| author | haftmann | 
| Mon, 20 Jul 2009 15:24:15 +0200 | |
| changeset 32082 | 90d03908b3d7 | 
| parent 32047 | c141f139ce26 | 
| child 36974 | b877866b5b00 | 
| permissions | -rw-r--r-- | 
| 
28952
 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 
haftmann 
parents: 
27239 
diff
changeset
 | 
1  | 
(* Author : Jacques D. Fleuriot  | 
| 12224 | 2  | 
Copyright : 2001 University of Edinburgh  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
3  | 
Conversion to Isar and new proofs by Lawrence C Paulson, 2004  | 
| 12224 | 4  | 
*)  | 
5  | 
||
| 15944 | 6  | 
header{*MacLaurin Series*}
 | 
7  | 
||
| 15131 | 8  | 
theory MacLaurin  | 
| 
29811
 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 
chaieb@chaieb-laptop 
parents: 
29803 
diff
changeset
 | 
9  | 
imports Transcendental  | 
| 15131 | 10  | 
begin  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
11  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
12  | 
subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
13  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
14  | 
text{*This is a very long, messy proof even now that it's been broken down
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
15  | 
into lemmas.*}  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
16  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
17  | 
lemma Maclaurin_lemma:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
18  | 
"0 < h ==>  | 
| 15539 | 19  | 
\<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
20  | 
(B * ((h^n) / real(fact n)))"  | 
| 15539 | 21  | 
apply (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) *  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
22  | 
real(fact n) / (h^n)"  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
23  | 
in exI)  | 
| 15539 | 24  | 
apply (simp)  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
25  | 
done  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
26  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
27  | 
lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
28  | 
by arith  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
29  | 
|
| 32038 | 30  | 
lemma fact_diff_Suc [rule_format]:  | 
31  | 
"n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)"  | 
|
32  | 
by (subst fact_reduce_nat, auto)  | 
|
33  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
34  | 
lemma Maclaurin_lemma2:  | 
| 29187 | 35  | 
assumes diff: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
36  | 
assumes n: "n = Suc k"  | 
|
37  | 
assumes difg: "difg =  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
38  | 
(\<lambda>m t. diff m t -  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
39  | 
((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +  | 
| 29187 | 40  | 
B * (t ^ (n - m) / real (fact (n - m)))))"  | 
41  | 
shows  | 
|
42  | 
"\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t"  | 
|
43  | 
unfolding difg  | 
|
44  | 
apply clarify  | 
|
45  | 
apply (rule DERIV_diff)  | 
|
46  | 
apply (simp add: diff)  | 
|
47  | 
apply (simp only: n)  | 
|
48  | 
apply (rule DERIV_add)  | 
|
49  | 
apply (rule_tac [2] DERIV_cmult)  | 
|
50  | 
apply (rule_tac [2] lemma_DERIV_subst)  | 
|
51  | 
apply (rule_tac [2] DERIV_quotient)  | 
|
52  | 
apply (rule_tac [3] DERIV_const)  | 
|
53  | 
apply (rule_tac [2] DERIV_pow)  | 
|
| 32038 | 54  | 
prefer 3  | 
55  | 
||
56  | 
apply (simp add: fact_diff_Suc)  | 
|
| 29187 | 57  | 
prefer 2 apply simp  | 
58  | 
apply (frule less_iff_Suc_add [THEN iffD1], clarify)  | 
|
59  | 
apply (simp del: setsum_op_ivl_Suc)  | 
|
| 
30082
 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 
huffman 
parents: 
29811 
diff
changeset
 | 
60  | 
apply (insert sumr_offset4 [of "Suc 0"])  | 
| 32047 | 61  | 
apply (simp del: setsum_op_ivl_Suc fact_Suc power_Suc)  | 
| 29187 | 62  | 
apply (rule lemma_DERIV_subst)  | 
63  | 
apply (rule DERIV_add)  | 
|
64  | 
apply (rule_tac [2] DERIV_const)  | 
|
65  | 
apply (rule DERIV_sumr, clarify)  | 
|
66  | 
prefer 2 apply simp  | 
|
| 32047 | 67  | 
apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc)  | 
| 29187 | 68  | 
apply (rule DERIV_cmult)  | 
69  | 
apply (rule lemma_DERIV_subst)  | 
|
| 31881 | 70  | 
apply (best intro!: DERIV_intros)  | 
| 32047 | 71  | 
apply (subst fact_Suc)  | 
| 29187 | 72  | 
apply (subst real_of_nat_mult)  | 
73  | 
apply (simp add: mult_ac)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
74  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
75  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
76  | 
lemma Maclaurin:  | 
| 29187 | 77  | 
assumes h: "0 < h"  | 
78  | 
assumes n: "0 < n"  | 
|
79  | 
assumes diff_0: "diff 0 = f"  | 
|
80  | 
assumes diff_Suc:  | 
|
81  | 
"\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"  | 
|
82  | 
shows  | 
|
83  | 
"\<exists>t. 0 < t & t < h &  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
84  | 
f h =  | 
| 15539 | 85  | 
              setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
 | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
86  | 
(diff n t / real (fact n)) * h ^ n"  | 
| 29187 | 87  | 
proof -  | 
88  | 
from n obtain m where m: "n = Suc m"  | 
|
89  | 
by (cases n, simp add: n)  | 
|
90  | 
||
91  | 
obtain B where f_h: "f h =  | 
|
92  | 
(\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) +  | 
