp_finch: | 
| 311 | "\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y" | |
| 27317 | 312 | apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k") | 
| 313 | apply (erule exE) | |
| 314 | apply (rule finite_chainI, assumption) | |
| 315 | apply (rule max_in_chainI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 316 | apply (rule below_antisym) | 
| 27317 | 317 | apply (erule (1) chain_mono) | 
| 318 | apply (erule spec) | |
| 319 | apply (rule finite_range_has_max) | |
| 320 | apply (erule (1) chain_mono) | |
| 321 | apply assumption | |
| 19621 | 322 | done | 
| 323 | ||
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 324 | lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)" | 
| 31071 | 325 | by (rule chainI, simp) | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 326 | |
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 327 | lemma bin_chainmax: | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 328 | "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)" | 
| 31071 | 329 | unfolding max_in_chain_def by simp | 
| 15562 | 330 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 331 | lemma lub_bin_chain: | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 332 | "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y" | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 333 | apply (frule bin_chain) | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 334 | apply (drule bin_chainmax) | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 335 | apply (drule (1) lub_finch1) | 
| 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 336 | apply simp | 
| 15562 | 337 | done | 
| 338 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 339 | text {* the maximal element in a chain is its lub *}
 | 
| 15562 | 340 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 341 | lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c" | 
| 31071 | 342 | by (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI) | 
| 15562 | 343 | |
| 25773 | 344 | subsection {* Directed sets *}
 | 
| 345 | ||
| 31071 | 346 | definition directed :: "'a set \<Rightarrow> bool" where | 
| 347 | "directed S \<longleftrightarrow> (\<exists>x. x \<in> S) \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | |
| 25773 | 348 | |
| 349 | lemma directedI: | |
| 350 | assumes 1: "\<exists>z. z \<in> S" | |
| 351 | assumes 2: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" | |
| 352 | shows "directed S" | |
| 31071 | 353 | unfolding directed_def using prems by fast | 
| 25773 | 354 | |
| 355 | lemma directedD1: "directed S \<Longrightarrow> \<exists>z. z \<in> S" | |
| 31071 | 356 | unfolding directed_def by fast | 
| 25773 | 357 | |
| 358 | lemma directedD2: "\<lbrakk>directed S; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" | |
| 31071 | 359 | unfolding directed_def by fast | 
| 25773 | 360 | |
| 25780 | 361 | lemma directedE1: | 
| 362 | assumes S: "directed S" | |
| 363 | obtains z where "z \<in> S" | |
| 31071 | 364 | by (insert directedD1 [OF S], fast) | 
| 25780 | 365 | |
| 366 | lemma directedE2: | |
| 367 | assumes S: "directed S" | |
| 368 | assumes x: "x \<in> S" and y: "y \<in> S" | |
| 369 | obtains z where "z \<in> S" "x \<sqsubseteq> z" "y \<sqsubseteq> z" | |
| 31071 | 370 | by (insert directedD2 [OF S x y], fast) | 
| 25780 | 371 | |
| 25773 | 372 | lemma directed_finiteI: | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 373 | assumes U: "\<And>U. \<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z" | 
| 25773 | 374 | shows "directed S" | 
| 375 | proof (rule directedI) | |
| 376 |   have "finite {}" and "{} \<subseteq> S" by simp_all
 | |
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 377 |   hence "\<exists>z\<in>S. {} <| z" by (rule U)
 | 
| 25773 | 378 | thus "\<exists>z. z \<in> S" by simp | 
| 379 | next | |
| 380 | fix x y | |
| 381 | assume "x \<in> S" and "y \<in> S" | |
| 382 |   hence "finite {x, y}" and "{x, y} \<subseteq> S" by simp_all
 | |
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 383 |   hence "\<exists>z\<in>S. {x, y} <| z" by (rule U)
 | 
