| author | wenzelm | 
| Wed, 17 Jun 2015 11:03:05 +0200 | |
| changeset 60500 | 903bb1495239 | 
| parent 58881 | b9556a055632 | 
| child 60565 | b7ee41f72add | 
| permissions | -rw-r--r-- | 
| 48028 | 1  | 
(* Author: Andreas Lochbihler, Uni Karlsruhe *)  | 
2  | 
||
| 60500 | 3  | 
section \<open>Almost everywhere constant functions\<close>  | 
| 48028 | 4  | 
|
5  | 
theory FinFun  | 
|
| 48051 | 6  | 
imports Cardinality  | 
| 48028 | 7  | 
begin  | 
8  | 
||
| 60500 | 9  | 
text \<open>  | 
| 48028 | 10  | 
This theory defines functions which are constant except for finitely  | 
11  | 
many points (FinFun) and introduces a type finfin along with a  | 
|
12  | 
number of operators for them. The code generator is set up such that  | 
|
13  | 
such functions can be represented as data in the generated code and  | 
|
14  | 
all operators are executable.  | 
|
15  | 
||
16  | 
For details, see Formalising FinFuns - Generating Code for Functions as Data by A. Lochbihler in TPHOLs 2009.  | 
|
| 60500 | 17  | 
\<close>  | 
| 48028 | 18  | 
|
19  | 
||
| 60500 | 20  | 
subsection \<open>The @{text "map_default"} operation\<close>
 | 
| 48028 | 21  | 
|
22  | 
definition map_default :: "'b \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
|
23  | 
where "map_default b f a \<equiv> case f a of None \<Rightarrow> b | Some b' \<Rightarrow> b'"  | 
|
24  | 
||
25  | 
lemma map_default_delete [simp]:  | 
|
26  | 
"map_default b (f(a := None)) = (map_default b f)(a := b)"  | 
|
27  | 
by(simp add: map_default_def fun_eq_iff)  | 
|
28  | 
||
29  | 
lemma map_default_insert:  | 
|
30  | 
"map_default b (f(a \<mapsto> b')) = (map_default b f)(a := b')"  | 
|
31  | 
by(simp add: map_default_def fun_eq_iff)  | 
|
32  | 
||
33  | 
lemma map_default_empty [simp]: "map_default b empty = (\<lambda>a. b)"  | 
|
34  | 
by(simp add: fun_eq_iff map_default_def)  | 
|
35  | 
||
36  | 
lemma map_default_inject:  | 
|
37  | 
fixes g g' :: "'a \<rightharpoonup> 'b"  | 
|
38  | 
assumes infin_eq: "\<not> finite (UNIV :: 'a set) \<or> b = b'"  | 
|
39  | 
and fin: "finite (dom g)" and b: "b \<notin> ran g"  | 
|
40  | 
and fin': "finite (dom g')" and b': "b' \<notin> ran g'"  | 
|
41  | 
and eq': "map_default b g = map_default b' g'"  | 
|
42  | 
shows "b = b'" "g = g'"  | 
|
43  | 
proof -  | 
|
44  | 
from infin_eq show bb': "b = b'"  | 
|
45  | 
proof  | 
|
46  | 
assume infin: "\<not> finite (UNIV :: 'a set)"  | 
|
47  | 
from fin fin' have "finite (dom g \<union> dom g')" by auto  | 
|
48  | 
    with infin have "UNIV - (dom g \<union> dom g') \<noteq> {}" by(auto dest: finite_subset)
 | 
|
49  | 
then obtain a where a: "a \<notin> dom g \<union> dom g'" by auto  | 
|
50  | 
hence "map_default b g a = b" "map_default b' g' a = b'" by(auto simp add: map_default_def)  | 
|
51  | 
with eq' show "b = b'" by simp  | 
|
52  | 
qed  | 
|
53  | 
||
54  | 
show "g = g'"  | 
|
55  | 
proof  | 
|
56  | 
fix x  | 
|
57  | 
show "g x = g' x"  | 
|
58  | 
proof(cases "g x")  | 
|
59  | 
case None  | 
|
60  | 
hence "map_default b g x = b" by(simp add: map_default_def)  | 
|
61  | 
with bb' eq' have "map_default b' g' x = b'" by simp  | 
|
62  | 
with b' have "g' x = None" by(simp add: map_default_def ran_def split: option.split_asm)  | 
|
63  | 
with None show ?thesis by simp  | 
|
64  | 
next  | 
|
65  | 
case (Some c)  | 
|
66  | 
with b have cb: "c \<noteq> b" by(auto simp add: ran_def)  | 
|
67  | 
moreover from Some have "map_default b g x = c" by(simp add: map_default_def)  | 
|
68  | 
with eq' have "map_default b' g' x = c" by simp  | 
|
69  | 
ultimately have "g' x = Some c" using b' bb' by(auto simp add: map_default_def split: option.splits)  | 
|
70  | 
with Some show ?thesis by simp  | 
|
71  | 
qed  | 
|
72  | 
qed  | 
|
73  | 
qed  | 
|
74  | 
||
| 60500 | 75  | 
subsection \<open>The finfun type\<close>  | 
| 48028 | 76  | 
|
77  | 
definition "finfun = {f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
 | 
|
78  | 
||
| 49834 | 79  | 
typedef ('a,'b) finfun  ("(_ =>f /_)" [22, 21] 21) = "finfun :: ('a => 'b) set"
 | 
| 48029 | 80  | 
morphisms finfun_apply Abs_finfun  | 
| 48028 | 81  | 
proof -  | 
82  | 
  have "\<exists>f. finite {x. f x \<noteq> undefined}"
 | 
|
83  | 
proof  | 
|
84  | 
    show "finite {x. (\<lambda>y. undefined) x \<noteq> undefined}" by auto
 | 
|
85  | 
qed  | 
|
86  | 
then show ?thesis unfolding finfun_def by auto  | 
|
87  | 
qed  | 
|
88  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
89  | 
type_notation finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
 | 
| 
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
90  | 
|
| 48028 | 91  | 
setup_lifting type_definition_finfun  | 
92  | 
||
93  | 
lemma fun_upd_finfun: "y(a := b) \<in> finfun \<longleftrightarrow> y \<in> finfun"  | 
|
94  | 
proof -  | 
|
95  | 
  { fix b'
 | 
|
96  | 
    have "finite {a'. (y(a := b)) a' \<noteq> b'} = finite {a'. y a' \<noteq> b'}"
 | 
|
97  | 
proof(cases "b = b'")  | 
|
98  | 
case True  | 
|
99  | 
      hence "{a'. (y(a := b)) a' \<noteq> b'} = {a'. y a' \<noteq> b'} - {a}" by auto
 | 
|
100  | 
thus ?thesis by simp  | 
|
101  | 
next  | 
|
102  | 
case False  | 
|
103  | 
      hence "{a'. (y(a := b)) a' \<noteq> b'} = insert a {a'. y a' \<noteq> b'}" by auto
 | 
|
104  | 
thus ?thesis by simp  | 
|
105  | 
qed }  | 
|
106  | 
thus ?thesis unfolding finfun_def by blast  | 
|
107  | 
qed  | 
|
108  | 
||
109  | 
lemma const_finfun: "(\<lambda>x. a) \<in> finfun"  | 
|
110  | 
by(auto simp add: finfun_def)  | 
|
111  | 
||
112  | 
lemma finfun_left_compose:  | 
|
113  | 
assumes "y \<in> finfun"  | 
|
114  | 
shows "g \<circ> y \<in> finfun"  | 
|
115  | 
proof -  | 
|
116  | 
  from assms obtain b where "finite {a. y a \<noteq> b}"
 | 
|
117  | 
unfolding finfun_def by blast  | 
|
118  | 
  hence "finite {c. g (y c) \<noteq> g b}"
 | 
|
119  | 
  proof(induct "{a. y a \<noteq> b}" arbitrary: y)
 | 
|
120  | 
case empty  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
121  | 
hence "y = (\<lambda>a. b)" by(auto)  | 
| 48028 | 122  | 
thus ?case by(simp)  | 
123  | 
next  | 
|
124  | 
case (insert x F)  | 
|
| 60500 | 125  | 
    note IH = \<open>\<And>y. F = {a. y a \<noteq> b} \<Longrightarrow> finite {c. g (y c) \<noteq> g b}\<close>
 | 
126  | 
    from \<open>insert x F = {a. y a \<noteq> b}\<close> \<open>x \<notin> F\<close>
 | 
|
| 48028 | 127  | 
    have F: "F = {a. (y(x := b)) a \<noteq> b}" by(auto)
 | 
128  | 
show ?case  | 
|
129  | 
proof(cases "g (y x) = g b")  | 
|
130  | 
case True  | 
|
131  | 
      hence "{c. g ((y(x := b)) c) \<noteq> g b} = {c. g (y c) \<noteq> g b}" by auto
 | 
|
132  | 
with IH[OF F] show ?thesis by simp  | 
|
133  | 
next  | 
|
134  | 
case False  | 
|
135  | 
      hence "{c. g (y c) \<noteq> g b} = insert x {c. g ((y(x := b)) c) \<noteq> g b}" by auto
 | 
|
136  | 
with IH[OF F] show ?thesis by(simp)  | 
|
137  | 
qed  | 
|
138  | 
qed  | 
|
139  | 
thus ?thesis unfolding finfun_def by auto  | 
|
140  | 
qed  | 
|
141  | 
||
142  | 
lemma assumes "y \<in> finfun"  | 
|
143  | 
shows fst_finfun: "fst \<circ> y \<in> finfun"  | 
|
144  | 
and snd_finfun: "snd \<circ> y \<in> finfun"  | 
|
145  | 
proof -  | 
|
146  | 
  from assms obtain b c where bc: "finite {a. y a \<noteq> (b, c)}"
 | 
|
147  | 
unfolding finfun_def by auto  | 
|
148  | 
  have "{a. fst (y a) \<noteq> b} \<subseteq> {a. y a \<noteq> (b, c)}"
 | 
|
149  | 
    and "{a. snd (y a) \<noteq> c} \<subseteq> {a. y a \<noteq> (b, c)}" by auto
 | 
|
150  | 
  hence "finite {a. fst (y a) \<noteq> b}" 
 | 
|
151  | 
    and "finite {a. snd (y a) \<noteq> c}" using bc by(auto intro: finite_subset)
 | 
|
152  | 
thus "fst \<circ> y \<in> finfun" "snd \<circ> y \<in> finfun"  | 
|
153  | 
unfolding finfun_def by auto  | 
|
154  | 
qed  | 
|
155  | 
||
156  | 
lemma map_of_finfun: "map_of xs \<in> finfun"  | 
|
157  | 
unfolding finfun_def  | 
|
158  | 
by(induct xs)(auto simp add: Collect_neg_eq Collect_conj_eq Collect_imp_eq intro: finite_subset)  | 
|
159  | 
||
160  | 
lemma Diag_finfun: "(\<lambda>x. (f x, g x)) \<in> finfun \<longleftrightarrow> f \<in> finfun \<and> g \<in> finfun"  | 
|
161  | 
by(auto intro: finite_subset simp add: Collect_neg_eq Collect_imp_eq Collect_conj_eq finfun_def)  | 
|
162  | 
||
163  | 
lemma finfun_right_compose:  | 
|
164  | 
assumes g: "g \<in> finfun" and inj: "inj f"  | 
|
165  | 
shows "g o f \<in> finfun"  | 
|
166  | 
proof -  | 
|
167  | 
  from g obtain b where b: "finite {a. g a \<noteq> b}" unfolding finfun_def by blast
 | 
|
168  | 
  moreover have "f ` {a. g (f a) \<noteq> b} \<subseteq> {a. g a \<noteq> b}" by auto
 | 
|
169  | 
  moreover from inj have "inj_on f {a.  g (f a) \<noteq> b}" by(rule subset_inj_on) blast
 | 
|
170  | 
  ultimately have "finite {a. g (f a) \<noteq> b}"
 | 
|
171  | 
by(blast intro: finite_imageD[where f=f] finite_subset)  | 
|
172  | 
thus ?thesis unfolding finfun_def by auto  | 
|
173  | 
qed  | 
|
174  | 
||
175  | 
lemma finfun_curry:  | 
|
176  | 
assumes fin: "f \<in> finfun"  | 
|
177  | 
shows "curry f \<in> finfun" "curry f a \<in> finfun"  | 
|
178  | 
proof -  | 
|
179  | 
  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
 | 
|
180  | 
  moreover have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
 | 
|
181  | 
  hence "{a. curry f a \<noteq> (\<lambda>b. c)} = fst ` {ab. f ab \<noteq> c}"
 | 
|
182  | 
by(auto simp add: curry_def fun_eq_iff)  | 
|
183  | 
  ultimately have "finite {a. curry f a \<noteq> (\<lambda>b. c)}" by simp
 | 
|
184  | 
thus "curry f \<in> finfun" unfolding finfun_def by blast  | 
|
185  | 
||
186  | 
  have "snd ` {ab. f ab \<noteq> c} = {b. \<exists>a. f (a, b) \<noteq> c}" by(force)
 | 
|
187  | 
  hence "{b. f (a, b) \<noteq> c} \<subseteq> snd ` {ab. f ab \<noteq> c}" by auto
 | 
|
188  | 
  hence "finite {b. f (a, b) \<noteq> c}" by(rule finite_subset)(rule finite_imageI[OF c])
 | 
|
189  | 
thus "curry f a \<in> finfun" unfolding finfun_def by auto  | 
|
190  | 
qed  | 
|
191  | 
||
| 48030 | 192  | 
bundle finfun =  | 
193  | 
fst_finfun[simp] snd_finfun[simp] Abs_finfun_inverse[simp]  | 
|
194  | 
finfun_apply_inverse[simp] Abs_finfun_inject[simp] finfun_apply_inject[simp]  | 
|
195  | 
Diag_finfun[simp] finfun_curry[simp]  | 
|
196  | 
const_finfun[iff] fun_upd_finfun[iff] finfun_apply[iff] map_of_finfun[iff]  | 
|
197  | 
finfun_left_compose[intro] fst_finfun[intro] snd_finfun[intro]  | 
|
| 48028 | 198  | 
|
199  | 
lemma Abs_finfun_inject_finite:  | 
|
200  | 
fixes x y :: "'a \<Rightarrow> 'b"  | 
|
201  | 
assumes fin: "finite (UNIV :: 'a set)"  | 
|
202  | 
shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"  | 
|
203  | 
proof  | 
|
204  | 
assume "Abs_finfun x = Abs_finfun y"  | 
|
205  | 
moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def  | 
|
206  | 
by(auto intro: finite_subset[OF _ fin])  | 
|
207  | 
ultimately show "x = y" by(simp add: Abs_finfun_inject)  | 
|
208  | 
qed simp  | 
|
209  | 
||
210  | 
lemma Abs_finfun_inject_finite_class:  | 
|
211  | 
  fixes x y :: "('a :: finite) \<Rightarrow> 'b"
 | 
|
212  | 
shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"  | 
|
213  | 
using finite_UNIV  | 
|
214  | 
by(simp add: Abs_finfun_inject_finite)  | 
|
215  | 
||
216  | 
lemma Abs_finfun_inj_finite:  | 
|
217  | 
assumes fin: "finite (UNIV :: 'a set)"  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
218  | 
  shows "inj (Abs_finfun :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>f 'b)"
 | 
| 48028 | 219  | 
proof(rule inj_onI)  | 
220  | 
fix x y :: "'a \<Rightarrow> 'b"  | 
|
221  | 
assume "Abs_finfun x = Abs_finfun y"  | 
|
222  | 
moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def  | 
|
223  | 
by(auto intro: finite_subset[OF _ fin])  | 
|
224  | 
ultimately show "x = y" by(simp add: Abs_finfun_inject)  | 