|
93  | 
B * (h ^ n / real (fact n))"  | 
|
94  | 
using Maclaurin_lemma [OF h] ..  | 
|
95  | 
||
96  | 
obtain g where g_def: "g = (%t. f t -  | 
|
97  | 
    (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n}
 | 
|
98  | 
+ (B * (t^n / real(fact n)))))" by blast  | 
|
99  | 
||
100  | 
have g2: "g 0 = 0 & g h = 0"  | 
|
101  | 
apply (simp add: m f_h g_def del: setsum_op_ivl_Suc)  | 
|
| 
30082
 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 
huffman 
parents: 
29811 
diff
changeset
 | 
102  | 
apply (cut_tac n = m and k = "Suc 0" in sumr_offset2)  | 
| 29187 | 103  | 
apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc)  | 
104  | 
done  | 
|
105  | 
||
106  | 
obtain difg where difg_def: "difg = (%m t. diff m t -  | 
|
107  | 
    (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
 | 
|
108  | 
+ (B * ((t ^ (n - m)) / real (fact (n - m))))))" by blast  | 
|
109  | 
||
110  | 
have difg_0: "difg 0 = g"  | 
|
111  | 
unfolding difg_def g_def by (simp add: diff_0)  | 
|
112  | 
||
113  | 
have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real.  | 
|
114  | 
m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"  | 
|
115  | 
using diff_Suc m difg_def by (rule Maclaurin_lemma2)  | 
|
116  | 
||
117  | 
have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0"  | 
|
118  | 
apply clarify  | 
|
119  | 
apply (simp add: m difg_def)  | 
|
120  | 
apply (frule less_iff_Suc_add [THEN iffD1], clarify)  | 
|
121  | 
apply (simp del: setsum_op_ivl_Suc)  | 
|
| 
30082
 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 
huffman 
parents: 
29811 
diff
changeset
 | 
122  | 
apply (insert sumr_offset4 [of "Suc 0"])  | 
| 32047 | 123  | 
apply (simp del: setsum_op_ivl_Suc fact_Suc)  | 
| 29187 | 124  | 
done  | 
125  | 
||
126  | 
have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x"  | 
|
127  | 
by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp  | 
|
128  | 
||
129  | 
have differentiable_difg:  | 
|
130  | 
"\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x"  | 
|
131  | 
by (rule differentiableI [OF difg_Suc [rule_format]]) simp  | 
|
132  | 
||
133  | 
have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk>  | 
|
134  | 
\<Longrightarrow> difg (Suc m) t = 0"  | 
|
135  | 
by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp  | 
|
136  | 
||
137  | 
have "m < n" using m by simp  | 
|
138  | 
||
139  | 
have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"  | 
|
140  | 
using `m < n`  | 
|
141  | 
proof (induct m)  | 
|
142  | 
case 0  | 
|
143  | 
show ?case  | 
|
144  | 
proof (rule Rolle)  | 
|
145  | 
show "0 < h" by fact  | 
|
146  | 
show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2)  | 
|
147  | 
show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x"  | 
|
148  | 
by (simp add: isCont_difg n)  | 
|
149  | 
show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x"  | 
|
150  | 
by (simp add: differentiable_difg n)  | 
|
151  | 
qed  | 
|
152  | 
next  | 
|
153  | 
case (Suc m')  | 
|
154  | 
hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp  | 
|
155  | 
then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast  | 
|
156  | 
have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"  | 
|
157  | 
proof (rule Rolle)  | 
|
158  | 
show "0 < t" by fact  | 
|
159  | 
show "difg (Suc m') 0 = difg (Suc m') t"  | 
|
160  | 
using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0)  | 
|
161  | 
show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x"  | 
|
162  | 
using `t < h` `Suc m' < n` by (simp add: isCont_difg)  | 
|
163  | 
show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x"  | 
|
164  | 
using `t < h` `Suc m' < n` by (simp add: differentiable_difg)  | 
|
165  | 
qed  | 
|
166  | 
thus ?case  | 
|
167  | 
using `t < h` by auto  | 
|
168  | 
qed  | 
|
169  | 
||
170  | 
then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast  | 
|
171  | 
||
172  | 
hence "difg (Suc m) t = 0"  | 
|
173  | 
using `m < n` by (simp add: difg_Suc_eq_0)  | 
|
174  | 
||
175  | 
show ?thesis  | 
|
176  | 
proof (intro exI conjI)  | 
|
177  | 
show "0 < t" by fact  | 
|
178  | 
show "t < h" by fact  | 
|
179  | 
show "f h =  | 
|
180  | 
(\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
|
181  | 
diff n t / real (fact n) * h ^ n"  | 
|
182  | 
using `difg (Suc m) t = 0`  | 
|
| 32047 | 183  | 
by (simp add: m f_h difg_def del: fact_Suc)  | 
| 29187 | 184  | 
qed  | 
185  | 
||
186  | 
qed  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
187  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
188  | 
lemma Maclaurin_objl:  | 
| 25162 | 189  | 
"0 < h & n>0 & diff 0 = f &  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
190  | 
(\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
191  | 
--> (\<exists>t. 0 < t & t < h &  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
192  | 
f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
193  | 
diff n t / real (fact n) * h ^ n)"  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
194  | 
by (blast intro: Maclaurin)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
195  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
196  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
197  | 
lemma Maclaurin2:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
198  | 
