10750
|
1 |
(* Title : Filter.ML
|
|
2 |
ID : $Id$
|
|
3 |
Author : Jacques D. Fleuriot
|
|
4 |
Copyright : 1998 University of Cambridge
|
|
5 |
Description : Filters and Ultrafilter
|
|
6 |
*)
|
|
7 |
|
|
8 |
(*------------------------------------------------------------------
|
|
9 |
Properties of Filters and Freefilters -
|
|
10 |
rules for intro, destruction etc.
|
|
11 |
------------------------------------------------------------------*)
|
|
12 |
|
|
13 |
Goalw [is_Filter_def] "is_Filter X S ==> X <= Pow(S)";
|
|
14 |
by (Blast_tac 1);
|
|
15 |
qed "is_FilterD1";
|
|
16 |
|
|
17 |
Goalw [is_Filter_def] "is_Filter X S ==> X ~= {}";
|
|
18 |
by (Blast_tac 1);
|
|
19 |
qed "is_FilterD2";
|
|
20 |
|
|
21 |
Goalw [is_Filter_def] "is_Filter X S ==> {} ~: X";
|
|
22 |
by (Blast_tac 1);
|
|
23 |
qed "is_FilterD3";
|
|
24 |
|
|
25 |
Goalw [Filter_def] "is_Filter X S ==> X : Filter S";
|
|
26 |
by (Blast_tac 1);
|
|
27 |
qed "mem_FiltersetI";
|
|
28 |
|
|
29 |
Goalw [Filter_def] "X : Filter S ==> is_Filter X S";
|
|
30 |
by (Blast_tac 1);
|
|
31 |
qed "mem_FiltersetD";
|
|
32 |
|
|
33 |
Goal "X : Filter S ==> {} ~: X";
|
|
34 |
by (etac (mem_FiltersetD RS is_FilterD3) 1);
|
|
35 |
qed "Filter_empty_not_mem";
|
|
36 |
|
|
37 |
bind_thm ("Filter_empty_not_memE",(Filter_empty_not_mem RS notE));
|
|
38 |
|
|
39 |
Goalw [Filter_def,is_Filter_def]
|
|
40 |
"[| X: Filter S; A: X; B: X |] ==> A Int B : X";
|
|
41 |
by (Blast_tac 1);
|
|
42 |
qed "mem_FiltersetD1";
|
|
43 |
|
|
44 |
Goalw [Filter_def,is_Filter_def]
|
|
45 |
"[| X: Filter S; A: X; A <= B; B <= S|] ==> B : X";
|
|
46 |
by (Blast_tac 1);
|
|
47 |
qed "mem_FiltersetD2";
|
|
48 |
|
|
49 |
Goalw [Filter_def,is_Filter_def]
|
|
50 |
"[| X: Filter S; A: X |] ==> A : Pow S";
|
|
51 |
by (Blast_tac 1);
|
|
52 |
qed "mem_FiltersetD3";
|
|
53 |
|
|
54 |
Goalw [Filter_def,is_Filter_def]
|
|
55 |
"X: Filter S ==> S : X";
|
|
56 |
by (Blast_tac 1);
|
|
57 |
qed "mem_FiltersetD4";
|
|
58 |
|
|
59 |
Goalw [is_Filter_def]
|
|
60 |
"[| X <= Pow(S);\
|
|
61 |
\ S : X; \
|
|
62 |
\ X ~= {}; \
|
|
63 |
\ {} ~: X; \
|
|
64 |
\ ALL u: X. ALL v: X. u Int v : X; \
|
|
65 |
\ ALL u v. u: X & u<=v & v<=S --> v: X \
|
|
66 |
\ |] ==> is_Filter X S";
|
|
67 |
by (Blast_tac 1);
|
|
68 |
qed "is_FilterI";
|
|
69 |
|
|
70 |
Goal "[| X <= Pow(S);\
|
|
71 |
\ S : X; \
|
|
72 |
\ X ~= {}; \
|
|
73 |
\ {} ~: X; \
|
|
74 |
\ ALL u: X. ALL v: X. u Int v : X; \
|
|
75 |
\ ALL u v. u: X & u<=v & v<=S --> v: X \
|
|
76 |
\ |] ==> X: Filter S";
|
|
77 |
by (blast_tac (claset() addIs [mem_FiltersetI,is_FilterI]) 1);
|
|
78 |
qed "mem_FiltersetI2";
|
|
79 |
|
|
80 |
Goalw [is_Filter_def]
|
|
81 |
"is_Filter X S ==> X <= Pow(S) & \
|
|
82 |
\ S : X & \
|
|
83 |
\ X ~= {} & \
|
|
84 |
\ {} ~: X & \
|
|
85 |
\ (ALL u: X. ALL v: X. u Int v : X) & \
|
|
86 |
\ (ALL u v. u: X & u <= v & v<=S --> v: X)";
|
|
87 |
by (Fast_tac 1);
|
|
88 |
qed "is_FilterE_lemma";
|
|
89 |
|
|
90 |
Goalw [is_Filter_def]
|
|
91 |
"X : Filter S ==> X <= Pow(S) &\
|
|
92 |
\ S : X & \
|
|
93 |
\ X ~= {} & \
|
|
94 |
\ {} ~: X & \
|
|
95 |
\ (ALL u: X. ALL v: X. u Int v : X) & \
|
|
96 |