|
225  | 
qed  | 
|
226  | 
||
227  | 
lemma Abs_finfun_inverse_finite:  | 
|
228  | 
fixes x :: "'a \<Rightarrow> 'b"  | 
|
229  | 
assumes fin: "finite (UNIV :: 'a set)"  | 
|
| 48029 | 230  | 
shows "finfun_apply (Abs_finfun x) = x"  | 
| 48030 | 231  | 
including finfun  | 
| 48028 | 232  | 
proof -  | 
233  | 
from fin have "x \<in> finfun"  | 
|
234  | 
by(auto simp add: finfun_def intro: finite_subset)  | 
|
235  | 
thus ?thesis by simp  | 
|
236  | 
qed  | 
|
237  | 
||
238  | 
lemma Abs_finfun_inverse_finite_class:  | 
|
239  | 
  fixes x :: "('a :: finite) \<Rightarrow> 'b"
 | 
|
| 48029 | 240  | 
shows "finfun_apply (Abs_finfun x) = x"  | 
| 48028 | 241  | 
using finite_UNIV by(simp add: Abs_finfun_inverse_finite)  | 
242  | 
||
243  | 
lemma finfun_eq_finite_UNIV: "finite (UNIV :: 'a set) \<Longrightarrow> (finfun :: ('a \<Rightarrow> 'b) set) = UNIV"
 | 
|
244  | 
unfolding finfun_def by(auto intro: finite_subset)  | 
|
245  | 
||
246  | 
lemma finfun_finite_UNIV_class: "finfun = (UNIV :: ('a :: finite \<Rightarrow> 'b) set)"
 | 
|
247  | 
by(simp add: finfun_eq_finite_UNIV)  | 
|
248  | 
||
249  | 
lemma map_default_in_finfun:  | 
|
250  | 
assumes fin: "finite (dom f)"  | 
|
251  | 
shows "map_default b f \<in> finfun"  | 
|
252  | 
unfolding finfun_def  | 
|
253  | 
proof(intro CollectI exI)  | 
|
254  | 
  from fin show "finite {a. map_default b f a \<noteq> b}"
 | 
|
255  | 
by(auto simp add: map_default_def dom_def Collect_conj_eq split: option.splits)  | 
|
256  | 
qed  | 
|
257  | 
||
258  | 
lemma finfun_cases_map_default:  | 
|
259  | 
obtains b g where "f = Abs_finfun (map_default b g)" "finite (dom g)" "b \<notin> ran g"  | 
|
260  | 
proof -  | 
|
261  | 
obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by(cases f)  | 
|
262  | 
  from y obtain b where b: "finite {a. y a \<noteq> b}" unfolding finfun_def by auto
 | 
|
263  | 
let ?g = "(\<lambda>a. if y a = b then None else Some (y a))"  | 
|
264  | 
have "map_default b ?g = y" by(simp add: fun_eq_iff map_default_def)  | 
|
265  | 
with f have "f = Abs_finfun (map_default b ?g)" by simp  | 
|
266  | 
moreover from b have "finite (dom ?g)" by(auto simp add: dom_def)  | 
|
267  | 
moreover have "b \<notin> ran ?g" by(auto simp add: ran_def)  | 
|
268  | 
ultimately show ?thesis by(rule that)  | 
|
269  | 
qed  | 
|
270  | 
||
271  | 
||
| 60500 | 272  | 
subsection \<open>Kernel functions for type @{typ "'a \<Rightarrow>f 'b"}\<close>
 | 
| 48028 | 273  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
274  | 
lift_definition finfun_const :: "'b \<Rightarrow> 'a \<Rightarrow>f 'b" ("K$/ _" [0] 1)
 | 
| 48028 | 275  | 
is "\<lambda> b x. b" by (rule const_finfun)  | 
276  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
277  | 
lift_definition finfun_update :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>f 'b" ("_'(_ $:= _')" [1000,0,0] 1000) is "fun_upd"
 | 
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
278  | 
by (simp add: fun_upd_finfun)  | 
| 48028 | 279  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
280  | 
lemma finfun_update_twist: "a \<noteq> a' \<Longrightarrow> f(a $:= b)(a' $:= b') = f(a' $:= b')(a $:= b)"  | 
| 48028 | 281  | 
by transfer (simp add: fun_upd_twist)  | 
282  | 
||
283  | 
lemma finfun_update_twice [simp]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
284  | 
"f(a $:= b)(a $:= b') = f(a $:= b')"  | 
| 48028 | 285  | 
by transfer simp  | 
286  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
287  | 
lemma finfun_update_const_same: "(K$ b)(a $:= b) = (K$ b)"  | 
| 48028 | 288  | 
by transfer (simp add: fun_eq_iff)  | 
289  | 
||
| 60500 | 290  | 
subsection \<open>Code generator setup\<close>  | 
| 48028 | 291  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
292  | 
definition finfun_update_code :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>f 'b"  | 
| 48028 | 293  | 
where [simp, code del]: "finfun_update_code = finfun_update"  | 
294  | 
||
295  | 
code_datatype finfun_const finfun_update_code  | 
|
296  | 
||
297  | 
lemma finfun_update_const_code [code]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
298  | 
"(K$ b)(a $:= b') = (if b = b' then (K$ b) else finfun_update_code (K$ b) a b')"  | 
| 48028 | 299  | 
by(simp add: finfun_update_const_same)  | 
300  | 
||
301  | 
lemma finfun_update_update_code [code]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
302  | 
"(finfun_update_code f a b)(a' $:= b') = (if a = a' then f(a $:= b') else finfun_update_code (f(a' $:= b')) a b)"  | 
| 48028 | 303  | 
by(simp add: finfun_update_twist)  | 
304  | 
||
305  | 
||
| 60500 | 306  | 
subsection \<open>Setup for quickcheck\<close>  | 
| 48028 | 307  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
308  | 
quickcheck_generator finfun constructors: finfun_update_code, "finfun_const :: 'b \<Rightarrow> 'a \<Rightarrow>f 'b"  | 
| 48028 | 309  | 
|
| 60500 | 310  | 
subsection \<open>@{text "finfun_update"} as instance of @{text "comp_fun_commute"}\<close>
 | 
| 48028 | 311  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
312  | 
interpretation finfun_update: comp_fun_commute "\<lambda>a f. f(a :: 'a $:= b')"  | 
| 48030 | 313  | 
including finfun  | 
| 48028 | 314  | 
proof  | 
315  | 
fix a a' :: 'a  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
316  | 
show "(\<lambda>f. f(a $:= b')) \<circ> (\<lambda>f. f(a' $:= b')) = (\<lambda>f. f(a' $:= b')) \<circ> (\<lambda>f. f(a $:= b'))"  | 
| 48028 | 317  | 
proof  | 
318  | 
fix b  | 
|
| 48029 | 319  | 
have "(finfun_apply b)(a := b', a' := b') = (finfun_apply b)(a' := b', a := b')"  | 
| 48028 | 320  | 
by(cases "a = a'")(auto simp add: fun_upd_twist)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
321  | 
then have "b(a $:= b')(a' $:= b') = b(a' $:= b')(a $:= b')"  | 
| 48028 | 322  | 
by(auto simp add: finfun_update_def fun_upd_twist)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
323  | 
then show "((\<lambda>f. f(a $:= b')) \<circ> (\<lambda>f. f(a' $:= b'))) b = ((\<lambda>f. f(a' $:= b')) \<circ> (\<lambda>f. f(a $:= b'))) b"  | 
| 48028 | 324  | 
by (simp add: fun_eq_iff)  | 
325  | 
qed  | 
|
326  | 
qed  | 
|
327  | 
||
328  | 
lemma fold_finfun_update_finite_univ:  | 
|
329  | 
assumes fin: "finite (UNIV :: 'a set)"  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
330  | 
shows "Finite_Set.fold (\<lambda>a f. f(a $:= b')) (K$ b) (UNIV :: 'a set) = (K$ b')"  | 
| 48028 | 331  | 
proof -  | 
332  | 
  { fix A :: "'a set"
 | 
|
333  | 
from fin have "finite A" by(auto intro: finite_subset)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
334  | 
hence "Finite_Set.fold (\<lambda>a f. f(a $:= b')) (K$ b) A = Abs_finfun (\<lambda>a. if a \<in> A then b' else b)"  | 
| 48028 | 335  | 
proof(induct)  | 
336  | 
case (insert x F)  | 
|
337  | 
have "(\<lambda>a. if a = x then b' else (if a \<in> F then b' else b)) = (\<lambda>a. if a = x \<or> a \<in> F then b' else b)"  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
338  | 
by(auto)  | 
| 48028 | 339  | 
with insert show ?case  | 
340  | 
by(simp add: finfun_const_def fun_upd_def)(simp add: finfun_update_def Abs_finfun_inverse_finite[OF fin] fun_upd_def)  | 
|
341  | 
qed(simp add: finfun_const_def) }  | 
|
342  | 
thus ?thesis by(simp add: finfun_const_def)  | 
|
343  | 
qed  | 
|
344  | 
||
345  | 
||
| 60500 | 346  | 
subsection \<open>Default value for FinFuns\<close>  | 
| 48028 | 347  | 
|
348  | 
definition finfun_default_aux :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
|
349  | 
where [code del]: "finfun_default_aux f = (if finite (UNIV :: 'a set) then undefined else THE b. finite {a. f a \<noteq> b})"
 | 
|
350  | 
||
351  | 
lemma finfun_default_aux_infinite:  | 
|
352  | 
fixes f :: "'a \<Rightarrow> 'b"  | 
|
353  | 
assumes infin: "\<not> finite (UNIV :: 'a set)"  | 
|
354  | 
  and fin: "finite {a. f a \<noteq> b}"
 | 
|
355  | 
shows "finfun_default_aux f = b"  | 
|
356  | 
proof -  | 
|
357  | 
  let ?B = "{a. f a \<noteq> b}"
 | 
|
358  | 
  from fin have "(THE b. finite {a. f a \<noteq> b}) = b"
 | 
|
359  | 
proof(rule the_equality)  | 
|
360  | 
fix b'  | 
|
361  | 
    assume "finite {a. f a \<noteq> b'}" (is "finite ?B'")
 | 
|
362  | 
    with infin fin have "UNIV - (?B' \<union> ?B) \<noteq> {}" by(auto dest: finite_subset)
 | 
|
363  | 
then obtain a where a: "a \<notin> ?B' \<union> ?B" by auto  | 
|
364  | 
thus "b' = b" by auto  | 
|
365  | 
qed  | 
|
366  | 
thus ?thesis using infin by(simp add: finfun_default_aux_def)  | 
|
367  | 
qed  | 
|
368  | 
||
369  | 
||
370  | 
lemma finite_finfun_default_aux:  | 
|
371  | 
fixes f :: "'a \<Rightarrow> 'b"  | 
|
372  | 
assumes fin: "f \<in> finfun"  | 
|
373  | 
  shows "finite {a. f a \<noteq> finfun_default_aux f}"
 | 
|
374  | 
proof(cases "finite (UNIV :: 'a set)")  | 
|
375  | 
case True thus ?thesis using fin  | 
|
376  | 
by(auto simp add: finfun_def finfun_default_aux_def intro: finite_subset)  | 
|
377  | 
next  | 
|
378  | 
case False  | 
|
379  | 
  from fin obtain b where b: "finite {a. f a \<noteq> b}" (is "finite ?B")
 | 
|
380  | 
unfolding finfun_def by blast  | 
|
381  | 
with False show ?thesis by(simp add: finfun_default_aux_infinite)  | 
|
382  | 
qed  | 
|
383  | 
||
384  | 
lemma finfun_default_aux_update_const:  | 
|
385  | 
fixes f :: "'a \<Rightarrow> 'b"  | 
|
386  | 
assumes fin: "f \<in> finfun"  | 
|
387  | 
shows "finfun_default_aux (f(a := b)) = finfun_default_aux f"  | 
|
388  | 
proof(cases "finite (UNIV :: 'a set)")  | 
|
389  | 
case False  | 
|
390  | 
  from fin obtain b' where b': "finite {a. f a \<noteq> b'}" unfolding finfun_def by blast
 | 
|
391  | 
  hence "finite {a'. (f(a := b)) a' \<noteq> b'}"
 | 
|
392  | 
proof(cases "b = b' \<and> f a \<noteq> b'")  | 
|
393  | 
case True  | 
|
394  | 
    hence "{a. f a \<noteq> b'} = insert a {a'. (f(a := b)) a' \<noteq> b'}" by auto
 | 
|
395  | 
thus ?thesis using b' by simp  | 
|
396  | 
next  | 
|
397  | 
case False  | 
|
398  | 
moreover  | 
|
399  | 
    { assume "b \<noteq> b'"
 | 
|
400  | 
      hence "{a'. (f(a := b)) a' \<noteq> b'} = insert a {a. f a \<noteq> b'}" by auto
 | 
|
401  | 
hence ?thesis using b' by simp }  | 
|
402  | 
moreover  | 
|
403  | 
    { assume "b = b'" "f a = b'"
 | 
|
404  | 
      hence "{a'. (f(a := b)) a' \<noteq> b'} = {a. f a \<noteq> b'}" by auto
 | 
|
405  | 
hence ?thesis using b' by simp }  | 
|
406  | 
ultimately show ?thesis by blast  | 
|
407  | 
qed  | 
|
408  | 
with False b' show ?thesis by(auto simp del: fun_upd_apply simp add: finfun_default_aux_infinite)  | 
|
409  | 
next  | 
|
410  | 
case True thus ?thesis by(simp add: finfun_default_aux_def)  | 
|
411  | 
qed  | 
|
412  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
413  | 
lift_definition finfun_default :: "'a \<Rightarrow>f 'b \<Rightarrow> 'b"  | 
| 
55565
 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 
kuncar 
parents: 
53374 
diff
changeset
 | 
414  | 
is "finfun_default_aux" .  | 
| 48028 | 415  | 
|
| 48029 | 416  | 
lemma finite_finfun_default: "finite {a. finfun_apply f a \<noteq> finfun_default f}"
 | 
| 48031 | 417  | 
by transfer (erule finite_finfun_default_aux)  | 
| 48028 | 418  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
419  | 
lemma finfun_default_const: "finfun_default ((K$ b) :: 'a \<Rightarrow>f 'b) = (if finite (UNIV :: 'a set) then undefined else b)"  | 
| 48031 | 420  | 
by(transfer)(auto simp add: finfun_default_aux_infinite finfun_default_aux_def)  | 
| 48028 | 421  | 
|
422  | 
lemma finfun_default_update_const:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
423  | 
"finfun_default (f(a $:= b)) = finfun_default f"  | 
| 48028 | 424  | 
by transfer (simp add: finfun_default_aux_update_const)  | 
425  | 
||
426  | 
lemma finfun_default_const_code [code]:  | 
|
| 
48070
 