"[| 0 < h; diff 0 = f;  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
199  | 
\<forall>m t.  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
200  | 
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
201  | 
==> \<exists>t. 0 < t &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
202  | 
t \<le> h &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
203  | 
f h =  | 
| 15539 | 204  | 
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
205  | 
diff n t / real (fact n) * h ^ n"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
206  | 
apply (case_tac "n", auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
207  | 
apply (drule Maclaurin, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
208  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
209  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
210  | 
lemma Maclaurin2_objl:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
211  | 
"0 < h & diff 0 = f &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
212  | 
(\<forall>m t.  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
213  | 
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
214  | 
--> (\<exists>t. 0 < t &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
215  | 
t \<le> h &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
216  | 
f h =  | 
| 15539 | 217  | 
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
218  | 
diff n t / real (fact n) * h ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
219  | 
by (blast intro: Maclaurin2)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
220  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
221  | 
lemma Maclaurin_minus:  | 
| 25162 | 222  | 
"[| h < 0; n > 0; diff 0 = f;  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
223  | 
\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |]  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
224  | 
==> \<exists>t. h < t &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
225  | 
t < 0 &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
226  | 
f h =  | 
| 15539 | 227  | 
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
228  | 
diff n t / real (fact n) * h ^ n"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
229  | 
apply (cut_tac f = "%x. f (-x)"  | 
| 23177 | 230  | 
and diff = "%n x. (-1 ^ n) * diff n (-x)"  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
231  | 
and h = "-h" and n = n in Maclaurin_objl)  | 
| 15539 | 232  | 
apply (simp)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
233  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
234  | 
apply (subst minus_mult_right)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
235  | 
apply (rule DERIV_cmult)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
236  | 
apply (rule lemma_DERIV_subst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
237  | 
apply (rule DERIV_chain2 [where g=uminus])  | 
| 
23069
 
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
 
huffman 
parents: 
22985 
diff
changeset
 | 
238  | 
apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_ident)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
239  | 
prefer 2 apply force  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
240  | 
apply force  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
241  | 
apply (rule_tac x = "-t" in exI, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
242  | 
apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) =  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
243  | 
(\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))")  | 
| 15536 | 244  | 
apply (rule_tac [2] setsum_cong[OF refl])  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
245  | 
apply (auto simp add: divide_inverse power_mult_distrib [symmetric])  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
246  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
247  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
248  | 
lemma Maclaurin_minus_objl:  | 
| 25162 | 249  | 
"(h < 0 & n > 0 & diff 0 = f &  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
250  | 
(\<forall>m t.  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
251  | 
m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
252  | 
--> (\<exists>t. h < t &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
253  | 
t < 0 &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
254  | 
f h =  | 
| 15539 | 255  | 
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
256  | 
diff n t / real (fact n) * h ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
257  | 
by (blast intro: Maclaurin_minus)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
258  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
259  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
260  | 
subsection{*More Convenient "Bidirectional" Version.*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
261  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
262  | 
(* not good for PVS sin_approx, cos_approx *)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
263  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
264  | 
lemma Maclaurin_bi_le_lemma [rule_format]:  | 
| 25162 | 265  | 
"n>0 \<longrightarrow>  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
266  | 
diff 0 0 =  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
267  | 
(\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