\ (ALL u v. u: X & u <= v & v<=S --> v: X)";
|
|
97 |
by (etac (mem_FiltersetD RS is_FilterE_lemma) 1);
|
|
98 |
qed "memFiltersetE_lemma";
|
|
99 |
|
|
100 |
Goalw [Filter_def,Freefilter_def]
|
|
101 |
"X: Freefilter S ==> X: Filter S";
|
|
102 |
by (Fast_tac 1);
|
|
103 |
qed "Freefilter_Filter";
|
|
104 |
|
|
105 |
Goalw [Freefilter_def]
|
|
106 |
"X: Freefilter S ==> ALL y: X. ~finite(y)";
|
|
107 |
by (Blast_tac 1);
|
|
108 |
qed "mem_Freefilter_not_finite";
|
|
109 |
|
|
110 |
Goal "[| X: Freefilter S; x: X |] ==> ~ finite x";
|
|
111 |
by (blast_tac (claset() addSDs [mem_Freefilter_not_finite]) 1);
|
|
112 |
qed "mem_FreefiltersetD1";
|
|
113 |
|
|
114 |
bind_thm ("mem_FreefiltersetE1", (mem_FreefiltersetD1 RS notE));
|
|
115 |
|
|
116 |
Goal "[| X: Freefilter S; finite x|] ==> x ~: X";
|
|
117 |
by (blast_tac (claset() addSDs [mem_Freefilter_not_finite]) 1);
|
|
118 |
qed "mem_FreefiltersetD2";
|
|
119 |
|
|
120 |
Goalw [Freefilter_def]
|
|
121 |
"[| X: Filter S; ALL x. ~(x: X & finite x) |] ==> X: Freefilter S";
|
|
122 |
by (Blast_tac 1);
|
|
123 |
qed "mem_FreefiltersetI1";
|
|
124 |
|
|
125 |
Goalw [Freefilter_def]
|
|
126 |
"[| X: Filter S; ALL x. (x ~: X | ~ finite x) |] ==> X: Freefilter S";
|
|
127 |
by (Blast_tac 1);
|
|
128 |
qed "mem_FreefiltersetI2";
|
|
129 |
|
|
130 |
Goal "[| X: Filter S; A: X; B: X |] ==> A Int B ~= {}";
|
|
131 |
by (forw_inst_tac [("A","A"),("B","B")] mem_FiltersetD1 1);
|
|
132 |
by (auto_tac (claset() addSDs [Filter_empty_not_mem],simpset()));
|
|
133 |
qed "Filter_Int_not_empty";
|
|
134 |
|
|
135 |
bind_thm ("Filter_Int_not_emptyE",(Filter_Int_not_empty RS notE));
|
|
136 |
|
|
137 |
(*----------------------------------------------------------------------------------
|
|
138 |
Ultrafilters and Free ultrafilters
|
|
139 |
----------------------------------------------------------------------------------*)
|
|
140 |
|
|
141 |
Goalw [Ultrafilter_def] "X : Ultrafilter S ==> X: Filter S";
|
|
142 |
by (Blast_tac 1);
|
|
143 |
qed "Ultrafilter_Filter";
|
|
144 |
|
|
145 |
Goalw [Ultrafilter_def]
|
|
146 |
"X : Ultrafilter S ==> !A: Pow(S). A : X | S - A: X";
|
|
147 |
by (Blast_tac 1);
|
|
148 |
qed "mem_UltrafiltersetD2";
|
|
149 |
|
|
150 |
Goalw [Ultrafilter_def]
|
|
151 |
"[|X : Ultrafilter S; A <= S; A ~: X |] ==> S - A: X";
|
|
152 |
by (Blast_tac 1);
|
|
153 |
qed "mem_UltrafiltersetD3";
|
|
154 |
|
|
155 |
Goalw [Ultrafilter_def]
|
|
156 |
"[|X : Ultrafilter S; A <= S; S - A ~: X |] ==> A: X";
|
|
157 |
by (Blast_tac 1);
|
|
158 |
qed "mem_UltrafiltersetD4";
|
|
159 |
|
|
160 |
Goalw [Ultrafilter_def]
|
|
161 |
"[| X: Filter S; \
|
|
162 |
\ ALL A: Pow(S). A: X | S - A : X |] ==> X: Ultrafilter S";
|
|
163 |
by (Blast_tac 1);
|
|
164 |
qed "mem_UltrafiltersetI";
|
|
165 |
|
|
166 |
Goalw [Ultrafilter_def,FreeUltrafilter_def]
|
|
167 |
"X: FreeUltrafilter S ==> X: Ultrafilter S";
|
|
168 |
by (Blast_tac 1);
|
|
169 |
qed "FreeUltrafilter_Ultrafilter";
|
|
170 |
|
|
171 |
Goalw [FreeUltrafilter_def]
|
|
172 |
"X: FreeUltrafilter S ==> ALL y: X. ~finite(y)";
|
|
173 |
by (Blast_tac 1);
|
|
174 |
qed "mem_FreeUltrafilter_not_finite";