02d64fd40852
more sort constraints for FinFun code generation
 
Andreas Lochbihler 
parents: 
48059 
diff
changeset
 | 
427  | 
  "finfun_default ((K$ c) :: 'a :: card_UNIV \<Rightarrow>f 'b) = (if CARD('a) = 0 then c else undefined)"
 | 
| 48059 | 428  | 
by(simp add: finfun_default_const)  | 
| 48028 | 429  | 
|
430  | 
lemma finfun_default_update_code [code]:  | 
|
431  | 
"finfun_default (finfun_update_code f a b) = finfun_default f"  | 
|
432  | 
by(simp add: finfun_default_update_const)  | 
|
433  | 
||
| 60500 | 434  | 
subsection \<open>Recursion combinator and well-formedness conditions\<close>  | 
| 48028 | 435  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
436  | 
definition finfun_rec :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow>f 'b) \<Rightarrow> 'c"
 | 
| 48028 | 437  | 
where [code del]:  | 
438  | 
"finfun_rec cnst upd f \<equiv>  | 
|
439  | 
let b = finfun_default f;  | 
|
440  | 
g = THE g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g  | 
|
441  | 
in Finite_Set.fold (\<lambda>a. upd a (map_default b g a)) (cnst b) (dom g)"  | 
|
442  | 
||
443  | 
locale finfun_rec_wf_aux =  | 
|
444  | 
fixes cnst :: "'b \<Rightarrow> 'c"  | 
|
445  | 
and upd :: "'a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c"  | 
|
446  | 
assumes upd_const_same: "upd a b (cnst b) = cnst b"  | 
|
447  | 
and upd_commute: "a \<noteq> a' \<Longrightarrow> upd a b (upd a' b' c) = upd a' b' (upd a b c)"  | 
|
448  | 
and upd_idemp: "b \<noteq> b' \<Longrightarrow> upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"  | 
|
449  | 
begin  | 
|
450  | 
||
451  | 
||
452  | 
lemma upd_left_comm: "comp_fun_commute (\<lambda>a. upd a (f a))"  | 
|
453  | 
by(unfold_locales)(auto intro: upd_commute simp add: fun_eq_iff)  | 
|
454  | 
||
455  | 
lemma upd_upd_twice: "upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"  | 
|
456  | 
by(cases "b \<noteq> b'")(auto simp add: fun_upd_def upd_const_same upd_idemp)  | 
|
457  | 
||
458  | 
lemma map_default_update_const:  | 
|
459  | 
assumes fin: "finite (dom f)"  | 
|
460  | 
and anf: "a \<notin> dom f"  | 
|
461  | 
and fg: "f \<subseteq>\<^sub>m g"  | 
|
462  | 
shows "upd a d (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)) =  | 
|
463  | 
Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)"  | 
|
464  | 
proof -  | 
|
465  | 
let ?upd = "\<lambda>a. upd a (map_default d g a)"  | 
|
466  | 
let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"  | 
|
467  | 
interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)  | 
|
468  | 
||
469  | 
from fin anf fg show ?thesis  | 
|
470  | 
proof(induct "dom f" arbitrary: f)  | 
|
471  | 
case empty  | 
|
| 60500 | 472  | 
    from \<open>{} = dom f\<close> have "f = empty" by(auto simp add: dom_def)
 | 
| 48028 | 473  | 
thus ?case by(simp add: finfun_const_def upd_const_same)  | 
474  | 
next  | 
|
475  | 
case (insert a' A)  | 
|
| 60500 | 476  | 
note IH = \<open>\<And>f. \<lbrakk> A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g \<rbrakk> \<Longrightarrow> upd a d (?fr (dom f)) = ?fr (dom f)\<close>  | 
477  | 
note fin = \<open>finite A\<close> note anf = \<open>a \<notin> dom f\<close> note a'nA = \<open>a' \<notin> A\<close>  | 
|
478  | 
note domf = \<open>insert a' A = dom f\<close> note fg = \<open>f \<subseteq>\<^sub>m g\<close>  | 
|
| 48028 | 479  | 
|
480  | 
from domf obtain b where b: "f a' = Some b" by auto  | 
|
481  | 
let ?f' = "f(a' := None)"  | 
|
482  | 
have "upd a d (?fr (insert a' A)) = upd a d (upd a' (map_default d g a') (?fr A))"  | 
|
483  | 
by(subst gwf.fold_insert[OF fin a'nA]) rule  | 
|
484  | 
also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)  | 
|
485  | 
hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)  | 
|
486  | 
also from anf domf have "a \<noteq> a'" by auto note upd_commute[OF this]  | 
|
487  | 
also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)  | 
|
| 60500 | 488  | 
note A also note IH[OF A \<open>a \<notin> dom ?f'\<close> \<open>?f' \<subseteq>\<^sub>m g\<close>]  | 
| 48028 | 489  | 
also have "upd a' (map_default d f a') (?fr (dom (f(a' := None)))) = ?fr (dom f)"  | 
490  | 
unfolding domf[symmetric] gwf.fold_insert[OF fin a'nA] ga' unfolding A ..  | 
|
491  | 
also have "insert a' (dom ?f') = dom f" using domf by auto  | 
|
492  | 
finally show ?case .  | 
|
493  | 
qed  | 
|
494  | 
qed  | 
|
495  | 
||
496  | 
lemma map_default_update_twice:  | 
|
497  | 
assumes fin: "finite (dom f)"  | 
|
498  | 
and anf: "a \<notin> dom f"  | 
|
499  | 
and fg: "f \<subseteq>\<^sub>m g"  | 
|
500  | 
shows "upd a d'' (upd a d' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))) =  | 
|
501  | 
upd a d'' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))"  | 
|
502  | 
proof -  | 
|
503  | 
let ?upd = "\<lambda>a. upd a (map_default d g a)"  | 
|
504  | 
let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"  | 
|
505  | 
interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)  | 
|
506  | 
||
507  | 
from fin anf fg show ?thesis  | 
|
508  | 
proof(induct "dom f" arbitrary: f)  | 
|
509  | 
case empty  | 
|
| 60500 | 510  | 
    from \<open>{} = dom f\<close> have "f = empty" by(auto simp add: dom_def)
 | 
| 48028 | 511  | 
thus ?case by(auto simp add: finfun_const_def finfun_update_def upd_upd_twice)  | 
512  | 
next  | 
|
513  | 
case (insert a' A)  | 
|
| 60500 | 514  | 
note IH = \<open>\<And>f. \<lbrakk>A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g\<rbrakk> \<Longrightarrow> upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (?fr (dom f))\<close>  | 
515  | 
note fin = \<open>finite A\<close> note anf = \<open>a \<notin> dom f\<close> note a'nA = \<open>a' \<notin> A\<close>  | 
|
516  | 
note domf = \<open>insert a' A = dom f\<close> note fg = \<open>f \<subseteq>\<^sub>m g\<close>  | 
|
| 48028 | 517  | 
|
518  | 
from domf obtain b where b: "f a' = Some b" by auto  | 
|
519  | 
let ?f' = "f(a' := None)"  | 
|
520  | 
let ?b' = "case f a' of None \<Rightarrow> d | Some b \<Rightarrow> b"  | 
|
521  | 
from domf have "upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (upd a d' (?fr (insert a' A)))" by simp  | 
|
522  | 
also note gwf.fold_insert[OF fin a'nA]  | 
|
523  | 
also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)  | 
|
524  | 
hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)  | 
|
525  | 
also from anf domf have ana': "a \<noteq> a'" by auto note upd_commute[OF this]  | 
|
526  | 
also note upd_commute[OF ana']  | 
|
527  | 
also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)  | 
|
| 60500 | 528  | 
note A also note IH[OF A \<open>a \<notin> dom ?f'\<close> \<open>?f' \<subseteq>\<^sub>m g\<close>]  | 
| 48028 | 529  | 
also note upd_commute[OF ana'[symmetric]] also note ga'[symmetric] also note A[symmetric]  | 
530  | 
also note gwf.fold_insert[symmetric, OF fin a'nA] also note domf  | 
|
531  | 
finally show ?case .  | 
|
532  | 
qed  | 
|
533  | 
qed  | 
|
534  | 
||
535  | 
lemma map_default_eq_id [simp]: "map_default d ((\<lambda>a. Some (f a)) |` {a. f a \<noteq> d}) = f"
 | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
536  | 
by(auto simp add: map_default_def restrict_map_def)  | 
| 48028 | 537  | 
|
538  | 
lemma finite_rec_cong1:  | 
|
539  | 
assumes f: "comp_fun_commute f" and g: "comp_fun_commute g"  | 
|
540  | 
and fin: "finite A"  | 
|
541  | 
and eq: "\<And>a. a \<in> A \<Longrightarrow> f a = g a"  | 
|
542  | 
shows "Finite_Set.fold f z A = Finite_Set.fold g z A"  | 
|
543  | 
proof -  | 
|
544  | 
interpret f: comp_fun_commute f by(rule f)  | 
|
545  | 
interpret g: comp_fun_commute g by(rule g)  | 
|
546  | 
  { fix B
 | 
|
547  | 
assume BsubA: "B \<subseteq> A"  | 
|
548  | 
with fin have "finite B" by(blast intro: finite_subset)  | 
|
549  | 
hence "B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B"  | 
|
550  | 
proof(induct)  | 
|
551  | 
case empty thus ?case by simp  | 
|
552  | 
next  | 
|
553  | 
case (insert a B)  | 
|
| 60500 | 554  | 
note finB = \<open>finite B\<close> note anB = \<open>a \<notin> B\<close> note sub = \<open>insert a B \<subseteq> A\<close>  | 
555  | 
note IH = \<open>B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B\<close>  | 
|
| 48028 | 556  | 
from sub anB have BpsubA: "B \<subset> A" and BsubA: "B \<subseteq> A" and aA: "a \<in> A" by auto  | 
557  | 
from IH[OF BsubA] eq[OF aA] finB anB  | 
|
558  | 
show ?case by(auto)  | 
|
559  | 
qed  | 
|
560  | 
with BsubA have "Finite_Set.fold f z B = Finite_Set.fold g z B" by blast }  | 
|
561  | 
thus ?thesis by blast  | 
|
562  | 
qed  | 
|
563  | 
||
564  | 
lemma finfun_rec_upd [simp]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
565  | 
"finfun_rec cnst upd (f(a' $:= b')) = upd a' b' (finfun_rec cnst upd f)"  | 
| 48030 | 566  | 
including finfun  | 
| 48028 | 567  | 
proof -  | 
568  | 
obtain b where b: "b = finfun_default f" by auto  | 
|
569  | 
let ?the = "\<lambda>f g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g"  | 
|
570  | 
obtain g where g: "g = The (?the f)" by blast  | 
|
571  | 
obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by (cases f)  | 
|
572  | 
  from f y b have bfin: "finite {a. y a \<noteq> b}" by(simp add: finfun_default_def finite_finfun_default_aux)
 | 
|
573  | 
||
574  | 
  let ?g = "(\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}"
 | 
|
575  | 
from bfin have fing: "finite (dom ?g)" by auto  | 
|
576  | 
have bran: "b \<notin> ran ?g" by(auto simp add: ran_def restrict_map_def)  | 
|
577  | 
have yg: "y = map_default b ?g" by simp  | 
|
578  | 
have gg: "g = ?g" unfolding g  | 
|
579  | 
proof(rule the_equality)  | 
|
580  | 
from f y bfin show "?the f ?g"  | 
|
581  | 
by(auto)(simp add: restrict_map_def ran_def split: split_if_asm)  | 
|
582  | 
next  | 
|
583  | 
fix g'  | 
|
584  | 
assume "?the f g'"  | 
|
585  | 
hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"  | 
|
586  | 
and eq: "Abs_finfun (map_default b ?g) = Abs_finfun (map_default b g')" using f yg by auto  | 
|
587  | 
from fin' fing have "map_default b ?g \<in> finfun" "map_default b g' \<in> finfun" by(blast intro: map_default_in_finfun)+  | 
|
588  | 
with eq have "map_default b ?g = map_default b g'" by simp  | 
|
589  | 
with fing bran fin' ran' show "g' = ?g" by(rule map_default_inject[OF disjI2[OF refl], THEN sym])  | 
|
590  | 
qed  | 
|
591  | 
||
592  | 
show ?thesis  | 
|
593  | 
proof(cases "b' = b")  | 
|
594  | 
case True  | 
|
595  | 
note b'b = True  | 
|
596  | 
||
597  | 
    let ?g' = "(\<lambda>a. Some ((y(a' := b)) a)) |` {a. (y(a' := b)) a \<noteq> b}"
 | 
|
598  | 
from bfin b'b have fing': "finite (dom ?g')"  | 
|
599  | 
by(auto simp add: Collect_conj_eq Collect_imp_eq intro: finite_subset)  | 
|
600  | 
have brang': "b \<notin> ran ?g'" by(auto simp add: ran_def restrict_map_def)  | 
|
601  | 
||
602  | 
let ?b' = "\<lambda>a. case ?g' a of None \<Rightarrow> b | Some b \<Rightarrow> b"  | 
|
603  | 
let ?b = "map_default b ?g"  | 
|
604  | 
from upd_left_comm upd_left_comm fing'  | 
|
605  | 
have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g') = Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')"  | 
|
606  | 
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b b map_default_def)  | 
|
607  | 
also interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)  | 
|
608  | 
have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g') = upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))"  | 
|
609  | 
proof(cases "y a' = b")  | 
|
610  | 
case True  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
611  | 
with b'b have g': "?g' = ?g" by(auto simp add: restrict_map_def)  | 
| 48028 | 612  | 
from True have a'ndomg: "a' \<notin> dom ?g" by auto  | 
613  | 
from f b'b b show ?thesis unfolding g'  | 
|
614  | 
by(subst map_default_update_const[OF fing a'ndomg map_le_refl, symmetric]) simp  | 
|
615  | 
next  | 
|
616  | 
case False  | 
|
617  | 
hence domg: "dom ?g = insert a' (dom ?g')" by auto  | 
|
618  | 
from False b'b have a'ndomg': "a' \<notin> dom ?g'" by auto  | 
|
619  | 
have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g')) =  | 
|
620  | 
upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'))"  | 
|
621  | 
using fing' a'ndomg' unfolding b'b by(rule gwf.fold_insert)  | 
|
622  | 
hence "upd a' b (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g'))) =  | 
|
623  | 
upd a' b (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')))" by simp  | 
|
624  | 
also from b'b have g'leg: "?g' \<subseteq>\<^sub>m ?g" by(auto simp add: restrict_map_def map_le_def)  | 
|
625  | 
note map_default_update_twice[OF fing' a'ndomg' this, of b "?b a'" b]  | 
|
626  | 
also note map_default_update_const[OF fing' a'ndomg' g'leg, of b]  | 
