12431
|
1 |
(* Title: HOL/IMP/Natural.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow & Robert Sandner, TUM
|
|
4 |
Isar Version: Gerwin Klein, 2001
|
|
5 |
Copyright 1996 TUM
|
1700
|
6 |
*)
|
|
7 |
|
12431
|
8 |
header "Natural Semantics of Commands"
|
|
9 |
|
|
10 |
theory Natural = Com:
|
|
11 |
|
|
12 |
subsection "Execution of commands"
|
1700
|
13 |
|
12546
|
14 |
consts evalc :: "(com \<times> state \<times> state) set"
|
|
15 |
syntax "_evalc" :: "[com,state,state] \<Rightarrow> bool" ("<_,_>/ -c-> _" [0,0,60] 60)
|
1700
|
16 |
|
12431
|
17 |
syntax (xsymbols)
|
12546
|
18 |
"_evalc" :: "[com,state,state] \<Rightarrow> bool" ("\<langle>_,_\<rangle>/ \<longrightarrow>\<^sub>c _" [0,0,60] 60)
|
1700
|
19 |
|
12431
|
20 |
text {*
|
|
21 |
We write @{text "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"} for \emph{Statement @{text c}, started
|
|
22 |
in state @{text s}, terminates in state @{text s'}}. Formally,
|
|
23 |
@{text "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"} is just another form of saying \emph{the tuple
|
|
24 |
@{text "(c,s,s')"} is part of the relation @{text evalc}}:
|
|
25 |
*}
|
|
26 |
translations "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" == "(c,s,s') \<in> evalc"
|
1700
|
27 |
|
12431
|
28 |
constdefs
|
|
29 |
update :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" ("_/[_ ::= /_]" [900,0,0] 900)
|
|
30 |
"update == fun_upd"
|
|
31 |
|
|
32 |
syntax (xsymbols)
|
|
33 |
update :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" ("_/[_ \<mapsto> /_]" [900,0,0] 900)
|
|
34 |
|
|
35 |
text {*
|
|
36 |
The big-step execution relation @{text evalc} is defined inductively:
|
|
37 |
*}
|
1789
|
38 |
inductive evalc
|
12431
|
39 |
intros
|
|
40 |
Skip: "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c s"
|
|
41 |
Assign: "\<langle>x :== a,s\<rangle> \<longrightarrow>\<^sub>c s[x\<mapsto>a s]"
|
|
42 |
|
|
43 |
Semi: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c s'' \<Longrightarrow> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c0; c1, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
44 |
|
|
45 |
IfTrue: "b s \<Longrightarrow> \<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>\<IF> b \<THEN> c0 \<ELSE> c1, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
46 |
IfFalse: "\<not>b s \<Longrightarrow> \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>\<IF> b \<THEN> c0 \<ELSE> c1, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
47 |
|
|
48 |
WhileFalse: "\<not>b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>c s"
|
|
49 |
WhileTrue: "b s \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'' \<Longrightarrow> \<langle>\<WHILE> b \<DO> c, s''\<rangle> \<longrightarrow>\<^sub>c s'
|
|
50 |
\<Longrightarrow> \<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
51 |
|
|
52 |
lemmas evalc.intros [intro] -- "use those rules in automatic proofs"
|
|
53 |
|
|
54 |
text {*
|
|
55 |
The induction principle induced by this definition looks like this:
|
|
56 |
|
|
57 |
@{thm [display] evalc.induct [no_vars]}
|
|
58 |
|
|
59 |
|
|
60 |
(@{text "\<And>"} and @{text "\<Longrightarrow>"} are Isabelle's
|
|
61 |
meta symbols for @{text "\<forall>"} and @{text "\<longrightarrow>"})
|
|
62 |
*}
|
|
63 |
|
|
64 |
|
|
65 |
text {*
|
|
66 |
The rules of @{text evalc} are syntax directed, i.e.~for each
|
|
67 |
syntactic category there is always only one rule applicable. That
|
|
68 |
means we can use the rules in both directions. The proofs for this
|
|
69 |
are all the same: one direction is trivial, the other one is shown
|
|
70 |
by using the @{text evalc} rules backwards:
|
|
71 |
*}
|
|
72 |
lemma skip:
|
|
73 |
"\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c s' = (s' = s)"