|
|
175 |
|
|
176 |
Goal "[| X: FreeUltrafilter S; x: X |] ==> ~ finite x";
|
|
177 |
by (blast_tac (claset() addSDs [mem_FreeUltrafilter_not_finite]) 1);
|
|
178 |
qed "mem_FreeUltrafiltersetD1";
|
|
179 |
|
|
180 |
bind_thm ("mem_FreeUltrafiltersetE1", (mem_FreeUltrafiltersetD1 RS notE));
|
|
181 |
|
|
182 |
Goal "[| X: FreeUltrafilter S; finite x|] ==> x ~: X";
|
|
183 |
by (blast_tac (claset() addSDs [mem_FreeUltrafilter_not_finite]) 1);
|
|
184 |
qed "mem_FreeUltrafiltersetD2";
|
|
185 |
|
|
186 |
Goalw [FreeUltrafilter_def]
|
|
187 |
"[| X: Ultrafilter S; \
|
|
188 |
\ ALL x. ~(x: X & finite x) |] ==> X: FreeUltrafilter S";
|
|
189 |
by (Blast_tac 1);
|
|
190 |
qed "mem_FreeUltrafiltersetI1";
|
|
191 |
|
|
192 |
Goalw [FreeUltrafilter_def]
|
|
193 |
"[| X: Ultrafilter S; \
|
|
194 |
\ ALL x. (x ~: X | ~ finite x) |] ==> X: FreeUltrafilter S";
|
|
195 |
by (Blast_tac 1);
|
|
196 |
qed "mem_FreeUltrafiltersetI2";
|
|
197 |
|
|
198 |
Goalw [FreeUltrafilter_def,Freefilter_def,Ultrafilter_def]
|
|
199 |
"(X: FreeUltrafilter S) = (X: Freefilter S & (ALL x:Pow(S). x: X | S - x: X))";
|
|
200 |
by (Blast_tac 1);
|
|
201 |
qed "FreeUltrafilter_iff";
|
|
202 |
|
|
203 |
(*-------------------------------------------------------------------
|
|
204 |
A Filter F on S is an ultrafilter iff it is a maximal filter
|
|
205 |
i.e. whenever G is a filter on I and F <= F then F = G
|
|
206 |
--------------------------------------------------------------------*)
|
|
207 |
(*---------------------------------------------------------------------
|
|
208 |
lemmas that shows existence of an extension to what was assumed to
|
|
209 |
be a maximal filter. Will be used to derive contradiction in proof of
|
|
210 |
property of ultrafilter
|
|
211 |
---------------------------------------------------------------------*)
|
|
212 |
Goal "[| F ~= {}; A <= S |] ==> \
|
|
213 |
\ EX x. x: {X. X <= S & (EX f:F. A Int f <= X)}";
|
|
214 |
by (Blast_tac 1);
|
|
215 |
qed "lemma_set_extend";
|
|
216 |
|
|
217 |
Goal "a: X ==> X ~= {}";
|
|
218 |
by (Step_tac 1);
|
|
219 |
qed "lemma_set_not_empty";
|
|
220 |
|
|
221 |
Goal "x Int F <= {} ==> F <= - x";
|
|
222 |
by (Blast_tac 1);
|
|
223 |
qed "lemma_empty_Int_subset_Compl";
|
|
224 |
|
|
225 |
Goalw [Filter_def,is_Filter_def]
|
|
226 |
"[| F: Filter S; A ~: F; A <= S|] \
|
|
227 |
\ ==> ALL B. B ~: F | ~ B <= A";
|
|
228 |
by (Blast_tac 1);
|
|
229 |
qed "mem_Filterset_disjI";
|
|
230 |
|
|
231 |
Goal "F : Ultrafilter S ==> \
|
|
232 |
\ (F: Filter S & (ALL G: Filter S. F <= G --> F = G))";
|
|
233 |
by (auto_tac (claset(),simpset() addsimps [Ultrafilter_def]));
|
|
234 |
by (dres_inst_tac [("x","x")] bspec 1);
|
|
235 |
by (etac mem_FiltersetD3 1 THEN assume_tac 1);
|
|
236 |
by (Step_tac 1);
|
|
237 |
by (dtac subsetD 1 THEN assume_tac 1);
|
|
238 |
by (blast_tac (claset() addSDs [Filter_Int_not_empty]) 1);
|
|
239 |
qed "Ultrafilter_max_Filter";
|
|
240 |
|
|
241 |
|
|
242 |
(*--------------------------------------------------------------------------------
|
|
243 |
This is a very long and tedious proof; need to break it into parts.