|
627  | 
finally show ?thesis unfolding b'b domg[unfolded b'b] by(rule sym)  | 
|
628  | 
qed  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
629  | 
also have "The (?the (f(a' $:= b'))) = ?g'"  | 
| 48028 | 630  | 
proof(rule the_equality)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
631  | 
from f y b b'b brang' fing' show "?the (f(a' $:= b')) ?g'"  | 
| 48028 | 632  | 
by(auto simp del: fun_upd_apply simp add: finfun_update_def)  | 
633  | 
next  | 
|
634  | 
fix g'  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
635  | 
assume "?the (f(a' $:= b')) g'"  | 
| 48028 | 636  | 
hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
637  | 
and eq: "f(a' $:= b') = Abs_finfun (map_default b g')"  | 
| 48028 | 638  | 
by(auto simp del: fun_upd_apply)  | 
639  | 
from fin' fing' have "map_default b g' \<in> finfun" "map_default b ?g' \<in> finfun"  | 
|
640  | 
by(blast intro: map_default_in_finfun)+  | 
|
641  | 
with eq f b'b b have "map_default b ?g' = map_default b g'"  | 
|
642  | 
by(simp del: fun_upd_apply add: finfun_update_def)  | 
|
643  | 
with fing' brang' fin' ran' show "g' = ?g'"  | 
|
644  | 
by(rule map_default_inject[OF disjI2[OF refl], THEN sym])  | 
|
645  | 
qed  | 
|
646  | 
ultimately show ?thesis unfolding finfun_rec_def Let_def b gg[unfolded g b] using bfin b'b b  | 
|
647  | 
by(simp only: finfun_default_update_const map_default_def)  | 
|
648  | 
next  | 
|
649  | 
case False  | 
|
650  | 
note b'b = this  | 
|
651  | 
let ?g' = "?g(a' \<mapsto> b')"  | 
|
652  | 
let ?b' = "map_default b ?g'"  | 
|
653  | 
let ?b = "map_default b ?g"  | 
|
654  | 
from fing have fing': "finite (dom ?g')" by auto  | 
|
655  | 
from bran b'b have bnrang': "b \<notin> ran ?g'" by(auto simp add: ran_def)  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
656  | 
have ffmg': "map_default b ?g' = y(a' := b')" by(auto simp add: map_default_def restrict_map_def)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
657  | 
with f y have f_Abs: "f(a' $:= b') = Abs_finfun (map_default b ?g')" by(auto simp add: finfun_update_def)  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
658  | 
have g': "The (?the (f(a' $:= b'))) = ?g'"  | 
| 48028 | 659  | 
proof (rule the_equality)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
660  | 
from fing' bnrang' f_Abs show "?the (f(a' $:= b')) ?g'"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
661  | 
by(auto simp add: finfun_update_def restrict_map_def)  | 
| 48028 | 662  | 
next  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
663  | 
fix g' assume "?the (f(a' $:= b')) g'"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
664  | 
hence f': "f(a' $:= b') = Abs_finfun (map_default b g')"  | 
| 48028 | 665  | 
and fin': "finite (dom g')" and brang': "b \<notin> ran g'" by auto  | 
666  | 
from fing' fin' have "map_default b ?g' \<in> finfun" "map_default b g' \<in> finfun"  | 
|
667  | 
by(auto intro: map_default_in_finfun)  | 
|
668  | 
with f' f_Abs have "map_default b g' = map_default b ?g'" by simp  | 
|
669  | 
with fin' brang' fing' bnrang' show "g' = ?g'"  | 
|
670  | 
by(rule map_default_inject[OF disjI2[OF refl]])  | 
|
671  | 
qed  | 
|
672  | 
    have dom: "dom (((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b})(a' \<mapsto> b')) = insert a' (dom ((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}))"
 | 
|
673  | 
by auto  | 
|
674  | 
show ?thesis  | 
|
675  | 
proof(cases "y a' = b")  | 
|
676  | 
case True  | 
|
677  | 
hence a'ndomg: "a' \<notin> dom ?g" by auto  | 
|
678  | 
from f y b'b True have yff: "y = map_default b (?g' |` dom ?g)"  | 
|
679  | 
by(auto simp add: restrict_map_def map_default_def intro!: ext)  | 
|
680  | 
hence f': "f = Abs_finfun (map_default b (?g' |` dom ?g))" using f by simp  | 
|
681  | 
interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)  | 
|
682  | 
from upd_left_comm upd_left_comm fing  | 
|
683  | 
have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g) = Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"  | 
|
684  | 
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b True map_default_def)  | 
|
685  | 
thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric]  | 
|
686  | 
unfolding g' g[symmetric] gg g'wf.fold_insert[OF fing a'ndomg, of "cnst b", folded dom]  | 
|
687  | 
by -(rule arg_cong2[where f="upd a'"], simp_all add: map_default_def)  | 
|
688  | 
next  | 
|
689  | 
case False  | 
|
690  | 
hence "insert a' (dom ?g) = dom ?g" by auto  | 
|
691  | 
      moreover {
 | 
|
692  | 
let ?g'' = "?g(a' := None)"  | 
|
693  | 
let ?b'' = "map_default b ?g''"  | 
|
694  | 
from False have domg: "dom ?g = insert a' (dom ?g'')" by auto  | 
|
695  | 
from False have a'ndomg'': "a' \<notin> dom ?g''" by auto  | 
|
696  | 
have fing'': "finite (dom ?g'')" by(rule finite_subset[OF _ fing]) auto  | 
|
697  | 
have bnrang'': "b \<notin> ran ?g''" by(auto simp add: ran_def restrict_map_def)  | 
|
698  | 
interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)  | 
|
699  | 
interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)  | 
|
700  | 
have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g''))) =  | 
|
701  | 
upd a' b' (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')))"  | 
|
702  | 
unfolding gwf.fold_insert[OF fing'' a'ndomg''] f ..  | 
|
703  | 
also have g''leg: "?g |` dom ?g'' \<subseteq>\<^sub>m ?g" by(auto simp add: map_le_def)  | 
|
704  | 
have "dom (?g |` dom ?g'') = dom ?g''" by auto  | 
|
705  | 
note map_default_update_twice[where d=b and f = "?g |` dom ?g''" and a=a' and d'="?b a'" and d''=b' and g="?g",  | 
|
706  | 
unfolded this, OF fing'' a'ndomg'' g''leg]  | 
|
707  | 
also have b': "b' = ?b' a'" by(auto simp add: map_default_def)  | 
|
708  | 
from upd_left_comm upd_left_comm fing''  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
709  | 
have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'') =  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
710  | 
Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g'')"  | 
| 48028 | 711  | 
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b map_default_def)  | 
712  | 
with b' have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')) =  | 
|
713  | 
upd a' (?b' a') (Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g''))" by simp  | 
|
714  | 
also note g'wf.fold_insert[OF fing'' a'ndomg'', symmetric]  | 
|
715  | 
finally have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g)) =  | 
|
716  | 
Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"  | 
|
717  | 
unfolding domg . }  | 
|
718  | 
ultimately have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (insert a' (dom ?g)) =  | 
|
719  | 
upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))" by simp  | 
|
720  | 
thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric] g[symmetric] g' dom[symmetric]  | 
|
721  | 
using b'b gg by(simp add: map_default_insert)  | 
|
722  | 
qed  | 
|
723  | 
qed  | 
|
724  | 
qed  | 
|
725  | 
||
726  | 
end  | 
|
727  | 
||
728  | 
locale finfun_rec_wf = finfun_rec_wf_aux +  | 
|
729  | 
assumes const_update_all:  | 
|
730  | 
"finite (UNIV :: 'a set) \<Longrightarrow> Finite_Set.fold (\<lambda>a. upd a b') (cnst b) (UNIV :: 'a set) = cnst b'"  | 
|
731  | 
begin  | 
|
732  | 
||
| 48030 | 733  | 
lemma finfun_rec_const [simp]: includes finfun shows  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
734  | 
"finfun_rec cnst upd (K$ c) = cnst c"  | 
| 48028 | 735  | 
proof(cases "finite (UNIV :: 'a set)")  | 
736  | 
case False  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
737  | 
hence "finfun_default ((K$ c) :: 'a \<Rightarrow>f 'b) = c" by(simp add: finfun_default_const)  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
738  | 
moreover have "(THE g :: 'a \<rightharpoonup> 'b. (K$ c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g) = empty"  | 
| 48028 | 739  | 
proof (rule the_equality)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
740  | 
show "(K$ c) = Abs_finfun (map_default c empty) \<and> finite (dom empty) \<and> c \<notin> ran empty"  | 
| 48028 | 741  | 
by(auto simp add: finfun_const_def)  | 
742  | 
next  | 
|
743  | 
fix g :: "'a \<rightharpoonup> 'b"  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
744  | 
assume "(K$ c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
745  | 
hence g: "(K$ c) = Abs_finfun (map_default c g)" and fin: "finite (dom g)" and ran: "c \<notin> ran g" by blast+  | 
| 48028 | 746  | 
from g map_default_in_finfun[OF fin, of c] have "map_default c g = (\<lambda>a. c)"  | 
747  | 
by(simp add: finfun_const_def)  | 
|
748  | 
moreover have "map_default c empty = (\<lambda>a. c)" by simp  | 
|
749  | 
ultimately show "g = empty" by-(rule map_default_inject[OF disjI2[OF refl] fin ran], auto)  | 
|
750  | 
qed  | 
|
751  | 
ultimately show ?thesis by(simp add: finfun_rec_def)  | 
|
752  | 
next  | 
|
753  | 
case True  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
754  | 
hence default: "finfun_default ((K$ c) :: 'a \<Rightarrow>f 'b) = undefined" by(simp add: finfun_default_const)  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
755  | 
let ?the = "\<lambda>g :: 'a \<rightharpoonup> 'b. (K$ c) = Abs_finfun (map_default undefined g) \<and> finite (dom g) \<and> undefined \<notin> ran g"  | 
| 48028 | 756  | 
show ?thesis  | 
757  | 
proof(cases "c = undefined")  | 
|
758  | 
case True  | 
|
759  | 
have the: "The ?the = empty"  | 
|
760  | 
proof (rule the_equality)  | 
|
761  | 
from True show "?the empty" by(auto simp add: finfun_const_def)  | 
|
762  | 
next  | 
|
763  | 
fix g'  | 
|
764  | 
assume "?the g'"  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
765  | 
hence fg: "(K$ c) = Abs_finfun (map_default undefined g')"  | 
| 48028 | 766  | 
and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all  | 
767  | 
from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)  | 
|
768  | 
with fg have "map_default undefined g' = (\<lambda>a. c)"  | 
|
| 48030 | 769  | 
by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1, symmetric])  | 
| 48028 | 770  | 
with True show "g' = empty"  | 
771  | 
by -(rule map_default_inject(2)[OF _ fin g], auto)  | 
|
772  | 
qed  | 
|
| 60500 | 773  | 
show ?thesis unfolding finfun_rec_def using \<open>finite UNIV\<close> True  | 
| 48028 | 774  | 
unfolding Let_def the default by(simp)  | 
775  | 
next  | 
|
776  | 
case False  | 
|
777  | 
have the: "The ?the = (\<lambda>a :: 'a. Some c)"  | 
|
778  | 
proof (rule the_equality)  | 
|
779  | 
from False True show "?the (\<lambda>a :: 'a. Some c)"  | 
|
780  | 
by(auto simp add: map_default_def [abs_def] finfun_const_def dom_def ran_def)  | 
|
781  | 
next  | 
|
782  | 
fix g' :: "'a \<rightharpoonup> 'b"  | 
|
783  | 
assume "?the g'"  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
784  | 
hence fg: "(K$ c) = Abs_finfun (map_default undefined g')"  | 
| 48028 | 785  | 
and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all  | 
786  | 
from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)  | 
|
787  | 
with fg have "map_default undefined g' = (\<lambda>a. c)"  | 
|
788  | 
by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])  | 
|
789  | 
with True False show "g' = (\<lambda>a::'a. Some c)"  | 
|
790  | 
by - (rule map_default_inject(2)[OF _ fin g],  | 
|
791  | 
auto simp add: dom_def ran_def map_default_def [abs_def])  | 
|
792  | 
qed  | 
|
793  | 
show ?thesis unfolding finfun_rec_def using True False  | 
|
794  | 
unfolding Let_def the default by(simp add: dom_def map_default_def const_update_all)  | 
|
795  | 
qed  | 
|
796  | 
qed  | 
|
797  | 
||
798  | 
end  | 
|
799  | 
||
| 60500 | 800  | 
subsection \<open>Weak induction rule and case analysis for FinFuns\<close>  | 
| 48028 | 801  | 
|
802  | 
lemma finfun_weak_induct [consumes 0, case_names const update]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
803  | 
assumes const: "\<And>b. P (K$ b)"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
804  | 
and update: "\<And>f a b. P f \<Longrightarrow> P (f(a $:= b))"  | 
| 48028 | 805  | 
shows "P x"  | 
| 48030 | 806  | 
including finfun  | 
| 48028 | 807  | 
proof(induct x rule: Abs_finfun_induct)  | 
808  | 
case (Abs_finfun y)  | 
|
809  | 
  then obtain b where "finite {a. y a \<noteq> b}" unfolding finfun_def by blast
 | 
|
| 60500 | 810  | 
thus ?case using \<open>y \<in> finfun\<close>  | 
| 48028 | 811  | 
  proof(induct "{a. y a \<noteq> b}" arbitrary: y rule: finite_induct)
 | 
812  | 
case empty  | 
|
813  | 
hence "\<And>a. y a = b" by blast  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
814  | 
hence "y = (\<lambda>a. b)" by(auto)  | 
| 48028 | 815  | 
hence "Abs_finfun y = finfun_const b" unfolding finfun_const_def by simp  | 