|
|
74 |
by (rule, erule evalc.elims) auto
|
|
75 |
|
|
76 |
lemma assign:
|
|
77 |
"\<langle>x :== a,s\<rangle> \<longrightarrow>\<^sub>c s' = (s' = s[x\<mapsto>a s])"
|
|
78 |
by (rule, erule evalc.elims) auto
|
|
79 |
|
|
80 |
lemma semi:
|
|
81 |
"\<langle>c0; c1, s\<rangle> \<longrightarrow>\<^sub>c s' = (\<exists>s''. \<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c s'' \<and> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>c s')"
|
|
82 |
by (rule, erule evalc.elims) auto
|
1700
|
83 |
|
12431
|
84 |
lemma ifTrue:
|
|
85 |
"b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c0 \<ELSE> c1, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
86 |
by (rule, erule evalc.elims) auto
|
|
87 |
|
|
88 |
lemma ifFalse:
|
|
89 |
"\<not>b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c0 \<ELSE> c1, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
90 |
by (rule, erule evalc.elims) auto
|
|
91 |
|
|
92 |
lemma whileFalse:
|
|
93 |
"\<not> b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>c s' = (s' = s)"
|
|
94 |
by (rule, erule evalc.elims) auto
|
|
95 |
|
|
96 |
lemma whileTrue:
|
|
97 |
"b s \<Longrightarrow>
|
|
98 |
\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>c s' =
|
|
99 |
(\<exists>s''. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'' \<and> \<langle>\<WHILE> b \<DO> c, s''\<rangle> \<longrightarrow>\<^sub>c s')"
|
|
100 |
by (rule, erule evalc.elims) auto
|
|
101 |
|
|
102 |
text "Again, Isabelle may use these rules in automatic proofs:"
|
|
103 |
lemmas evalc_cases [simp] = skip assign ifTrue ifFalse whileFalse semi whileTrue
|
|
104 |
|
|
105 |
subsection "Equivalence of statements"
|
1700
|
106 |
|
12431
|
107 |
text {*
|
|
108 |
We call two statements @{text c} and @{text c'} equivalent wrt.~the
|
|
109 |
big-step semantics when \emph{@{text c} started in @{text s} terminates
|
|
110 |
in @{text s'} iff @{text c'} started in the same @{text s} also terminates
|
|
111 |
in the same @{text s'}}. Formally:
|
|
112 |
*}
|
|
113 |
constdefs
|
|
114 |
equiv_c :: "com \<Rightarrow> com \<Rightarrow> bool" ("_ \<sim> _")
|
|
115 |
"c \<sim> c' \<equiv> \<forall>s s'. \<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c', s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
116 |
|
|
117 |
text {*
|
|
118 |
Proof rules telling Isabelle to unfold the definition
|
|
119 |
if there is something to be proved about equivalent
|
|
120 |
statements: *}
|
|
121 |
lemma equivI [intro!]:
|
|
122 |
"(\<And>s s'. \<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c', s\<rangle> \<longrightarrow>\<^sub>c s') \<Longrightarrow> c \<sim> c'"
|
|
123 |
by (unfold equiv_c_def) blast
|
|
124 |
|
|
125 |
lemma equivD1:
|
|
126 |
"c \<sim> c' \<Longrightarrow> \<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c', s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
127 |
by (unfold equiv_c_def) blast
|
|
128 |
|
|
129 |
lemma equivD2:
|
|
130 |
"c \<sim> c' \<Longrightarrow> \<langle>c', s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
131 |
by (unfold equiv_c_def) blast
|
1700
|
132 |
|
12431
|
133 |
text {*
|
|
134 |
As an example, we show that loop unfolding is an equivalence
|
|
135 |
transformation on programs:
|
|
136 |
*}
|
|
137 |
lemma unfold_while:
|
|
138 |
"(\<WHILE> b \<DO> c) \<sim> (\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>)" (is "?w \<sim> ?if")
|
|
139 |
proof -
|
|
140 |
-- "to show the equivalence, we look at the derivation tree for"
|
|
141 |
-- "each side and from that construct a derivation tree for the other side"
|
|
142 |
{ fix s s' assume w: "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
143 |
-- "as a first thing we note that, if @{text b} is @{text False} in state @{text s},"