|
|
244 |
Have proof that {X. X <= S & (EX f: F. A Int f <= X)} is a filter as
|
|
245 |
a lemma
|
|
246 |
--------------------------------------------------------------------------------*)
|
|
247 |
Goalw [Ultrafilter_def]
|
|
248 |
"[| F: Filter S; \
|
|
249 |
\ ALL G: Filter S. F <= G --> F = G |] ==> F : Ultrafilter S";
|
|
250 |
by (Step_tac 1);
|
|
251 |
by (rtac ccontr 1);
|
|
252 |
by (forward_tac [mem_FiltersetD RS is_FilterD2] 1);
|
|
253 |
by (forw_inst_tac [("x","{X. X <= S & (EX f: F. A Int f <= X)}")] bspec 1);
|
|
254 |
by (EVERY1[rtac mem_FiltersetI2, Blast_tac, Asm_full_simp_tac]);
|
|
255 |
by (blast_tac (claset() addDs [mem_FiltersetD3]) 1);
|
|
256 |
by (etac (lemma_set_extend RS exE) 1);
|
|
257 |
by (assume_tac 1 THEN etac lemma_set_not_empty 1);
|
|
258 |
by (REPEAT(rtac ballI 2) THEN Asm_full_simp_tac 2);
|
|
259 |
by (rtac conjI 2 THEN Blast_tac 2);
|
|
260 |
by (REPEAT(etac conjE 2) THEN REPEAT(etac bexE 2));
|
|
261 |
by (res_inst_tac [("x","f Int fa")] bexI 2);
|
|
262 |
by (etac mem_FiltersetD1 3);
|
|
263 |
by (assume_tac 3 THEN assume_tac 3);
|
|
264 |
by (Fast_tac 2);
|
|
265 |
by (EVERY[REPEAT(rtac allI 2), rtac impI 2,Asm_full_simp_tac 2]);
|
|
266 |
by (EVERY[REPEAT(etac conjE 2), etac bexE 2]);
|
|
267 |
by (res_inst_tac [("x","f")] bexI 2);
|
|
268 |
by (rtac subsetI 2);
|
|
269 |
by (Fast_tac 2 THEN assume_tac 2);
|
|
270 |
by (Step_tac 2);
|
|
271 |
by (Blast_tac 3);
|
|
272 |
by (eres_inst_tac [("c","A")] equalityCE 3);
|
|
273 |
by (REPEAT(Blast_tac 3));
|
|
274 |
by (dres_inst_tac [("A","xa")] mem_FiltersetD3 2 THEN assume_tac 2);
|
|
275 |
by (Blast_tac 2);
|
|
276 |
by (dtac lemma_empty_Int_subset_Compl 1);
|
|
277 |
by (EVERY1[ftac mem_Filterset_disjI , assume_tac, Fast_tac]);
|
|
278 |
by (dtac mem_FiltersetD3 1 THEN assume_tac 1);
|
|
279 |
by (dres_inst_tac [("x","f")] spec 1);
|
|
280 |
by (Blast_tac 1);
|
|
281 |
qed "max_Filter_Ultrafilter";
|
|
282 |
|
|
283 |
Goal "(F : Ultrafilter S) = (F: Filter S & (ALL G: Filter S. F <= G --> F = G))";
|
|
284 |
by (blast_tac (claset() addSIs [Ultrafilter_max_Filter,max_Filter_Ultrafilter]) 1);
|
|
285 |
qed "Ultrafilter_iff";
|
|
286 |
|
|
287 |
(*--------------------------------------------------------------------
|
|
288 |
A few properties of freefilters
|
|
289 |
-------------------------------------------------------------------*)
|
|
290 |
|
|
291 |
Goal "F1 Int F2 = ((F1 Int Y) Int F2) Un ((F2 Int (- Y)) Int F1)";
|
|
292 |
by (Auto_tac);
|
|
293 |
qed "lemma_Compl_cancel_eq";
|
|
294 |
|
|
295 |
Goal "finite X ==> finite (X Int Y)";
|
|
296 |
by (etac (Int_lower1 RS finite_subset) 1);
|
|
297 |
qed "finite_IntI1";
|
|
298 |
|
|
299 |
Goal "finite Y ==> finite (X Int Y)";
|
|
300 |
by (etac (Int_lower2 RS finite_subset) 1);
|
|
301 |