268  | 
diff n 0 * 0 ^ n / real (fact n)"  | 
| 15251 | 269  | 
by (induct "n", auto)  | 
| 14738 | 270  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
271  | 
lemma Maclaurin_bi_le:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
272  | 
"[| diff 0 = f;  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
273  | 
\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |]  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
274  | 
==> \<exists>t. abs t \<le> abs x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
275  | 
f x =  | 
| 15539 | 276  | 
(\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
277  | 
diff n t / real (fact n) * x ^ n"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
278  | 
apply (case_tac "n = 0", force)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
279  | 
apply (case_tac "x = 0")  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
280  | 
apply (rule_tac x = 0 in exI)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
281  | 
apply (force simp add: Maclaurin_bi_le_lemma)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
282  | 
apply (cut_tac x = x and y = 0 in linorder_less_linear, auto)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
283  | 
 txt{*Case 1, where @{term "x < 0"}*}
 | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
284  | 
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
285  | 
apply (simp add: abs_if)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
286  | 
apply (rule_tac x = t in exI)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
287  | 
apply (simp add: abs_if)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
288  | 
txt{*Case 2, where @{term "0 < x"}*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
289  | 
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe)  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
290  | 
apply (simp add: abs_if)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
291  | 
apply (rule_tac x = t in exI)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
292  | 
apply (simp add: abs_if)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
293  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
294  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
295  | 
lemma Maclaurin_all_lt:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
296  | 
"[| diff 0 = f;  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
297  | 
\<forall>m x. DERIV (diff m) x :> diff(Suc m) x;  | 
| 25162 | 298  | 
x ~= 0; n > 0  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
299  | 
|] ==> \<exists>t. 0 < abs t & abs t < abs x &  | 
| 15539 | 300  | 
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
301  | 
(diff n t / real (fact n)) * x ^ n"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
302  | 
apply (rule_tac x = x and y = 0 in linorder_cases)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
303  | 
prefer 2 apply blast  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
304  | 
apply (drule_tac [2] diff=diff in Maclaurin)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
305  | 
apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe)  | 
| 15229 | 306  | 
apply (rule_tac [!] x = t in exI, auto)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
307  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
308  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
309  | 
lemma Maclaurin_all_lt_objl:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
310  | 
"diff 0 = f &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
311  | 
(\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &  | 
| 25162 | 312  | 
x ~= 0 & n > 0  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
313  | 
--> (\<exists>t. 0 < abs t & abs t < abs x &  | 
| 15539 | 314  | 
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
315  | 
(diff n t / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
316  | 
by (blast intro: Maclaurin_all_lt)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
317  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
318  | 
lemma Maclaurin_zero [rule_format]:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
319  | 
"x = (0::real)  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
320  | 
==> n \<noteq> 0 -->  | 
| 15539 | 321  | 
(\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) =  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
322  | 
diff 0 0"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
323  | 
by (induct n, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
324  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
325  | 
lemma Maclaurin_all_le: "[| diff 0 = f;  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
326  | 
\<forall>m x. DERIV (diff m) x :> diff (Suc m) x  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
327  | 
|] ==> \<exists>t. abs t \<le> abs x &  | 
| 15539 | 328  | 
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
329  | 
(diff n t / real (fact n)) * x ^ n"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
330  | 
apply(cases "n=0")  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
331  | 
apply (force)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
332  | 
apply (case_tac "x = 0")  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
333  | 
apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption)  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
334  | 
apply (drule not0_implies_Suc)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
335  | 
apply (rule_tac x = 0 in exI, force)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
336  | 
apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
337  | 
apply (rule_tac x = t in exI, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
338  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
339  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
340  | 
lemma Maclaurin_all_le_objl: "diff 0 = f &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
341  | 
(\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
342  | 
--> (\<exists>t. abs t \<le> abs x &  | 
| 15539 | 343  | 
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
344  | 
(diff n t / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
345  | 
by (blast intro: Maclaurin_all_le)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
346  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
347  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
348  | 
subsection{*Version for Exponential Function*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
349  | 
|
| 25162 | 350  | 
lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |]  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
351  | 
==> (\<exists>t. 0 < abs t &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
352  | 
abs t < abs x &  | 
| 15539 | 353  | 
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
354  | 
(exp t / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
355  | 
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
356  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
357  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
358  | 
lemma Maclaurin_exp_le:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
359  | 
"\<exists>t. abs t \<le> abs x &  | 
| 15539 | 360  | 
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
361  | 
(exp t / real (fact n)) * x ^ n"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
362  | 
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
363  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
364  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
365  | 
subsection{*Version for Sine Function*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
366  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
367  | 
lemma mod_exhaust_less_4:  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
368  | 
"m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)"  | 
| 
20217
 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 
webertj 
parents: 
19765 
diff
changeset
 | 
369  | 
by auto  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
370  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
371  | 
lemma Suc_Suc_mult_two_diff_two [rule_format, simp]:  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
372  | 
"n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n"  | 
| 15251 | 373  | 
by (induct "n", auto)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
374  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
375  | 
lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]:  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
376  | 
"n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n"  | 
| 15251 | 377  | 
by (induct "n", auto)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
378  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
379  | 
lemma Suc_mult_two_diff_one [rule_format, simp]:  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
380  | 
"n\<noteq>0 --> Suc (2 * n - 1) = 2*n"  | 
| 15251 | 381  | 
by (induct "n", auto)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
382  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
383  | 
|
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
384  | 
text{*It is unclear why so many variant results are needed.*}
 | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
385  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
386  | 
lemma Maclaurin_sin_expansion2:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
387  | 
"\<exists>t. abs t \<le> abs x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
388  | 
sin x =  | 
| 15539 | 389  | 
(\<Sum>m=0..<n. (if even m then 0  | 
| 23177 | 390  | 
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *  | 
| 15539 | 391  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
392  | 
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
393  | 
apply (cut_tac f = sin and n = n and x = x  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
394  | 
and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
395  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
396  | 
apply (simp (no_asm))  | 
| 15539 | 397  | 
apply (simp (no_asm))  | 
| 23242 | 398  | 
apply (case_tac "n", clarify, simp, simp add: lemma_STAR_sin)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
399  | 
apply (rule ccontr, simp)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
400  | 
apply (drule_tac x = x in spec, simp)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
401  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
402  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 403  | 
apply (rule setsum_cong[OF refl])  | 
| 15539 | 404  | 