|
|
144 |
-- "then both statements do nothing:"
|
|
145 |
hence "\<not>b s \<Longrightarrow> s = s'" by simp
|
|
146 |
hence "\<not>b s \<Longrightarrow> \<langle>?if, s\<rangle> \<longrightarrow>\<^sub>c s'" by simp
|
|
147 |
moreover
|
|
148 |
-- "on the other hand, if @{text b} is @{text True} in state @{text s},"
|
|
149 |
-- {* then only the @{text WhileTrue} rule can have been used to derive @{text "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>c s'"} *}
|
|
150 |
{ assume b: "b s"
|
|
151 |
with w obtain s'' where
|
|
152 |
"\<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s''" and "\<langle>?w, s''\<rangle> \<longrightarrow>\<^sub>c s'" by (cases set: evalc) auto
|
|
153 |
-- "now we can build a derivation tree for the @{text \<IF>}"
|
|
154 |
-- "first, the body of the True-branch:"
|
|
155 |
hence "\<langle>c; ?w, s\<rangle> \<longrightarrow>\<^sub>c s'" by (rule Semi)
|
|
156 |
-- "then the whole @{text \<IF>}"
|
|
157 |
with b have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>c s'" by (rule IfTrue)
|
|
158 |
}
|
|
159 |
ultimately
|
|
160 |
-- "both cases together give us what we want:"
|
|
161 |
have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
|
|
162 |
}
|
|
163 |
moreover
|
|
164 |
-- "now the other direction:"
|
|
165 |
{ fix s s' assume if: "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>c s'"
|
|
166 |
-- "again, if @{text b} is @{text False} in state @{text s}, then the False-branch"
|
|
167 |
-- "of the @{text \<IF>} is executed, and both statements do nothing:"
|
|
168 |
hence "\<not>b s \<Longrightarrow> s = s'" by simp
|
|
169 |
hence "\<not>b s \<Longrightarrow> \<langle>?w, s\<rangle> \<longrightarrow>\<^sub>c s'" by simp
|
|
170 |
moreover
|
|
171 |
-- "on the other hand, if @{text b} is @{text True} in state @{text s},"
|
|
172 |
-- {* then this time only the @{text IfTrue} rule can have be used *}
|
|
173 |
{ assume b: "b s"
|
|
174 |
with if have "\<langle>c; ?w, s\<rangle> \<longrightarrow>\<^sub>c s'" by (cases set: evalc) auto
|
|
175 |
-- "and for this, only the Semi-rule is applicable:"
|
|
176 |
then obtain s'' where
|
|
177 |
"\<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s''" and "\<langle>?w, s''\<rangle> \<longrightarrow>\<^sub>c s'" by (cases set: evalc) auto
|
|
178 |
-- "with this information, we can build a derivation tree for the @{text \<WHILE>}"
|
|
179 |
with b
|
|
180 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>c s'" by (rule WhileTrue)
|
|
181 |
}
|
|
182 |
ultimately
|
|
183 |
-- "both cases together again give us what we want:"
|
|
184 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
|
|
185 |
}
|
|
186 |
ultimately
|
|
187 |
show ?thesis by blast
|
|
188 |
qed
|
|
189 |
|
|
190 |
|
|
191 |
subsection "Execution is deterministic"
|
1700
|
192 |
|
12431
|
193 |
text {*
|
|
194 |
The following proof presents all the details:
|
|
195 |
*}
|
|
196 |
theorem com_det: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t \<and> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<longrightarrow> u=t"
|
|
197 |
proof clarify -- "transform the goal into canonical form"
|
|
198 |
assume "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
|
|
199 |
thus "\<And>u. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u=t"
|
|
200 |
proof (induct set: evalc)
|
|
201 |
fix s u assume "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
202 |
thus "u = s" by simp
|
|
203 |
next
|
|
204 |
fix a s x u assume "\<langle>x :== a,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
205 |
thus "u = s[x \<mapsto> a s]" by simp
|
|
206 |
next
|
|
207 |
fix c0 c1 s s1 s2 u
|
|
208 |
assume IH0: "\<And>u. \<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s2"