qed "finite_IntI2";
|
|
302 |
|
|
303 |
Goal "[| finite (F1 Int Y); \
|
|
304 |
\ finite (F2 Int (- Y)) \
|
|
305 |
\ |] ==> finite (F1 Int F2)";
|
|
306 |
by (res_inst_tac [("Y1","Y")] (lemma_Compl_cancel_eq RS ssubst) 1);
|
|
307 |
by (rtac finite_UnI 1);
|
|
308 |
by (auto_tac (claset() addSIs [finite_IntI1,finite_IntI2],simpset()));
|
|
309 |
qed "finite_Int_Compl_cancel";
|
|
310 |
|
|
311 |
Goal "U: Freefilter S ==> \
|
|
312 |
\ ~ (EX f1: U. EX f2: U. finite (f1 Int x) \
|
|
313 |
\ & finite (f2 Int (- x)))";
|
|
314 |
by (Step_tac 1);
|
|
315 |
by (forw_inst_tac [("A","f1"),("B","f2")]
|
|
316 |
(Freefilter_Filter RS mem_FiltersetD1) 1);
|
|
317 |
by (dres_inst_tac [("x","f1 Int f2")] mem_FreefiltersetD1 3);
|
|
318 |
by (dtac finite_Int_Compl_cancel 4);
|
|
319 |
by (Auto_tac);
|
|
320 |
qed "Freefilter_lemma_not_finite";
|
|
321 |
|
|
322 |
(* the lemmas below follow *)
|
|
323 |
Goal "U: Freefilter S ==> \
|
|
324 |
\ ALL f: U. ~ finite (f Int x) | ~finite (f Int (- x))";
|
|
325 |
by (blast_tac (claset() addSDs [Freefilter_lemma_not_finite,bspec]) 1);
|
|
326 |
qed "Freefilter_Compl_not_finite_disjI";
|
|
327 |
|
|
328 |
Goal "U: Freefilter S ==> \
|
|
329 |
\ (ALL f: U. ~ finite (f Int x)) | (ALL f:U. ~finite (f Int (- x)))";
|
|
330 |
by (blast_tac (claset() addSDs [Freefilter_lemma_not_finite,bspec]) 1);
|
|
331 |
qed "Freefilter_Compl_not_finite_disjI2";
|
|
332 |
|
|
333 |
Goal "- UNIV = {}";
|
|
334 |
by (Auto_tac );
|
|
335 |
qed "Compl_UNIV_eq";
|
|
336 |
|
|
337 |
Addsimps [Compl_UNIV_eq];
|
|
338 |
|
|
339 |
Goal "- {} = UNIV";
|
|
340 |
by (Auto_tac );
|
|
341 |
qed "Compl_empty_eq";
|
|
342 |
|
|
343 |
Addsimps [Compl_empty_eq];
|
|
344 |
|
|
345 |
val [prem] = goal (the_context ()) "~ finite (UNIV:: 'a set) ==> \
|
|
346 |
\ {A:: 'a set. finite (- A)} : Filter UNIV";
|
|
347 |
by (cut_facts_tac [prem] 1);
|
|
348 |
by (rtac mem_FiltersetI2 1);
|
|
349 |
by (auto_tac (claset(), simpset() delsimps [Collect_empty_eq]));
|
|
350 |
by (eres_inst_tac [("c","UNIV")] equalityCE 1);
|
|
351 |
by (Auto_tac);
|
|
352 |
by (etac (Compl_anti_mono RS finite_subset) 1);
|
|
353 |
by (assume_tac 1);
|
|
354 |
qed "cofinite_Filter";
|
|
355 |
|
|
356 |
Goal "~finite(UNIV :: 'a set) ==> ~finite (X :: 'a set) | ~finite (- X)";
|
|
357 |
by (dres_inst_tac [("A1","X")] (Compl_partition RS ssubst) 1);
|
|
358 |
by (Asm_full_simp_tac 1);
|
|
359 |
qed "not_finite_UNIV_disjI";
|
|
360 |
|
|
361 |
Goal "[| ~finite(UNIV :: 'a set); \
|
|
362 |
\ finite (X :: 'a set) \
|
|
363 |
\ |] ==> ~finite (- X)";
|
|
364 |
by (dres_inst_tac [("X","X")] not_finite_UNIV_disjI 1);
|
|
365 |
by (Blast_tac 1);
|
|
366 |
qed "not_finite_UNIV_Compl";
|
|
367 |
|
|
368 |
val [prem] = goal (the_context ()) "~ finite (UNIV:: 'a set) ==> \
|
|
369 |