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
405  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
406  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
407  | 
lemma Maclaurin_sin_expansion:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
408  | 
"\<exists>t. sin x =  | 
| 15539 | 409  | 
(\<Sum>m=0..<n. (if even m then 0  | 
| 23177 | 410  | 
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *  | 
| 15539 | 411  | 
x ^ m)  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
412  | 
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
413  | 
apply (insert Maclaurin_sin_expansion2 [of x n])  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
414  | 
apply (blast intro: elim:);  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
415  | 
done  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
416  | 
|
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
417  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
418  | 
lemma Maclaurin_sin_expansion3:  | 
| 25162 | 419  | 
"[| n > 0; 0 < x |] ==>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
420  | 
\<exists>t. 0 < t & t < x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
421  | 
sin x =  | 
| 15539 | 422  | 
(\<Sum>m=0..<n. (if even m then 0  | 
| 23177 | 423  | 
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *  | 
| 15539 | 424  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
425  | 
+ ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
426  | 
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
427  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
428  | 
apply simp  | 
| 15539 | 429  | 
apply (simp (no_asm))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
430  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
431  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 432  | 
apply (rule setsum_cong[OF refl])  | 
| 15539 | 433  | 
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
434  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
435  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
436  | 
lemma Maclaurin_sin_expansion4:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
437  | 
"0 < x ==>  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
438  | 
\<exists>t. 0 < t & t \<le> x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
439  | 
sin x =  | 
| 15539 | 440  | 
(\<Sum>m=0..<n. (if even m then 0  | 
| 23177 | 441  | 
else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *  | 
| 15539 | 442  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
443  | 
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
444  | 
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
445  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
446  | 
apply simp  | 
| 15539 | 447  | 
apply (simp (no_asm))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
448  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
449  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 450  | 
apply (rule setsum_cong[OF refl])  | 
| 15539 | 451  | 
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
452  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
453  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
454  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
455  | 
subsection{*Maclaurin Expansion for Cosine Function*}
 | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
456  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
457  | 
lemma sumr_cos_zero_one [simp]:  | 
| 15539 | 458  | 
"(\<Sum>m=0..<(Suc n).  | 
| 23177 | 459  | 
(if even m then -1 ^ (m div 2)/(real (fact m)) else 0) * 0 ^ m) = 1"  | 
| 15251 | 460  | 
by (induct "n", auto)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
461  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
462  | 
lemma Maclaurin_cos_expansion:  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
463  | 
"\<exists>t. abs t \<le> abs x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
464  | 
cos x =  | 
| 15539 | 465  | 
(\<Sum>m=0..<n. (if even m  | 
| 23177 | 466  | 
then -1 ^ (m div 2)/(real (fact m))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
467  | 
else 0) *  | 
| 15539 | 468  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
469  | 
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
470  | 
apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
471  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
472  | 
apply (simp (no_asm))  | 
| 15539 | 473  | 
apply (simp (no_asm))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
474  | 
apply (case_tac "n", simp)  | 
| 15561 | 475  | 
apply (simp del: setsum_op_ivl_Suc)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
476  | 
apply (rule ccontr, simp)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
477  | 
apply (drule_tac x = x in spec, simp)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
478  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
479  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 480  | 
apply (rule setsum_cong[OF refl])  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
481  | 
apply (auto simp add: cos_zero_iff even_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
482  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
483  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
484  | 
lemma Maclaurin_cos_expansion2:  | 
| 25162 | 485  | 