|
|
209 |
assume IH1: "\<And>u. \<langle>c1,s2\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s1"
|
|
210 |
|
|
211 |
assume "\<langle>c0;c1, s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
212 |
then obtain s' where
|
|
213 |
c0: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c s'" and
|
|
214 |
c1: "\<langle>c1,s'\<rangle> \<longrightarrow>\<^sub>c u"
|
|
215 |
by auto
|
|
216 |
|
|
217 |
from c0 IH0 have "s'=s2" by blast
|
|
218 |
with c1 IH1 show "u=s1" by blast
|
|
219 |
next
|
|
220 |
fix b c0 c1 s s1 u
|
|
221 |
assume IH: "\<And>u. \<langle>c0,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s1"
|
|
222 |
|
|
223 |
assume "b s" and "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
224 |
hence "\<langle>c0, s\<rangle> \<longrightarrow>\<^sub>c u" by simp
|
|
225 |
with IH show "u = s1" by blast
|
|
226 |
next
|
|
227 |
fix b c0 c1 s s1 u
|
|
228 |
assume IH: "\<And>u. \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s1"
|
1700
|
229 |
|
12431
|
230 |
assume "\<not>b s" and "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
231 |
hence "\<langle>c1, s\<rangle> \<longrightarrow>\<^sub>c u" by simp
|
|
232 |
with IH show "u = s1" by blast
|
|
233 |
next
|
|
234 |
fix b c s u
|
|
235 |
assume "\<not>b s" and "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
236 |
thus "u = s" by simp
|
|
237 |
next
|
|
238 |
fix b c s s1 s2 u
|
|
239 |
assume "IH\<^sub>c": "\<And>u. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s2"
|
|
240 |
assume "IH\<^sub>w": "\<And>u. \<langle>\<WHILE> b \<DO> c,s2\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s1"
|
|
241 |
|
|
242 |
assume "b s" and "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
243 |
then obtain s' where
|
|
244 |
c: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" and
|
|
245 |
w: "\<langle>\<WHILE> b \<DO> c,s'\<rangle> \<longrightarrow>\<^sub>c u"
|
|
246 |
by auto
|
|
247 |
|
|
248 |
from c "IH\<^sub>c" have "s' = s2" by blast
|
|
249 |
with w "IH\<^sub>w" show "u = s1" by blast
|
|
250 |
qed
|
|
251 |
qed
|
|
252 |
|
1700
|
253 |
|
12431
|
254 |
text {*
|
|
255 |
This is the proof as you might present it in a lecture. The remaining
|
|
256 |
cases are simple enough to be proved automatically:
|
|
257 |
*}
|
|
258 |
theorem "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t \<and> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<longrightarrow> u=t"
|
|
259 |
proof clarify
|
|
260 |
assume "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
|
|
261 |
thus "\<And>u. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u=t"
|
|
262 |
proof (induct set: evalc)
|
|
263 |
-- "the simple @{text \<SKIP>} case for demonstration:"
|
|
264 |
fix s u assume "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
265 |
thus "u = s" by simp
|
|
266 |
next
|
|
267 |
-- "and the only really interesting case, @{text \<WHILE>}:"
|
|
268 |
fix b c s s1 s2 u
|
|
269 |
assume "IH\<^sub>c": "\<And>u. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s2"
|
|
270 |
assume "IH\<^sub>w": "\<And>u. \<langle>\<WHILE> b \<DO> c,s2\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> u = s1"
|
|
271 |
|
|
272 |
assume "b s" and "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>c u"
|
|
273 |
then obtain s' where
|
|
274 |
c: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" and
|
|
275 |
w: "\<langle>\<WHILE> b \<DO> c,s'\<rangle> \<longrightarrow>\<^sub>c u"
|
|
276 |
by auto
|
|
277 |
|
|
278 |
from c "IH\<^sub>c" have "s' = s2" by blast
|
|
279 |
with w "IH\<^sub>w" show "u = s1" by blast
|
|
280 |
qed (best dest: evalc_cases [THEN iffD1])+ -- "prove the rest automatically"
|
|
281 |
qed
|
1700
|
282 |
|
|
283 |
end
|