\ !X: {A:: 'a set. finite (- A)}. ~ finite X";
|
|
370 |
by (cut_facts_tac [prem] 1);
|
|
371 |
by (auto_tac (claset() addDs [not_finite_UNIV_disjI],simpset()));
|
|
372 |
qed "mem_cofinite_Filter_not_finite";
|
|
373 |
|
|
374 |
val [prem] = goal (the_context ()) "~ finite (UNIV:: 'a set) ==> \
|
|
375 |
\ {A:: 'a set. finite (- A)} : Freefilter UNIV";
|
|
376 |
by (cut_facts_tac [prem] 1);
|
|
377 |
by (rtac mem_FreefiltersetI2 1);
|
|
378 |
by (rtac cofinite_Filter 1 THEN assume_tac 1);
|
|
379 |
by (blast_tac (claset() addSDs [mem_cofinite_Filter_not_finite]) 1);
|
|
380 |
qed "cofinite_Freefilter";
|
|
381 |
|
|
382 |
Goal "UNIV - x = - x";
|
|
383 |
by (Auto_tac);
|
|
384 |
qed "UNIV_diff_Compl";
|
|
385 |
Addsimps [UNIV_diff_Compl];
|
|
386 |
|
|
387 |
Goalw [Ultrafilter_def,FreeUltrafilter_def]
|
|
388 |
"[| ~finite(UNIV :: 'a set); (U :: 'a set set): FreeUltrafilter UNIV\
|
|
389 |
\ |] ==> {X. finite(- X)} <= U";
|
|
390 |
by (ftac cofinite_Filter 1);
|
|
391 |
by (Step_tac 1);
|
|
392 |
by (forw_inst_tac [("X","- x :: 'a set")] not_finite_UNIV_Compl 1);
|
|
393 |
by (assume_tac 1);
|
|
394 |
by (Step_tac 1 THEN Fast_tac 1);
|
|
395 |
by (dres_inst_tac [("x","x")] bspec 1);
|
|
396 |
by (Blast_tac 1);
|
|
397 |
by (asm_full_simp_tac (simpset() addsimps [UNIV_diff_Compl]) 1);
|
|
398 |
qed "FreeUltrafilter_contains_cofinite_set";
|
|
399 |
|
|
400 |
(*--------------------------------------------------------------------
|
|
401 |
We prove: 1. Existence of maximal filter i.e. ultrafilter
|
|
402 |
2. Freeness property i.e ultrafilter is free
|
|
403 |
Use a locale to prove various lemmas and then
|
|
404 |
export main result: The Ultrafilter Theorem
|
|
405 |
-------------------------------------------------------------------*)
|
|
406 |
Open_locale "UFT";
|
|
407 |
|
|
408 |
Goalw [chain_def, thm "superfrechet_def", thm "frechet_def"]
|
|
409 |
"!!(c :: 'a set set set). c : chain (superfrechet S) ==> Union c <= Pow S";
|
|
410 |
by (Step_tac 1);
|
|
411 |
by (dtac subsetD 1 THEN assume_tac 1);
|
|
412 |
by (Step_tac 1);
|
|
413 |
by (dres_inst_tac [("X","X")] mem_FiltersetD3 1);
|
|
414 |
by (Auto_tac);
|
|
415 |
qed "chain_Un_subset_Pow";
|
|
416 |
|
|
417 |
Goalw [chain_def,Filter_def,is_Filter_def,
|
|
418 |
thm "superfrechet_def", thm "frechet_def"]
|
|
419 |
"!!(c :: 'a set set set). c: chain (superfrechet S) \
|
|
420 |
\ ==> !x: c. {} < x";
|
|
421 |
by (blast_tac (claset() addSIs [psubsetI]) 1);
|
|
422 |
qed "mem_chain_psubset_empty";
|
|
423 |
|
|
424 |
Goal "!!(c :: 'a set set set). \
|
|
425 |
\ [| c: chain (superfrechet S);\
|
|
426 |
\ c ~= {} \
|
|
427 |
\ |]\
|
|
428 |
\ ==> Union(c) ~= {}";
|
|
429 |
by (dtac mem_chain_psubset_empty 1);
|
|
430 |
by (Step_tac 1);
|
|
431 |
by (dtac bspec 1 THEN assume_tac 1);
|