"[| 0 < x; n > 0 |] ==>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
486  | 
\<exists>t. 0 < t & t < x &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
487  | 
cos x =  | 
| 15539 | 488  | 
(\<Sum>m=0..<n. (if even m  | 
| 23177 | 489  | 
then -1 ^ (m div 2)/(real (fact m))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
490  | 
else 0) *  | 
| 15539 | 491  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
492  | 
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
493  | 
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
494  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
495  | 
apply simp  | 
| 15539 | 496  | 
apply (simp (no_asm))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
497  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
498  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 499  | 
apply (rule setsum_cong[OF refl])  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
500  | 
apply (auto simp add: cos_zero_iff even_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
501  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
502  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
503  | 
lemma Maclaurin_minus_cos_expansion:  | 
| 25162 | 504  | 
"[| x < 0; n > 0 |] ==>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
505  | 
\<exists>t. x < t & t < 0 &  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
506  | 
cos x =  | 
| 15539 | 507  | 
(\<Sum>m=0..<n. (if even m  | 
| 23177 | 508  | 
then -1 ^ (m div 2)/(real (fact m))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
509  | 
else 0) *  | 
| 15539 | 510  | 
x ^ m)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
511  | 
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
512  | 
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
513  | 
apply safe  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
514  | 
apply simp  | 
| 15539 | 515  | 
apply (simp (no_asm))  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
516  | 
apply (erule ssubst)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
517  | 
apply (rule_tac x = t in exI, simp)  | 
| 15536 | 518  | 
apply (rule setsum_cong[OF refl])  | 
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
519  | 
apply (auto simp add: cos_zero_iff even_mult_two_ex)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
520  | 
done  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
521  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
522  | 
(* ------------------------------------------------------------------------- *)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
523  | 
(* Version for ln(1 +/- x). Where is it?? *)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
524  | 
(* ------------------------------------------------------------------------- *)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
525  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
526  | 
lemma sin_bound_lemma:  | 
| 15081 | 527  | 
"[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v"  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
528  | 
by auto  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
529  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
530  | 
lemma Maclaurin_sin_bound:  | 
| 23177 | 531  | 
"abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *  | 
| 15081 | 532  | 
x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n"  | 
| 14738 | 533  | 
proof -  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
534  | 
have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"  | 
| 14738 | 535  | 
by (rule_tac mult_right_mono,simp_all)  | 
536  | 
note est = this[simplified]  | 
|
| 22985 | 537  | 
let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"  | 
538  | 
have diff_0: "?diff 0 = sin" by simp  | 
|
539  | 
have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x"  | 
|
540  | 
apply (clarify)  | 
|
541  | 
apply (subst (1 2 3) mod_Suc_eq_Suc_mod)  | 
|
542  | 
apply (cut_tac m=m in mod_exhaust_less_4)  | 
|
| 31881 | 543  | 
apply (safe, auto intro!: DERIV_intros)  | 
| 22985 | 544  | 
done  | 
545  | 
from Maclaurin_all_le [OF diff_0 DERIV_diff]  | 
|
546  | 
obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and  | 
|
547  | 
t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) +  | 
|
548  | 
?diff n t / real (fact n) * x ^ n" by fast  | 
|
549  | 
have diff_m_0:  | 
|
550  | 
"\<And>m. ?diff m 0 = (if even m then 0  | 
|
| 23177 | 551  | 
else -1 ^ ((m - Suc 0) div 2))"  | 
| 22985 | 552  | 
apply (subst even_even_mod_4_iff)  | 
553  | 
apply (cut_tac m=m in mod_exhaust_less_4)  | 
|
554  | 
apply (elim disjE, simp_all)  | 
|
555  | 
apply (safe dest!: mod_eqD, simp_all)  | 
|
556  | 
done  | 
|
| 14738 | 557  | 
show ?thesis  | 
| 22985 | 558  | 
apply (subst t2)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
559  | 
apply (rule sin_bound_lemma)  | 
| 15536 | 560  | 
apply (rule setsum_cong[OF refl])  | 
| 22985 | 561  | 
apply (subst diff_m_0, simp)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
562  | 
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
15944 
diff
changeset
 | 
563  | 
simp add: est mult_nonneg_nonneg mult_ac divide_inverse  | 
| 16924 | 564  | 
power_abs [symmetric] abs_mult)  | 
| 14738 | 565  | 
done  | 
566  | 
qed  | 
|
567  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
568  | 
end  |