| 25773 | 384 | thus "\<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" by simp | 
| 385 | qed | |
| 386 | ||
| 387 | lemma directed_finiteD: | |
| 388 | assumes S: "directed S" | |
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 389 | shows "\<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z" | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 390 | proof (induct U set: finite) | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 391 | case empty | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 392 | from S have "\<exists>z. z \<in> S" by (rule directedD1) | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 393 |   thus "\<exists>z\<in>S. {} <| z" by simp
 | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 394 | next | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 395 | case (insert x F) | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 396 | from `insert x F \<subseteq> S` | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 397 | have xS: "x \<in> S" and FS: "F \<subseteq> S" by simp_all | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 398 | from FS have "\<exists>y\<in>S. F <| y" by fact | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 399 | then obtain y where yS: "y \<in> S" and Fy: "F <| y" .. | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 400 | obtain z where zS: "z \<in> S" and xz: "x \<sqsubseteq> z" and yz: "y \<sqsubseteq> z" | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 401 | using S xS yS by (rule directedE2) | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 402 | from Fy yz have "F <| z" by (rule is_ub_upward) | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 403 | with xz have "insert x F <| z" by simp | 
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 404 | with zS show "\<exists>z\<in>S. insert x F <| z" .. | 
| 25773 | 405 | qed | 
| 406 | ||
| 25813 | 407 | lemma not_directed_empty [simp]: "\<not> directed {}"
 | 
| 31071 | 408 | by (rule notI, drule directedD1, simp) | 
| 25773 | 409 | |
| 410 | lemma directed_singleton: "directed {x}"
 | |
| 31071 | 411 | by (rule directedI, auto) | 
| 25773 | 412 | |
| 413 | lemma directed_bin: "x \<sqsubseteq> y \<Longrightarrow> directed {x, y}"
 | |
| 31071 | 414 | by (rule directedI, auto) | 
| 25773 | 415 | |
| 416 | lemma directed_chain: "chain S \<Longrightarrow> directed (range S)" | |
| 417 | apply (rule directedI) | |
| 418 | apply (rule_tac x="S 0" in exI, simp) | |
| 419 | apply (clarify, rename_tac m n) | |
| 420 | apply (rule_tac x="S (max m n)" in bexI) | |
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 421 | apply (simp add: chain_mono) | 
| 25773 | 422 | apply simp | 
| 423 | done | |
| 424 | ||
| 31071 | 425 | text {* lemmata for improved admissibility introdution rule *}
 | 
| 426 | ||
| 427 | lemma infinite_chain_adm_lemma: | |
| 428 | "\<lbrakk>chain Y; \<forall>i. P (Y i); | |
| 429 | \<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i); \<not> finite_chain Y\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk> | |
| 430 | \<Longrightarrow> P (\<Squnion>i. Y i)" | |
| 431 | apply (case_tac "finite_chain Y") | |
| 432 | prefer 2 apply fast | |
| 433 | apply (unfold finite_chain_def) | |
| 434 | apply safe | |
| 435 | apply (erule lub_finch1 [THEN thelubI, THEN ssubst]) | |
| 436 | apply assumption | |
| 437 | apply (erule spec) | |
| 438 | done | |
| 439 | ||
| 440 | lemma increasing_chain_adm_lemma: | |
| 441 | "\<lbrakk>chain Y; \<forall>i. P (Y i); \<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i); | |
| 442 | \<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk> | |
| 443 | \<Longrightarrow> P (\<Squnion>i. Y i)" | |
| 444 | apply (erule infinite_chain_adm_lemma) | |
| 445 | apply assumption | |
| 446 | apply (erule thin_rl) | |
| 447 | apply (unfold finite_chain_def) | |
| 448 | apply (unfold max_in_chain_def) | |
| 449 | apply (fast dest: le_imp_less_or_eq elim: chain_mono_less) | |
| 450 | done | |
| 451 | ||
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 452 | end | 
| 31071 | 453 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 454 | end |