|
432 |
by (auto_tac (claset() addDs [Union_upper,bspec],
|
|
433 |
simpset() addsimps [psubset_def]));
|
|
434 |
qed "chain_Un_not_empty";
|
|
435 |
|
|
436 |
Goalw [is_Filter_def,Filter_def,chain_def,thm "superfrechet_def"]
|
|
437 |
"!!(c :: 'a set set set). \
|
|
438 |
\ c : chain (superfrechet S) \
|
|
439 |
\ ==> {} ~: Union(c)";
|
|
440 |
by (Blast_tac 1);
|
|
441 |
qed "Filter_empty_not_mem_Un";
|
|
442 |
|
|
443 |
Goal "c: chain (superfrechet S) \
|
|
444 |
\ ==> ALL u : Union(c). ALL v: Union(c). u Int v : Union(c)";
|
|
445 |
by (Step_tac 1);
|
|
446 |
by (forw_inst_tac [("x","X"),("y","Xa")] chainD 1);
|
|
447 |
by (REPEAT(assume_tac 1));
|
|
448 |
by (dtac chainD2 1);
|
|
449 |
by (etac disjE 1);
|
|
450 |
by (res_inst_tac [("X","Xa")] UnionI 1 THEN assume_tac 1);
|
|
451 |
by (dres_inst_tac [("A","X")] subsetD 1 THEN assume_tac 1);
|
|
452 |
by (dres_inst_tac [("c","Xa")] subsetD 1 THEN assume_tac 1);
|
|
453 |
by (res_inst_tac [("X","X")] UnionI 2 THEN assume_tac 2);
|
|
454 |
by (dres_inst_tac [("A","Xa")] subsetD 2 THEN assume_tac 2);
|
|
455 |
by (dres_inst_tac [("c","X")] subsetD 2 THEN assume_tac 2);
|
|
456 |
by (auto_tac (claset() addIs [mem_FiltersetD1],
|
|
457 |
simpset() addsimps [thm "superfrechet_def"]));
|
|
458 |
qed "Filter_Un_Int";
|
|
459 |
|
|
460 |
Goal "c: chain (superfrechet S) \
|
|
461 |
\ ==> ALL u v. u: Union(c) & \
|
|
462 |
\ (u :: 'a set) <= v & v <= S --> v: Union(c)";
|
|
463 |
by (Step_tac 1);
|
|
464 |
by (dtac chainD2 1);
|
|
465 |
by (dtac subsetD 1 THEN assume_tac 1);
|
|
466 |
by (rtac UnionI 1 THEN assume_tac 1);
|
|
467 |
by (auto_tac (claset() addIs [mem_FiltersetD2],
|
|
468 |
simpset() addsimps [thm "superfrechet_def"]));
|
|
469 |
qed "Filter_Un_subset";
|
|
470 |
|
|
471 |
Goalw [chain_def,thm "superfrechet_def"]
|
|
472 |
"!!(c :: 'a set set set). \
|
|
473 |
\ [| c: chain (superfrechet S);\
|
|
474 |
\ x: c \
|
|
475 |
\ |] ==> x : Filter S";
|
|
476 |
by (Blast_tac 1);
|
|
477 |
qed "lemma_mem_chain_Filter";
|
|
478 |
|
|
479 |
Goalw [chain_def,thm "superfrechet_def"]
|
|
480 |
"!!(c :: 'a set set set). \
|
|
481 |
\ [| c: chain (superfrechet S);\
|
|
482 |
\ x: c \
|
|
483 |
\ |] ==> frechet S <= x";
|
|
484 |
by (Blast_tac 1);
|
|
485 |
qed "lemma_mem_chain_frechet_subset";
|
|
486 |
|
|
487 |
Goal "!!(c :: 'a set set set). \
|
|
488 |
\ [| c ~= {}; \
|
|
489 |
\ c : chain (superfrechet (UNIV :: 'a set))\
|
|
490 |
\ |] ==> Union c : superfrechet (UNIV)";
|
|
491 |
by (simp_tac (simpset() addsimps
|
|
492 |
[thm "superfrechet_def",thm "frechet_def"]) 1);
|
|
493 |
by (Step_tac 1);
|
|
494 |
by (rtac mem_FiltersetI2 1);
|
|
495 |
by (etac chain_Un_subset_Pow 1);
|
|
496 |
by (rtac UnionI 1 THEN assume_tac 1);
|
|
497 |
by (etac (lemma_mem_chain_Filter RS mem_FiltersetD4) 1 THEN assume_tac 1);