816  | 
thus ?case by(simp add: const)  | 
|
817  | 
next  | 
|
818  | 
case (insert a A)  | 
|
| 60500 | 819  | 
    note IH = \<open>\<And>y. \<lbrakk> A = {a. y a \<noteq> b}; y \<in> finfun  \<rbrakk> \<Longrightarrow> P (Abs_finfun y)\<close>
 | 
820  | 
note y = \<open>y \<in> finfun\<close>  | 
|
821  | 
    with \<open>insert a A = {a. y a \<noteq> b}\<close> \<open>a \<notin> A\<close>
 | 
|
| 48028 | 822  | 
    have "A = {a'. (y(a := b)) a' \<noteq> b}" "y(a := b) \<in> finfun" by auto
 | 
823  | 
from IH[OF this] have "P (finfun_update (Abs_finfun (y(a := b))) a (y a))" by(rule update)  | 
|
824  | 
thus ?case using y unfolding finfun_update_def by simp  | 
|
825  | 
qed  | 
|
826  | 
qed  | 
|
827  | 
||
828  | 
lemma finfun_exhaust_disj: "(\<exists>b. x = finfun_const b) \<or> (\<exists>f a b. x = finfun_update f a b)"  | 
|
829  | 
by(induct x rule: finfun_weak_induct) blast+  | 
|
830  | 
||
831  | 
lemma finfun_exhaust:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
832  | 
obtains b where "x = (K$ b)"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
833  | 
| f a b where "x = f(a $:= b)"  | 
| 48028 | 834  | 
by(atomize_elim)(rule finfun_exhaust_disj)  | 
835  | 
||
836  | 
lemma finfun_rec_unique:  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
837  | 
fixes f :: "'a \<Rightarrow>f 'b \<Rightarrow> 'c"  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
838  | 
assumes c: "\<And>c. f (K$ c) = cnst c"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
839  | 
and u: "\<And>g a b. f (g(a $:= b)) = upd g a b (f g)"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
840  | 
and c': "\<And>c. f' (K$ c) = cnst c"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
841  | 
and u': "\<And>g a b. f' (g(a $:= b)) = upd g a b (f' g)"  | 
| 48028 | 842  | 
shows "f = f'"  | 
843  | 
proof  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
844  | 
fix g :: "'a \<Rightarrow>f 'b"  | 
| 48028 | 845  | 
show "f g = f' g"  | 
846  | 
by(induct g rule: finfun_weak_induct)(auto simp add: c u c' u')  | 
|
847  | 
qed  | 
|
848  | 
||
849  | 
||
| 60500 | 850  | 
subsection \<open>Function application\<close>  | 
| 48028 | 851  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
852  | 
notation finfun_apply (infixl "$" 999)  | 
| 48028 | 853  | 
|
854  | 
interpretation finfun_apply_aux: finfun_rec_wf_aux "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"  | 
|
855  | 
by(unfold_locales) auto  | 
|
856  | 
||
857  | 
interpretation finfun_apply: finfun_rec_wf "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"  | 
|
858  | 
proof(unfold_locales)  | 
|
859  | 
fix b' b :: 'a  | 
|
860  | 
assume fin: "finite (UNIV :: 'b set)"  | 
|
861  | 
  { fix A :: "'b set"
 | 
|
862  | 
interpret comp_fun_commute "\<lambda>a'. If (a = a') b'" by(rule finfun_apply_aux.upd_left_comm)  | 
|
863  | 
from fin have "finite A" by(auto intro: finite_subset)  | 
|
864  | 
hence "Finite_Set.fold (\<lambda>a'. If (a = a') b') b A = (if a \<in> A then b' else b)"  | 
|
865  | 
by induct auto }  | 
|
866  | 
from this[of UNIV] show "Finite_Set.fold (\<lambda>a'. If (a = a') b') b UNIV = b'" by simp  | 
|
867  | 
qed  | 
|
868  | 
||
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
869  | 
lemma finfun_apply_def: "op $ = (\<lambda>f a. finfun_rec (\<lambda>b. b) (\<lambda>a' b c. if (a = a') then b else c) f)"  | 
| 48029 | 870  | 
proof(rule finfun_rec_unique)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
871  | 
fix c show "op $ (K$ c) = (\<lambda>a. c)" by(simp add: finfun_const.rep_eq)  | 
| 48029 | 872  | 
next  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
873  | 
fix g a b show "op $ g(a $:= b) = (\<lambda>c. if c = a then b else g $ c)"  | 
| 48029 | 874  | 
by(auto simp add: finfun_update_def fun_upd_finfun Abs_finfun_inverse finfun_apply)  | 
875  | 
qed auto  | 
|
| 48028 | 876  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
877  | 
lemma finfun_upd_apply: "f(a $:= b) $ a' = (if a = a' then b else f $ a')"  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
878  | 
and finfun_upd_apply_code [code]: "(finfun_update_code f a b) $ a' = (if a = a' then b else f $ a')"  | 
| 48028 | 879  | 
by(simp_all add: finfun_apply_def)  | 
880  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
881  | 
lemma finfun_const_apply [simp, code]: "(K$ b) $ a = b"  | 
| 48029 | 882  | 
by(simp add: finfun_apply_def)  | 
883  | 
||
| 48028 | 884  | 
lemma finfun_upd_apply_same [simp]:  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
885  | 
"f(a $:= b) $ a = b"  | 
| 48028 | 886  | 
by(simp add: finfun_upd_apply)  | 
887  | 
||
888  | 
lemma finfun_upd_apply_other [simp]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
889  | 
"a \<noteq> a' \<Longrightarrow> f(a $:= b) $ a' = f $ a'"  | 
| 48028 | 890  | 
by(simp add: finfun_upd_apply)  | 
891  | 
||
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
892  | 
lemma finfun_ext: "(\<And>a. f $ a = g $ a) \<Longrightarrow> f = g"  | 
| 58787 | 893  | 
by(auto simp add: finfun_apply_inject[symmetric])  | 
| 48028 | 894  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
895  | 
lemma expand_finfun_eq: "(f = g) = (op $ f = op $ g)"  | 
| 48028 | 896  | 
by(auto intro: finfun_ext)  | 
897  | 
||
| 48100 | 898  | 
lemma finfun_upd_triv [simp]: "f(x $:= f $ x) = f"  | 
899  | 
by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)  | 
|
900  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
901  | 
lemma finfun_const_inject [simp]: "(K$ b) = (K$ b') \<equiv> b = b'"  | 
| 48028 | 902  | 
by(simp add: expand_finfun_eq fun_eq_iff)  | 
903  | 
||
904  | 
lemma finfun_const_eq_update:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
905  | 
"((K$ b) = f(a $:= b')) = (b = b' \<and> (\<forall>a'. a \<noteq> a' \<longrightarrow> f $ a' = b))"  | 
| 48028 | 906  | 
by(auto simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)  | 
907  | 
||
| 60500 | 908  | 
subsection \<open>Function composition\<close>  | 
| 48028 | 909  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
910  | 
definition finfun_comp :: "('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow>f 'a \<Rightarrow> 'c \<Rightarrow>f 'b" (infixr "o$" 55)
 | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
911  | 
where [code del]: "g o$ f = finfun_rec (\<lambda>b. (K$ g b)) (\<lambda>a b c. c(a $:= g b)) f"  | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
912  | 
|
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
913  | 
notation (xsymbols) finfun_comp (infixr "\<circ>$" 55)  | 
| 48028 | 914  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
915  | 
interpretation finfun_comp_aux: finfun_rec_wf_aux "(\<lambda>b. (K$ g b))" "(\<lambda>a b c. c(a $:= g b))"  | 
| 48028 | 916  | 
by(unfold_locales)(auto simp add: finfun_upd_apply intro: finfun_ext)  | 
917  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
918  | 
interpretation finfun_comp: finfun_rec_wf "(\<lambda>b. (K$ g b))" "(\<lambda>a b c. c(a $:= g b))"  | 
| 48028 | 919  | 
proof  | 
920  | 
fix b' b :: 'a  | 
|
921  | 
assume fin: "finite (UNIV :: 'c set)"  | 
|
922  | 
  { fix A :: "'c set"
 | 
|
923  | 
from fin have "finite A" by(auto intro: finite_subset)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
924  | 
hence "Finite_Set.fold (\<lambda>(a :: 'c) c. c(a $:= g b')) (K$ g b) A =  | 
| 48028 | 925  | 
Abs_finfun (\<lambda>a. if a \<in> A then g b' else g b)"  | 
926  | 
by induct (simp_all add: finfun_const_def, auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
927  | 
from this[of UNIV] show "Finite_Set.fold (\<lambda>(a :: 'c) c. c(a $:= g b')) (K$ g b) UNIV = (K$ g b')"  | 
| 48028 | 928  | 
by(simp add: finfun_const_def)  | 
929  | 
qed  | 
|
930  | 
||
931  | 
lemma finfun_comp_const [simp, code]:  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
932  | 
"g \<circ>$ (K$ c) = (K$ g c)"  | 
| 48028 | 933  | 
by(simp add: finfun_comp_def)  | 
934  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
935  | 
lemma finfun_comp_update [simp]: "g \<circ>$ (f(a $:= b)) = (g \<circ>$ f)(a $:= g b)"  | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
936  | 
and finfun_comp_update_code [code]:  | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
937  | 
"g \<circ>$ (finfun_update_code f a b) = finfun_update_code (g \<circ>$ f) a (g b)"  | 
| 48028 | 938  | 
by(simp_all add: finfun_comp_def)  | 
939  | 
||
940  | 
lemma finfun_comp_apply [simp]:  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
941  | 
"op $ (g \<circ>$ f) = g \<circ> op $ f"  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
942  | 
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_upd_apply)  | 
| 48028 | 943  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
944  | 
lemma finfun_comp_comp_collapse [simp]: "f \<circ>$ g \<circ>$ h = (f \<circ> g) \<circ>$ h"  | 
| 48028 | 945  | 
by(induct h rule: finfun_weak_induct) simp_all  | 
946  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
947  | 
lemma finfun_comp_const1 [simp]: "(\<lambda>x. c) \<circ>$ f = (K$ c)"  | 
| 48028 | 948  | 
by(induct f rule: finfun_weak_induct)(auto intro: finfun_ext simp add: finfun_upd_apply)  | 
949  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
950  | 
lemma finfun_comp_id1 [simp]: "(\<lambda>x. x) \<circ>$ f = f" "id \<circ>$ f = f"  | 
| 48028 | 951  | 
by(induct f rule: finfun_weak_induct) auto  | 
952  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
953  | 
lemma finfun_comp_conv_comp: "g \<circ>$ f = Abs_finfun (g \<circ> op $ f)"  | 
| 48030 | 954  | 
including finfun  | 
| 48028 | 955  | 
proof -  | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
956  | 
have "(\<lambda>f. g \<circ>$ f) = (\<lambda>f. Abs_finfun (g \<circ> op $ f))"  | 
| 48028 | 957  | 
proof(rule finfun_rec_unique)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
958  | 
    { fix c show "Abs_finfun (g \<circ> op $ (K$ c)) = (K$ g c)"
 | 
| 48028 | 959  | 
by(simp add: finfun_comp_def o_def)(simp add: finfun_const_def) }  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
960  | 
    { fix g' a b show "Abs_finfun (g \<circ> op $ g'(a $:= b)) = (Abs_finfun (g \<circ> op $ g'))(a $:= g b)"
 | 
| 48028 | 961  | 
proof -  | 
962  | 
obtain y where y: "y \<in> finfun" and g': "g' = Abs_finfun y" by(cases g')  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52916 
diff
changeset
 | 
963  | 
moreover from g' have "(g \<circ> op $ g') \<in> finfun" by(simp add: finfun_left_compose)  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
964  | 
moreover have "g \<circ> y(a := b) = (g \<circ> y)(a := g b)" by(auto)  | 
| 48029 | 965  | 
ultimately show ?thesis by(simp add: finfun_comp_def finfun_update_def)  | 
| 48028 | 966  | 
qed }  | 
967  | 
qed auto  | 
|
968  | 
thus ?thesis by(auto simp add: fun_eq_iff)  | 
|
969  | 
qed  | 
|
970  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
971  | 
definition finfun_comp2 :: "'b \<Rightarrow>f 'c \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>f 'c" (infixr "$o" 55)
 | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
972  | 
where [code del]: "g $o f = Abs_finfun (op $ g \<circ> f)"  | 
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
973  | 
|
| 
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
974  | 
notation (xsymbol) finfun_comp2 (infixr "$\<circ>" 55)  | 
| 48028 | 975  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
976  | 
lemma finfun_comp2_const [code, simp]: "finfun_comp2 (K$ c) f = (K$ c)"  | 
| 48030 | 977  | 
including finfun  | 
| 48028 | 978  | 
by(simp add: finfun_comp2_def finfun_const_def comp_def)  | 
979  | 
||
980  | 
lemma finfun_comp2_update:  | 
|
| 48030 | 981  | 
includes finfun  | 
| 48028 | 982  | 
assumes inj: "inj f"  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
983  | 
shows "finfun_comp2 (g(b $:= c)) f = (if b \<in> range f then (finfun_comp2 g f)(inv f b $:= c) else finfun_comp2 g f)"  | 
| 48028 | 984  | 
proof(cases "b \<in> range f")  | 
985  | 
case True  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
986  | 
from inj have "\<And>x. (op $ g)(f x := c) \<circ> f = (op $ g \<circ> f)(x := c)" by(auto intro!: ext dest: injD)  | 
| 48028 | 987  | 
with inj True show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def finfun_right_compose)  | 
988  | 
next  | 
|
989  | 
case False  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
990  | 
hence "(op $ g)(b := c) \<circ> f = op $ g \<circ> f" by(auto simp add: fun_eq_iff)  | 
| 48028 | 991  | 
with False show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def)  | 
992  | 
qed  | 
|
993  | 
||
| 60500 | 994  | 
subsection \<open>Universal quantification\<close>  | 
| 48028 | 995  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
996  | 
definition finfun_All_except :: "'a list \<Rightarrow> 'a \<Rightarrow>f bool \<Rightarrow> bool"  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
997  | 
where [code del]: "finfun_All_except A P \<equiv> \<forall>a. a \<in> set A \<or> P $ a"  | 
| 48028 | 998  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
999  | 
lemma finfun_All_except_const: "finfun_All_except A (K$ b) \<longleftrightarrow> b \<or> set A = UNIV"  | 
| 48028 | 1000  | 
by(auto simp add: finfun_All_except_def)  | 
1001  | 
||
1002  | 
lemma finfun_All_except_const_finfun_UNIV_code [code]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1003  | 
"finfun_All_except A (K$ b) = (b \<or> is_list_UNIV A)"  | 
| 48028 | 1004  | 
by(simp add: finfun_All_except_const is_list_UNIV_iff)  | 
1005  | 
||
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1006  | 
lemma finfun_All_except_update:  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1007  | 
"finfun_All_except A f(a $:= b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"  | 
| 48028 | 1008  | 
by(fastforce simp add: finfun_All_except_def finfun_upd_apply)  | 
1009  | 
||
1010  | 
lemma finfun_All_except_update_code [code]:  | 
|
1011  | 
fixes a :: "'a :: card_UNIV"  | 
|
1012  | 
shows "finfun_All_except A (finfun_update_code f a b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"  | 
|
1013  | 
by(simp add: finfun_All_except_update)  | 
|
1014  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1015  | 
definition finfun_All :: "'a \<Rightarrow>f bool \<Rightarrow> bool"  | 
| 48028 | 1016  | 
where "finfun_All = finfun_All_except []"  | 
1017  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1018  | 
lemma finfun_All_const [simp]: "finfun_All (K$ b) = b"  | 
| 48028 | 1019  | 
by(simp add: finfun_All_def finfun_All_except_def)  | 
1020  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1021  | 
lemma finfun_All_update: "finfun_All f(a $:= b) = (b \<and> finfun_All_except [a] f)"  | 
| 48028 | 1022  | 
by(simp add: finfun_All_def finfun_All_except_update)  | 
1023  | 
||
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1024  | 
lemma finfun_All_All: "finfun_All P = All (op $ P)"  | 
| 48028 | 1025  | 
by(simp add: finfun_All_def finfun_All_except_def)  | 
1026  | 
||
1027  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1028  | 
definition finfun_Ex :: "'a \<Rightarrow>f bool \<Rightarrow> bool"  | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1029  | 
where "finfun_Ex P = Not (finfun_All (Not \<circ>$ P))"  | 
| 48028 | 1030  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1031  | 
lemma finfun_Ex_Ex: "finfun_Ex P = Ex (op $ P)"  | 
| 48028 | 1032  | 
unfolding finfun_Ex_def finfun_All_All by simp  | 
1033  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1034  | 
lemma finfun_Ex_const [simp]: "finfun_Ex (K$ b) = b"  | 
| 48028 | 1035  | 
by(simp add: finfun_Ex_def)  | 
1036  | 
||
1037  | 
||
| 60500 | 1038  | 
subsection \<open>A diagonal operator for FinFuns\<close>  | 
| 48028 | 1039  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1040  | 
definition finfun_Diag :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow>f 'c \<Rightarrow> 'a \<Rightarrow>f ('b \<times> 'c)" ("(1'($_,/ _$'))" [0, 0] 1000)
 | 
| 
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1041  | 
where [code del]: "($f, g$) = finfun_rec (\<lambda>b. Pair b \<circ>$ g) (\<lambda>a b c. c(a $:= (b, g $ a))) f"  | 
| 48028 | 1042  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1043  | 
interpretation finfun_Diag_aux: finfun_rec_wf_aux "\<lambda>b. Pair b \<circ>$ g" "\<lambda>a b c. c(a $:= (b, g $ a))"  | 
| 48028 | 1044  | 
by(unfold_locales)(simp_all add: expand_finfun_eq fun_eq_iff finfun_upd_apply)  | 
1045  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1046  | 
interpretation finfun_Diag: finfun_rec_wf "\<lambda>b. Pair b \<circ>$ g" "\<lambda>a b c. c(a $:= (b, g $ a))"  | 
| 48028 | 1047  | 
proof  | 
1048  | 
fix b' b :: 'a  | 
|
1049  | 
assume fin: "finite (UNIV :: 'c set)"  | 
|
1050  | 
  { fix A :: "'c set"
 | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1051  | 
interpret comp_fun_commute "\<lambda>a c. c(a $:= (b', g $ a))" by(rule finfun_Diag_aux.upd_left_comm)  | 
| 48028 | 1052  | 
from fin have "finite A" by(auto intro: finite_subset)  | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1053  | 
hence "Finite_Set.fold (\<lambda>a c. c(a $:= (b', g $ a))) (Pair b \<circ>$ g) A =  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1054  | 
Abs_finfun (\<lambda>a. (if a \<in> A then b' else b, g $ a))"  | 
| 48028 | 1055  | 
by(induct)(simp_all add: finfun_const_def finfun_comp_conv_comp o_def,  | 
1056  | 
auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }  | 
|
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1057  | 
from this[of UNIV] show "Finite_Set.fold (\<lambda>a c. c(a $:= (b', g $ a))) (Pair b \<circ>$ g) UNIV = Pair b' \<circ>$ g"  | 
| 48028 | 1058  | 
by(simp add: finfun_const_def finfun_comp_conv_comp o_def)  | 
1059  | 
qed  | 
|
1060  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1061  | 
lemma finfun_Diag_const1: "($K$ b, g$) = Pair b \<circ>$ g"  | 
| 48028 | 1062  | 
by(simp add: finfun_Diag_def)  | 
1063  | 
||
| 60500 | 1064  | 
text \<open>  | 
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1065  | 
  Do not use @{thm finfun_Diag_const1} for the code generator because @{term "Pair b"} is injective, i.e. if @{term g} is free of redundant updates, there is no need to check for redundant updates as is done for @{term "op \<circ>$"}.
 | 
| 60500 | 1066  | 
\<close>  | 
| 48028 | 1067  | 
|
1068  | 
lemma finfun_Diag_const_code [code]:  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1069  | 
"($K$ b, K$ c$) = (K$ (b, c))"  | 
| 
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1070  | 
"($K$ b, finfun_update_code g a c$) = finfun_update_code ($K$ b, g$) a (b, c)"  | 
| 48028 | 1071  | 
by(simp_all add: finfun_Diag_const1)  | 
1072  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1073  | 
lemma finfun_Diag_update1: "($f(a $:= b), g$) = ($f, g$)(a $:= (b, g $ a))"  | 
| 
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1074  | 
and finfun_Diag_update1_code [code]: "($finfun_update_code f a b, g$) = ($f, g$)(a $:= (b, g $ a))"  | 
| 48028 | 1075  | 
by(simp_all add: finfun_Diag_def)  | 
1076  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1077  | 
lemma finfun_Diag_const2: "($f, K$ c$) = (\<lambda>b. (b, c)) \<circ>$ f"  | 
| 48028 | 1078  | 
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)  | 
1079  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1080  | 
lemma finfun_Diag_update2: "($f, g(a $:= c)$) = ($f, g$)(a $:= (f $ a, c))"  | 
| 48028 | 1081  | 
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)  | 
1082  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1083  | 
lemma finfun_Diag_const_const [simp]: "($K$ b, K$ c$) = (K$ (b, c))"  | 
| 48028 | 1084  | 
by(simp add: finfun_Diag_const1)  | 
1085  | 
||
1086  | 
lemma finfun_Diag_const_update:  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1087  | 
"($K$ b, g(a $:= c)$) = ($K$ b, g$)(a $:= (b, c))"  | 
| 48028 | 1088  | 
by(simp add: finfun_Diag_const1)  | 
1089  | 
||
1090  | 
lemma finfun_Diag_update_const:  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1091  | 
"($f(a $:= b), K$ c$) = ($f, K$ c$)(a $:= (b, c))"  | 
| 48028 | 1092  | 
by(simp add: finfun_Diag_def)  | 
1093  | 
||
1094  | 
lemma finfun_Diag_update_update:  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1095  | 
"($f(a $:= b), g(a' $:= c)$) = (if a = a' then ($f, g$)(a $:= (b, c)) else ($f, g$)(a $:= (b, g $ a))(a' $:= (f $ a', c)))"  | 
| 48028 | 1096  | 
by(auto simp add: finfun_Diag_update1 finfun_Diag_update2)  | 
1097  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1098  | 
lemma finfun_Diag_apply [simp]: "op $ ($f, g$) = (\<lambda>x. (f $ x, g $ x))"  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1099  | 
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_Diag_const1 finfun_Diag_update1 finfun_upd_apply)  | 
| 48028 | 1100  | 
|
1101  | 
lemma finfun_Diag_conv_Abs_finfun:  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1102  | 
"($f, g$) = Abs_finfun ((\<lambda>x. (f $ x, g $ x)))"  | 
| 48030 | 1103  | 
including finfun  | 
| 48028 | 1104  | 
proof -  | 
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1105  | 
have "(\<lambda>f :: 'a \<Rightarrow>f 'b. ($f, g$)) = (\<lambda>f. Abs_finfun ((\<lambda>x. (f $ x, g $ x))))"  | 
| 48028 | 1106  | 
proof(rule finfun_rec_unique)  | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1107  | 
    { fix c show "Abs_finfun (\<lambda>x. ((K$ c) $ x, g $ x)) = Pair c \<circ>$ g"
 | 
| 48029 | 1108  | 
by(simp add: finfun_comp_conv_comp o_def finfun_const_def) }  | 
| 48028 | 1109  | 
    { fix g' a b
 | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1110  | 
show "Abs_finfun (\<lambda>x. (g'(a $:= b) $ x, g $ x)) =  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1111  | 
(Abs_finfun (\<lambda>x. (g' $ x, g $ x)))(a $:= (b, g $ a))"  | 
| 48029 | 1112  | 
by(auto simp add: finfun_update_def fun_eq_iff simp del: fun_upd_apply) simp }  | 
| 48028 | 1113  | 
qed(simp_all add: finfun_Diag_const1 finfun_Diag_update1)  | 
1114  | 
thus ?thesis by(auto simp add: fun_eq_iff)  | 
|
1115  | 
qed  | 
|
1116  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1117  | 
lemma finfun_Diag_eq: "($f, g$) = ($f', g'$) \<longleftrightarrow> f = f' \<and> g = g'"  | 
| 48028 | 1118  | 
by(auto simp add: expand_finfun_eq fun_eq_iff)  | 
1119  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1120  | 
definition finfun_fst :: "'a \<Rightarrow>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>f 'b"
 | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1121  | 
where [code]: "finfun_fst f = fst \<circ>$ f"  | 
| 48028 | 1122  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1123  | 
lemma finfun_fst_const: "finfun_fst (K$ bc) = (K$ fst bc)"  | 
| 48028 | 1124  | 
by(simp add: finfun_fst_def)  | 
1125  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1126  | 
lemma finfun_fst_update: "finfun_fst (f(a $:= bc)) = (finfun_fst f)(a $:= fst bc)"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1127  | 
and finfun_fst_update_code: "finfun_fst (finfun_update_code f a bc) = (finfun_fst f)(a $:= fst bc)"  | 
| 48028 | 1128  | 
by(simp_all add: finfun_fst_def)  | 
1129  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1130  | 
lemma finfun_fst_comp_conv: "finfun_fst (f \<circ>$ g) = (fst \<circ> f) \<circ>$ g"  | 
| 48028 | 1131  | 
by(simp add: finfun_fst_def)  | 
1132  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1133  | 
lemma finfun_fst_conv [simp]: "finfun_fst ($f, g$) = f"  | 
| 48028 | 1134  | 
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_Diag_const1 finfun_fst_comp_conv o_def finfun_Diag_update1 finfun_fst_update)  | 
1135  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1136  | 
lemma finfun_fst_conv_Abs_finfun: "finfun_fst = (\<lambda>f. Abs_finfun (fst \<circ> op $ f))"  | 
| 48029 | 1137  | 
by(simp add: finfun_fst_def [abs_def] finfun_comp_conv_comp)  | 
| 48028 | 1138  | 
|
1139  | 
||
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1140  | 
definition finfun_snd :: "'a \<Rightarrow>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>f 'c"
 | 
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1141  | 
where [code]: "finfun_snd f = snd \<circ>$ f"  | 
| 48028 | 1142  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1143  | 
lemma finfun_snd_const: "finfun_snd (K$ bc) = (K$ snd bc)"  | 
| 48028 | 1144  | 
by(simp add: finfun_snd_def)  | 
1145  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1146  | 
lemma finfun_snd_update: "finfun_snd (f(a $:= bc)) = (finfun_snd f)(a $:= snd bc)"  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1147  | 
and finfun_snd_update_code [code]: "finfun_snd (finfun_update_code f a bc) = (finfun_snd f)(a $:= snd bc)"  | 
| 48028 | 1148  | 
by(simp_all add: finfun_snd_def)  | 
1149  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1150  | 
lemma finfun_snd_comp_conv: "finfun_snd (f \<circ>$ g) = (snd \<circ> f) \<circ>$ g"  | 
| 48028 | 1151  | 
by(simp add: finfun_snd_def)  | 
1152  | 
||
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1153  | 
lemma finfun_snd_conv [simp]: "finfun_snd ($f, g$) = g"  | 
| 48028 | 1154  | 
apply(induct f rule: finfun_weak_induct)  | 
1155  | 
apply(auto simp add: finfun_Diag_const1 finfun_snd_comp_conv o_def finfun_Diag_update1 finfun_snd_update finfun_upd_apply intro: finfun_ext)  | 
|
1156  | 
done  | 
|
1157  | 
||
| 
48037
 