|
|
498 |
by (etac chain_Un_not_empty 1);
|
|
499 |
by (etac Filter_empty_not_mem_Un 2);
|
|
500 |
by (etac Filter_Un_Int 2);
|
|
501 |
by (etac Filter_Un_subset 2);
|
|
502 |
by (subgoal_tac "xa : frechet (UNIV)" 2);
|
|
503 |
by (rtac UnionI 2 THEN assume_tac 2);
|
|
504 |
by (rtac (lemma_mem_chain_frechet_subset RS subsetD) 2);
|
|
505 |
by (auto_tac (claset(),simpset() addsimps [thm "frechet_def"]));
|
|
506 |
qed "Un_chain_mem_cofinite_Filter_set";
|
|
507 |
|
|
508 |
Goal "EX U: superfrechet (UNIV). \
|
|
509 |
\ ALL G: superfrechet (UNIV). U <= G --> U = G";
|
|
510 |
by (rtac Zorn_Lemma2 1);
|
|
511 |
by (cut_facts_tac [thm "not_finite_UNIV" RS cofinite_Filter] 1);
|
|
512 |
by (Step_tac 1);
|
|
513 |
by (res_inst_tac [("Q","c={}")] (excluded_middle RS disjE) 1);
|
|
514 |
by (res_inst_tac [("x","Union c")] bexI 1 THEN Blast_tac 1);
|
|
515 |
by (rtac Un_chain_mem_cofinite_Filter_set 1 THEN REPEAT(assume_tac 1));
|
|
516 |
by (res_inst_tac [("x","frechet (UNIV)")] bexI 1 THEN Blast_tac 1);
|
|
517 |
by (auto_tac (claset(),
|
|
518 |
simpset() addsimps
|
|
519 |
[thm "superfrechet_def", thm "frechet_def"]));
|
|
520 |
qed "max_cofinite_Filter_Ex";
|
|
521 |
|
|
522 |
Goal "EX U: superfrechet UNIV. (\
|
|
523 |
\ ALL G: superfrechet UNIV. U <= G --> U = G) \
|
|
524 |
\ & (ALL x: U. ~finite x)";
|
|
525 |
by (cut_facts_tac [thm "not_finite_UNIV" RS
|
|
526 |
(export max_cofinite_Filter_Ex)] 1);
|
|
527 |
by (Step_tac 1);
|
|
528 |
by (res_inst_tac [("x","U")] bexI 1);
|
|
529 |
by (auto_tac (claset(),simpset() addsimps
|
|
530 |
[thm "superfrechet_def", thm "frechet_def"]));
|
|
531 |
by (dres_inst_tac [("c","- x")] subsetD 1);
|
|
532 |
by (Asm_simp_tac 1);
|
|
533 |
by (forw_inst_tac [("A","x"),("B","- x")] mem_FiltersetD1 1);
|
|
534 |
by (dtac Filter_empty_not_mem 3);
|
|
535 |
by (ALLGOALS(Asm_full_simp_tac ));
|
|
536 |
qed "max_cofinite_Freefilter_Ex";
|
|
537 |
|
|
538 |
(*--------------------------------------------------------------------------------
|
|
539 |
There exists a free ultrafilter on any infinite set
|
|
540 |
--------------------------------------------------------------------------------*)
|
|
541 |
|
|
542 |
Goalw [FreeUltrafilter_def] "EX U. U: FreeUltrafilter (UNIV :: 'a set)";
|
|
543 |
by (cut_facts_tac [thm "not_finite_UNIV" RS (export max_cofinite_Freefilter_Ex)] 1);
|
|
544 |
by (asm_full_simp_tac (simpset() addsimps
|
|
545 |
[thm "superfrechet_def", Ultrafilter_iff, thm "frechet_def"]) 1);
|
|
546 |
by (Step_tac 1);
|
|
547 |
by (res_inst_tac [("x","U")] exI 1);
|
|
548 |
by (Step_tac 1);
|
|
549 |
by (Blast_tac 1);
|
|
550 |
qed "FreeUltrafilter_ex";
|
|
551 |
|
|
552 |
bind_thm ("FreeUltrafilter_Ex", export FreeUltrafilter_ex);
|
|
553 |
|
|
554 |
Close_locale "UFT";
|