6c4b3e78f03e
syntax for FinFun composition without subscripts
 
Andreas Lochbihler 
parents: 
48036 
diff
changeset
 | 
1158  | 
lemma finfun_snd_conv_Abs_finfun: "finfun_snd = (\<lambda>f. Abs_finfun (snd \<circ> op $ f))"  | 
| 48029 | 1159  | 
by(simp add: finfun_snd_def [abs_def] finfun_comp_conv_comp)  | 
| 48028 | 1160  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1161  | 
lemma finfun_Diag_collapse [simp]: "($finfun_fst f, finfun_snd f$) = f"  | 
| 48028 | 1162  | 
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_fst_const finfun_snd_const finfun_fst_update finfun_snd_update finfun_Diag_update_update)  | 
1163  | 
||
| 60500 | 1164  | 
subsection \<open>Currying for FinFuns\<close>  | 
| 48028 | 1165  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1166  | 
definition finfun_curry :: "('a \<times> 'b) \<Rightarrow>f 'c \<Rightarrow> 'a \<Rightarrow>f 'b \<Rightarrow>f 'c"
 | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1167  | 
where [code del]: "finfun_curry = finfun_rec (finfun_const \<circ> finfun_const) (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c)))"  | 
| 48028 | 1168  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1169  | 
interpretation finfun_curry_aux: finfun_rec_wf_aux "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))"  | 
| 48028 | 1170  | 
apply(unfold_locales)  | 
1171  | 
apply(auto simp add: split_def finfun_update_twist finfun_upd_apply split_paired_all finfun_update_const_same)  | 
|
1172  | 
done  | 
|
1173  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1174  | 
interpretation finfun_curry: finfun_rec_wf "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))"  | 
| 48028 | 1175  | 
proof(unfold_locales)  | 
1176  | 
fix b' b :: 'b  | 
|
1177  | 
  assume fin: "finite (UNIV :: ('c \<times> 'a) set)"
 | 
|
1178  | 
hence fin1: "finite (UNIV :: 'c set)" and fin2: "finite (UNIV :: 'a set)"  | 
|
1179  | 
unfolding UNIV_Times_UNIV[symmetric]  | 
|
1180  | 
by(fastforce dest: finite_cartesian_productD1 finite_cartesian_productD2)+  | 
|
1181  | 
note [simp] = Abs_finfun_inverse_finite[OF fin] Abs_finfun_inverse_finite[OF fin1] Abs_finfun_inverse_finite[OF fin2]  | 
|
1182  | 
  { fix A :: "('c \<times> 'a) set"
 | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1183  | 
interpret comp_fun_commute "\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b'"  | 
| 48028 | 1184  | 
by(rule finfun_curry_aux.upd_left_comm)  | 
1185  | 
from fin have "finite A" by(auto intro: finite_subset)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1186  | 
hence "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b') ((finfun_const \<circ> finfun_const) b) A = Abs_finfun (\<lambda>a. Abs_finfun (\<lambda>b''. if (a, b'') \<in> A then b' else b))"  | 
| 48029 | 1187  | 
by induct (simp_all, auto simp add: finfun_update_def finfun_const_def split_def intro!: arg_cong[where f="Abs_finfun"] ext) }  | 
| 48028 | 1188  | 
from this[of UNIV]  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1189  | 
show "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b') ((finfun_const \<circ> finfun_const) b) UNIV = (finfun_const \<circ> finfun_const) b'"  | 
| 48028 | 1190  | 
by(simp add: finfun_const_def)  | 
1191  | 
qed  | 
|
1192  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1193  | 
lemma finfun_curry_const [simp, code]: "finfun_curry (K$ c) = (K$ K$ c)"  | 
| 48028 | 1194  | 
by(simp add: finfun_curry_def)  | 
1195  | 
||
1196  | 
lemma finfun_curry_update [simp]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1197  | 
"finfun_curry (f((a, b) $:= c)) = (finfun_curry f)(a $:= (finfun_curry f $ a)(b $:= c))"  | 
| 48028 | 1198  | 
and finfun_curry_update_code [code]:  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1199  | 
"finfun_curry (finfun_update_code f (a, b) c) = (finfun_curry f)(a $:= (finfun_curry f $ a)(b $:= c))"  | 
| 48028 | 1200  | 
by(simp_all add: finfun_curry_def)  | 
1201  | 
||
1202  | 
lemma finfun_Abs_finfun_curry: assumes fin: "f \<in> finfun"  | 
|
1203  | 
shows "(\<lambda>a. Abs_finfun (curry f a)) \<in> finfun"  | 
|
| 48030 | 1204  | 
including finfun  | 
| 48028 | 1205  | 
proof -  | 
1206  | 
  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
 | 
|
1207  | 
  have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
 | 
|
1208  | 
  hence "{a. curry f a \<noteq> (\<lambda>x. c)} = fst ` {ab. f ab \<noteq> c}"
 | 
|
1209  | 
by(auto simp add: curry_def fun_eq_iff)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1210  | 
  with fin c have "finite {a.  Abs_finfun (curry f a) \<noteq> (K$ c)}"
 | 
| 48028 | 1211  | 
by(simp add: finfun_const_def finfun_curry)  | 
1212  | 
thus ?thesis unfolding finfun_def by auto  | 
|
1213  | 
qed  | 
|
1214  | 
||
1215  | 
lemma finfun_curry_conv_curry:  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1216  | 
  fixes f :: "('a \<times> 'b) \<Rightarrow>f 'c"
 | 
| 48029 | 1217  | 
shows "finfun_curry f = Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply f) a))"  | 
| 48030 | 1218  | 
including finfun  | 
| 48028 | 1219  | 
proof -  | 
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1220  | 
  have "finfun_curry = (\<lambda>f :: ('a \<times> 'b) \<Rightarrow>f 'c. Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply f) a)))"
 | 
| 48028 | 1221  | 
proof(rule finfun_rec_unique)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1222  | 
fix c show "finfun_curry (K$ c) = (K$ K$ c)" by simp  | 
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1223  | 
fix f a  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1224  | 
show "finfun_curry (f(a $:= c)) = (finfun_curry f)(fst a $:= (finfun_curry f $ (fst a))(snd a $:= c))"  | 
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1225  | 
by(cases a) simp  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1226  | 
show "Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply (K$ c)) a)) = (K$ K$ c)"  | 
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1227  | 
by(simp add: finfun_curry_def finfun_const_def curry_def)  | 
| 
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1228  | 
fix g b  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1229  | 
show "Abs_finfun (\<lambda>aa. Abs_finfun (curry (op $ g(a $:= b)) aa)) =  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1230  | 
(Abs_finfun (\<lambda>a. Abs_finfun (curry (op $ g) a)))(  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1231  | 
fst a $:= ((Abs_finfun (\<lambda>a. Abs_finfun (curry (op $ g) a))) $ (fst a))(snd a $:= b))"  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1232  | 
by(cases a)(auto intro!: ext arg_cong[where f=Abs_finfun] simp add: finfun_curry_def finfun_update_def finfun_Abs_finfun_curry)  | 
| 48028 | 1233  | 
qed  | 
1234  | 
thus ?thesis by(auto simp add: fun_eq_iff)  | 
|
1235  | 
qed  | 
|
1236  | 
||
| 60500 | 1237  | 
subsection \<open>Executable equality for FinFuns\<close>  | 
| 48028 | 1238  | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1239  | 
lemma eq_finfun_All_ext: "(f = g) \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>$ ($f, g$))"  | 
| 48028 | 1240  | 
by(simp add: expand_finfun_eq fun_eq_iff finfun_All_All o_def)  | 
1241  | 
||
1242  | 
instantiation finfun :: ("{card_UNIV,equal}",equal) equal begin
 | 
|
| 
48038
 
72a8506dd59b
eliminated remaining sub- and superscripts in FinFun syntax
 
Andreas Lochbihler 
parents: 
48037 
diff
changeset
 | 
1243  | 
definition eq_finfun_def [code]: "HOL.equal f g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>$ ($f, g$))"  | 
| 48028 | 1244  | 
instance by(intro_classes)(simp add: eq_finfun_All_ext eq_finfun_def)  | 
1245  | 
end  | 
|
1246  | 
||
1247  | 
lemma [code nbe]:  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1248  | 
"HOL.equal (f :: _ \<Rightarrow>f _) f \<longleftrightarrow> True"  | 
| 48028 | 1249  | 
by (fact equal_refl)  | 
1250  | 
||
| 60500 | 1251  | 
subsection \<open>An operator that explicitly removes all redundant updates in the generated representations\<close>  | 
| 48028 | 1252  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1253  | 
definition finfun_clearjunk :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow>f 'b"  | 
| 48028 | 1254  | 
where [simp, code del]: "finfun_clearjunk = id"  | 
1255  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1256  | 
lemma finfun_clearjunk_const [code]: "finfun_clearjunk (K$ b) = (K$ b)"  | 
| 48028 | 1257  | 
by simp  | 
1258  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1259  | 
lemma finfun_clearjunk_update [code]:  | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1260  | 
"finfun_clearjunk (finfun_update_code f a b) = f(a $:= b)"  | 
| 48028 | 1261  | 
by simp  | 
1262  | 
||
| 60500 | 1263  | 
subsection \<open>The domain of a FinFun as a FinFun\<close>  | 
| 48028 | 1264  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1265  | 
definition finfun_dom :: "('a \<Rightarrow>f 'b) \<Rightarrow> ('a \<Rightarrow>f bool)"
 | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1266  | 
where [code del]: "finfun_dom f = Abs_finfun (\<lambda>a. f $ a \<noteq> finfun_default f)"  | 
| 48028 | 1267  | 
|
1268  | 
lemma finfun_dom_const:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1269  | 
"finfun_dom ((K$ c) :: 'a \<Rightarrow>f 'b) = (K$ finite (UNIV :: 'a set) \<and> c \<noteq> undefined)"  | 
| 48028 | 1270  | 
unfolding finfun_dom_def finfun_default_const  | 
1271  | 
by(auto)(simp_all add: finfun_const_def)  | 
|
1272  | 
||
| 60500 | 1273  | 
text \<open>  | 
| 48028 | 1274  | 
  @{term "finfun_dom" } raises an exception when called on a FinFun whose domain is a finite type. 
 | 
1275  | 
For such FinFuns, the default value (and as such the domain) is undefined.  | 
|
| 60500 | 1276  | 
\<close>  | 
| 48028 | 1277  | 
|
1278  | 
lemma finfun_dom_const_code [code]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1279  | 
  "finfun_dom ((K$ c) :: ('a :: card_UNIV) \<Rightarrow>f 'b) = 
 | 
| 
52916
 
5f3faf72b62a
prefer Code.abort with explicit error message
 
Andreas Lochbihler 
parents: 
51995 
diff
changeset
 | 
1280  | 
   (if CARD('a) = 0 then (K$ False) else Code.abort (STR ''finfun_dom called on finite type'') (\<lambda>_. finfun_dom (K$ c)))"
 | 
| 48059 | 1281  | 
by(simp add: finfun_dom_const card_UNIV card_eq_0_iff)  | 
| 48028 | 1282  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1283  | 
lemma finfun_dom_finfunI: "(\<lambda>a. f $ a \<noteq> finfun_default f) \<in> finfun"  | 
| 48028 | 1284  | 
using finite_finfun_default[of f]  | 
| 48029 | 1285  | 
by(simp add: finfun_def exI[where x=False])  | 
| 48028 | 1286  | 
|
1287  | 
lemma finfun_dom_update [simp]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1288  | 
"finfun_dom (f(a $:= b)) = (finfun_dom f)(a $:= (b \<noteq> finfun_default f))"  | 
| 48030 | 1289  | 
including finfun unfolding finfun_dom_def finfun_update_def  | 
| 58787 | 1290  | 
apply(simp add: finfun_default_update_const finfun_dom_finfunI)  | 
| 48028 | 1291  | 
apply(fold finfun_update.rep_eq)  | 
| 48029 | 1292  | 
apply(simp add: finfun_upd_apply fun_eq_iff fun_upd_def finfun_default_update_const)  | 
| 48028 | 1293  | 
done  | 
1294  | 
||
1295  | 
lemma finfun_dom_update_code [code]:  | 
|
1296  | 
"finfun_dom (finfun_update_code f a b) = finfun_update_code (finfun_dom f) a (b \<noteq> finfun_default f)"  | 
|
1297  | 
by(simp)  | 
|
1298  | 
||
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1299  | 
lemma finite_finfun_dom: "finite {x. finfun_dom f $ x}"
 | 
| 48028 | 1300  | 
proof(induct f rule: finfun_weak_induct)  | 
1301  | 
case (const b)  | 
|
1302  | 
thus ?case  | 
|
1303  | 
by (cases "finite (UNIV :: 'a set) \<and> b \<noteq> undefined")  | 
|
1304  | 
(auto simp add: finfun_dom_const UNIV_def [symmetric] Set.empty_def [symmetric])  | 
|
1305  | 
next  | 
|
1306  | 
case (update f a b)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1307  | 
  have "{x. finfun_dom f(a $:= b) $ x} =
 | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1308  | 
    (if b = finfun_default f then {x. finfun_dom f $ x} - {a} else insert a {x. finfun_dom f $ x})"
 | 
| 48028 | 1309  | 
by (auto simp add: finfun_upd_apply split: split_if_asm)  | 
1310  | 
thus ?case using update by simp  | 
|
1311  | 
qed  | 
|
1312  | 
||
1313  | 
||
| 60500 | 1314  | 
subsection \<open>The domain of a FinFun as a sorted list\<close>  | 
| 48028 | 1315  | 
|
| 
48034
 
1c5171abe5cc
removed subscripts from FinFun type syntax
 
Andreas Lochbihler 
parents: 
48031 
diff
changeset
 | 
1316  | 
definition finfun_to_list :: "('a :: linorder) \<Rightarrow>f 'b \<Rightarrow> 'a list"
 | 
| 48028 | 1317  | 
where  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1318  | 
  "finfun_to_list f = (THE xs. set xs = {x. finfun_dom f $ x} \<and> sorted xs \<and> distinct xs)"
 | 
| 48028 | 1319  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1320  | 
lemma set_finfun_to_list [simp]: "set (finfun_to_list f) = {x. finfun_dom f $ x}" (is ?thesis1)
 | 
| 48028 | 1321  | 
and sorted_finfun_to_list: "sorted (finfun_to_list f)" (is ?thesis2)  | 
1322  | 
and distinct_finfun_to_list: "distinct (finfun_to_list f)" (is ?thesis3)  | 
|
1323  | 
proof -  | 
|
1324  | 
have "?thesis1 \<and> ?thesis2 \<and> ?thesis3"  | 
|
1325  | 
unfolding finfun_to_list_def  | 
|
1326  | 
by(rule theI')(rule finite_sorted_distinct_unique finite_finfun_dom)+  | 
|
1327  | 
thus ?thesis1 ?thesis2 ?thesis3 by simp_all  | 
|
1328  | 
qed  | 
|
1329  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1330  | 
lemma finfun_const_False_conv_bot: "op $ (K$ False) = bot"  | 
| 48028 | 1331  | 
by auto  | 
1332  | 
||
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1333  | 
lemma finfun_const_True_conv_top: "op $ (K$ True) = top"  | 
| 48028 | 1334  | 
by auto  | 
1335  | 
||
1336  | 
lemma finfun_to_list_const:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1337  | 
  "finfun_to_list ((K$ c) :: ('a :: {linorder} \<Rightarrow>f 'b)) = 
 | 
| 48028 | 1338  | 
(if \<not> finite (UNIV :: 'a set) \<or> c = undefined then [] else THE xs. set xs = UNIV \<and> sorted xs \<and> distinct xs)"  | 
1339  | 
by(auto simp add: finfun_to_list_def finfun_const_False_conv_bot finfun_const_True_conv_top finfun_dom_const)  | 
|
1340  | 
||
1341  | 
lemma finfun_to_list_const_code [code]:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1342  | 
  "finfun_to_list ((K$ c) :: ('a :: {linorder, card_UNIV} \<Rightarrow>f 'b)) =
 | 
| 
52916
 
5f3faf72b62a
prefer Code.abort with explicit error message
 
Andreas Lochbihler 
parents: 
51995 
diff
changeset
 | 
1343  | 
   (if CARD('a) = 0 then [] else Code.abort (STR ''finfun_to_list called on finite type'') (\<lambda>_. finfun_to_list ((K$ c) :: ('a \<Rightarrow>f 'b))))"
 | 
| 48059 | 1344  | 
by(auto simp add: finfun_to_list_const card_UNIV card_eq_0_iff)  | 
| 48028 | 1345  | 
|
1346  | 
lemma remove1_insort_insert_same:  | 
|
1347  | 
"x \<notin> set xs \<Longrightarrow> remove1 x (insort_insert x xs) = xs"  | 
|
1348  | 
by (metis insort_insert_insort remove1_insort)  | 
|
1349  | 
||
1350  | 
lemma finfun_dom_conv:  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1351  | 
"finfun_dom f $ x \<longleftrightarrow> f $ x \<noteq> finfun_default f"  | 
| 48028 | 1352  | 
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_dom_const finfun_default_const finfun_default_update_const finfun_upd_apply)  | 
1353  | 
||
1354  | 
lemma finfun_to_list_update:  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1355  | 
"finfun_to_list (f(a $:= b)) =  | 
| 48028 | 1356  | 
(if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"  | 
1357  | 
proof(subst finfun_to_list_def, rule the_equality)  | 
|
1358  | 
fix xs  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1359  | 
  assume "set xs = {x. finfun_dom f(a $:= b) $ x} \<and> sorted xs \<and> distinct xs"
 | 
| 
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1360  | 
  hence eq: "set xs = {x. finfun_dom f(a $:= b) $ x}"
 | 
| 48028 | 1361  | 
and [simp]: "sorted xs" "distinct xs" by simp_all  | 
1362  | 
show "xs = (if b = finfun_default f then remove1 a (finfun_to_list f) else insort_insert a (finfun_to_list f))"  | 
|
1363  | 
proof(cases "b = finfun_default f")  | 
|
1364  | 
case True [simp]  | 
|
1365  | 
show ?thesis  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1366  | 
proof(cases "finfun_dom f $ a")  | 
| 48028 | 1367  | 
case True  | 
1368  | 
have "finfun_to_list f = insort_insert a xs"  | 
|
1369  | 
unfolding finfun_to_list_def  | 
|
1370  | 
proof(rule the_equality)  | 
|
1371  | 
have "set (insort_insert a xs) = insert a (set xs)" by(simp add: set_insort_insert)  | 
|
1372  | 
also note eq also  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1373  | 
        have "insert a {x. finfun_dom f(a $:= b) $ x} = {x. finfun_dom f $ x}" using True
 | 
| 48028 | 1374  | 
by(auto simp add: finfun_upd_apply split: split_if_asm)  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1375  | 
        finally show 1: "set (insort_insert a xs) = {x. finfun_dom f $ x} \<and> sorted (insort_insert a xs) \<and> distinct (insort_insert a xs)"
 | 
| 48028 | 1376  | 
by(simp add: sorted_insort_insert distinct_insort_insert)  | 
1377  | 
||
1378  | 
fix xs'  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1379  | 
        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
 | 
| 48028 | 1380  | 
thus "xs' = insort_insert a xs" using 1 by(auto dest: sorted_distinct_set_unique)  | 
1381  | 
qed  | 
|
1382  | 
with eq True show ?thesis by(simp add: remove1_insort_insert_same)  | 
|
1383  | 
next  | 
|
1384  | 
case False  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1385  | 
hence "f $ a = b" by(auto simp add: finfun_dom_conv)  | 
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1386  | 
hence f: "f(a $:= b) = f" by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)  | 
| 48028 | 1387  | 
from eq have "finfun_to_list f = xs" unfolding f finfun_to_list_def  | 
1388  | 
by(auto elim: sorted_distinct_set_unique intro!: the_equality)  | 
|
1389  | 
with eq False show ?thesis unfolding f by(simp add: remove1_idem)  | 
|
1390  | 
qed  | 
|
1391  | 
next  | 
|
1392  | 
case False  | 
|
1393  | 
show ?thesis  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1394  | 
proof(cases "finfun_dom f $ a")  | 
| 48028 | 1395  | 
case True  | 
1396  | 
have "finfun_to_list f = xs"  | 
|
1397  | 
unfolding finfun_to_list_def  | 
|
1398  | 
proof(rule the_equality)  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1399  | 
have "finfun_dom f = finfun_dom f(a $:= b)" using False True  | 
| 48028 | 1400  | 
by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1401  | 
        with eq show 1: "set xs = {x. finfun_dom f $ x} \<and> sorted xs \<and> distinct xs"
 | 
| 48028 | 1402  | 
by(simp del: finfun_dom_update)  | 
1403  | 
||
1404  | 
fix xs'  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1405  | 
        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
 | 
| 48028 | 1406  | 
thus "xs' = xs" using 1 by(auto elim: sorted_distinct_set_unique)  | 
1407  | 
qed  | 
|
1408  | 
thus ?thesis using False True eq by(simp add: insort_insert_triv)  | 
|
1409  | 
next  | 
|
1410  | 
case False  | 
|
1411  | 
have "finfun_to_list f = remove1 a xs"  | 
|
1412  | 
unfolding finfun_to_list_def  | 
|
1413  | 
proof(rule the_equality)  | 
|
1414  | 
        have "set (remove1 a xs) = set xs - {a}" by simp
 | 
|
1415  | 
also note eq also  | 
|
| 
48036
 
1edcd5f73505
FinFun pseudo-constructor syntax without superscripts
 
Andreas Lochbihler 
parents: 
48035 
diff
changeset
 | 
1416  | 
        have "{x. finfun_dom f(a $:= b) $ x} - {a} = {x. finfun_dom f $ x}" using False
 | 
| 48028 | 1417  | 
by(auto simp add: finfun_upd_apply split: split_if_asm)  | 
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1418  | 
        finally show 1: "set (remove1 a xs) = {x. finfun_dom f $ x} \<and> sorted (remove1 a xs) \<and> distinct (remove1 a xs)"
 | 
| 48028 | 1419  | 
by(simp add: sorted_remove1)  | 
1420  | 
||
1421  | 
fix xs'  | 
|
| 
48035
 
2f9584581cf2
replace FinFun application syntax with $
 
Andreas Lochbihler 
parents: 
48034 
diff
changeset
 | 
1422  | 
        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
 | 
| 48028 | 1423  | 
thus "xs' = remove1 a xs" using 1 by(blast intro: sorted_distinct_set_unique)  | 
1424  | 
qed  | 
|
| 60500 | 1425  | 
thus ?thesis using False eq \<open>b \<noteq> finfun_default f\<close>  | 
| 48028 | 1426  | 
by (simp add: insort_insert_insort insort_remove1)  | 
1427  | 
qed  | 
|
1428  | 
qed  | 
|
1429  | 
qed (auto simp add: distinct_finfun_to_list sorted_finfun_to_list sorted_remove1 set_insort_insert sorted_insort_insert distinct_insort_insert finfun_upd_apply split: split_if_asm)  | 
|
1430  | 
||
1431  | 
lemma finfun_to_list_update_code [code]:  | 
|
1432  | 
"finfun_to_list (finfun_update_code f a b) =  | 
|
1433  | 
(if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"  | 
|
1434  | 
by(simp add: finfun_to_list_update)  | 
|
1435  | 
||
| 60500 | 1436  | 
text \<open>More type class instantiations\<close>  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1437  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1438  | 
lemma card_eq_1_iff: "card A = 1 \<longleftrightarrow> A \<noteq> {} \<and> (\<forall>x\<in>A. \<forall>y\<in>A. x = y)"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1439  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1440  | 
proof  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1441  | 
assume ?lhs  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1442  | 
  moreover {
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1443  | 
fix x y  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1444  | 
assume A: "x \<in> A" "y \<in> A" and neq: "x \<noteq> y"  | 
| 60500 | 1445  | 
have "finite A" using \<open>?lhs\<close> by(simp add: card_ge_0_finite)  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1446  | 
    from neq have "2 = card {x, y}" by simp
 | 
| 60500 | 1447  | 
also have "\<dots> \<le> card A" using A \<open>finite A\<close>  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1448  | 
by(auto intro: card_mono)  | 
| 60500 | 1449  | 
finally have False using \<open>?lhs\<close> by simp }  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1450  | 
ultimately show ?rhs by auto  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1451  | 
next  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1452  | 
assume ?rhs  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1453  | 
  hence "A = {THE x. x \<in> A}"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1454  | 
by safe (auto intro: theI the_equality[symmetric])  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1455  | 
also have "card \<dots> = 1" by simp  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1456  | 
finally show ?lhs .  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1457  | 
qed  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1458  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1459  | 
lemma card_UNIV_finfun:  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1460  | 
  defines "F == finfun :: ('a \<Rightarrow> 'b) set"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1461  | 
  shows "CARD('a \<Rightarrow>f 'b) = (if CARD('a) \<noteq> 0 \<and> CARD('b) \<noteq> 0 \<or> CARD('b) = 1 then CARD('b) ^ CARD('a) else 0)"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1462  | 
proof(cases "0 < CARD('a) \<and> 0 < CARD('b) \<or> CARD('b) = 1")
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1463  | 
case True  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1464  | 
from True have "F = UNIV"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1465  | 
proof  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1466  | 
    assume b: "CARD('b) = 1"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1467  | 
hence "\<forall>x :: 'b. x = undefined"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1468  | 
by(auto simp add: card_eq_1_iff simp del: One_nat_def)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1469  | 
thus ?thesis by(auto simp add: finfun_def F_def intro: exI[where x=undefined])  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1470  | 
qed(auto simp add: finfun_def card_gt_0_iff F_def intro: finite_subset[where B=UNIV])  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1471  | 
  moreover have "CARD('a \<Rightarrow>f 'b) = card F"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1472  | 
unfolding type_definition.Abs_image[OF type_definition_finfun, symmetric]  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1473  | 
by(auto intro!: card_image inj_onI simp add: Abs_finfun_inject F_def)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1474  | 
ultimately show ?thesis by(simp add: card_fun)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1475  | 
next  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1476  | 
case False  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1477  | 
hence infinite: "\<not> (finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set))"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1478  | 
    and b: "CARD('b) \<noteq> 1" by(simp_all add: card_eq_0_iff)
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1479  | 
from b obtain b1 b2 :: 'b where "b1 \<noteq> b2"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1480  | 
by(auto simp add: card_eq_1_iff simp del: One_nat_def)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1481  | 
let ?f = "\<lambda>a a' :: 'a. if a = a' then b1 else b2"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1482  | 
  from infinite have "\<not> finite (UNIV :: ('a \<Rightarrow>f 'b) set)"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1483  | 
proof(rule contrapos_nn[OF _ conjI])  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1484  | 
    assume finite: "finite (UNIV :: ('a \<Rightarrow>f 'b) set)"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1485  | 
hence "finite F"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1486  | 
unfolding type_definition.Abs_image[OF type_definition_finfun, symmetric] F_def  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1487  | 
by(rule finite_imageD)(auto intro: inj_onI simp add: Abs_finfun_inject)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1488  | 
hence "finite (range ?f)"  | 
| 60500 | 1489  | 
by(rule finite_subset[rotated 1])(auto simp add: F_def finfun_def \<open>b1 \<noteq> b2\<close> intro!: exI[where x=b2])  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1490  | 
thus "finite (UNIV :: 'a set)"  | 
| 60500 | 1491  | 
by(rule finite_imageD)(auto intro: inj_onI simp add: fun_eq_iff \<open>b1 \<noteq> b2\<close> split: split_if_asm)  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1492  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1493  | 
from finite have "finite (range (\<lambda>b. ((K$ b) :: 'a \<Rightarrow>f 'b)))"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1494  | 
by(rule finite_subset[rotated 1]) simp  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1495  | 
thus "finite (UNIV :: 'b set)"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1496  | 
by(rule finite_imageD)(auto intro!: inj_onI)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1497  | 
qed  | 
| 58787 | 1498  | 
with False show ?thesis by auto  | 
| 
51124
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1499  | 
qed  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1500  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1501  | 
lemma finite_UNIV_finfun:  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1502  | 
  "finite (UNIV :: ('a \<Rightarrow>f 'b) set) \<longleftrightarrow>
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1503  | 
  (finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set) \<or> CARD('b) = 1)"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1504  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1505  | 
proof -  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1506  | 
  have "?lhs \<longleftrightarrow> CARD('a \<Rightarrow>f 'b) > 0" by(simp add: card_gt_0_iff)
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1507  | 
  also have "\<dots> \<longleftrightarrow> CARD('a) > 0 \<and> CARD('b) > 0 \<or> CARD('b) = 1"
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1508  | 
by(simp add: card_UNIV_finfun)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1509  | 
also have "\<dots> = ?rhs" by(simp add: card_gt_0_iff)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1510  | 
finally show ?thesis .  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1511  | 
qed  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1512  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1513  | 
instantiation finfun :: (finite_UNIV, card_UNIV) finite_UNIV begin  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1514  | 
definition "finite_UNIV = Phantom('a \<Rightarrow>f 'b)
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1515  | 
(let cb = of_phantom (card_UNIV :: 'b card_UNIV)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1516  | 
in cb = 1 \<or> of_phantom (finite_UNIV :: 'a finite_UNIV) \<and> cb \<noteq> 0)"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1517  | 
instance  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1518  | 
by intro_classes (auto simp add: finite_UNIV_finfun_def Let_def card_UNIV finite_UNIV finite_UNIV_finfun card_gt_0_iff)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1519  | 
end  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1520  | 
|
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1521  | 
instantiation finfun :: (card_UNIV, card_UNIV) card_UNIV begin  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1522  | 
definition "card_UNIV = Phantom('a \<Rightarrow>f 'b)
 | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1523  | 
(let ca = of_phantom (card_UNIV :: 'a card_UNIV);  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1524  | 
cb = of_phantom (card_UNIV :: 'b card_UNIV)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1525  | 
in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1526  | 
instance by intro_classes (simp add: card_UNIV_finfun_def card_UNIV Let_def card_UNIV_finfun)  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1527  | 
end  | 
| 
 
8fd094d5b7b7
instantiate finite_UNIV and card_UNIV for finfun type
 
Andreas Lochbihler 
parents: 
49834 
diff
changeset
 | 
1528  | 
|
| 60500 | 1529  | 
text \<open>Deactivate syntax again. Import theory @{text FinFun_Syntax} to reactivate it again\<close>
 | 
| 
48041
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1530  | 
|
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1531  | 
no_type_notation  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1532  | 
  finfun ("(_ =>f /_)" [22, 21] 21)
 | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1533  | 
|
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1534  | 
no_type_notation (xsymbols)  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1535  | 
  finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
 | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1536  | 
|
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1537  | 
no_notation  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1538  | 
  finfun_const ("K$/ _" [0] 1) and
 | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1539  | 
  finfun_update ("_'(_ $:= _')" [1000,0,0] 1000) and
 | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1540  | 
finfun_apply (infixl "$" 999) and  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1541  | 
finfun_comp (infixr "o$" 55) and  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1542  | 
finfun_comp2 (infixr "$o" 55) and  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1543  | 
  finfun_Diag ("(1'($_,/ _$'))" [0, 0] 1000)
 | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1544  | 
|
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1545  | 
no_notation (xsymbols)  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1546  | 
finfun_comp (infixr "\<circ>$" 55) and  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1547  | 
finfun_comp2 (infixr "$\<circ>" 55)  | 
| 
 
d60f6b41bf2d
remove pretty syntax for FinFuns at the end and provide separate syntax theory
 
Andreas Lochbihler 
parents: 
48038 
diff
changeset
 | 
1548  | 
|
| 48028 | 1549  | 
end  |